SELECTION GUIDE
 Microsemi Corporation

Microsemi is a leading custom designer and manufacturer of advanced devices, components and subsystems for:
avionics, radar, missile, satellite, telecommunications, wireless, automotive, security, safety, industrial processing, and traffic management applications.

Our Semiconductor Diode Group manufactures a range of GaAs \& Si diodes including Varactors, Hyperabrupt Varactors, PIN's, Gunns, Schottky's and IMPATTs. They are available in chip form and beam lead, or in a number of different package styles.

The Sensors Group produces a wide range of Doppler transceivers, Gunn oscillators, isolators and many specially designed sub-systems and multi function assemblies, that enable our customers to reduce cost and improve performance of their own systems.

Our Control components group includes PIN diode based products in multithrow configurations, with and with out integral drivers Limiter based products, handling RF incident power. These components are available in SMA connectorized or drop in module format.

We welcome you as either an existing or a new customer, and we are sure that we will have a very successful business relationship for years to come.

Varactor Diodes-GaAs (MV20000 and MV30000 Series)

Capacitanc $\begin{aligned} & \pm 10 \% @ \\ & -4 V(p F) \end{aligned}$	Abrupt Junction Tuning Varactors $\begin{gathered} \mathrm{V}_{\mathrm{BR}} @ 10 \mu \mathrm{~A}=30 \mathrm{~V} \text { Min. } \\ (0-30 \mathrm{~V} \text { Tuning Range) } \end{gathered}$	Tuning Varactors$\mathrm{V}_{\text {BR }} @ 10 \mu \mathrm{~A}=22 \mathrm{~V}$ Min. $(2-20 \mathrm{~V}$ Tuning Range)		
	Gamma $=0.50$	Gamma $=0.75$	Gamma $=1.00$	Gamma $=1.25$
0.3	MV21001 СТО/СТ30 $=2.8, \mathrm{Q}=8000$			
0.4	MV21002 СТО/СТ30 $=3.1, \mathrm{Q}=7500$			
0.5	MV21003 СТО/СТ30 $=3.4, \mathrm{Q}=7000$			MV31011 CT2/CT20 $=5.5, \mathrm{Q}=4000$
0.6	MV21004 СТО/СТ30 $=3.6, \mathrm{Q}=6500$	MV32001 CT2/CT20 = 2.8, Q = 4000	MV30011 CT2/CT20 = 3.9, Q = 4000	
0.7				MV31012 CT2/CT20 $=6.5, \mathrm{Q}=4000$
0.8	MV21005 СТО/СТ30 $=3.8, \mathrm{Q}=6000$			
1.0	MV21006 СТО/СТ30 $=4.0, \mathrm{Q}=5700$	MV32002 CT2/CT20 $=3.1, \mathrm{Q}=3000$	MV30012 CT2/CT20 $=4.6, \mathrm{Q}=3000$	MV31013 CT2/CT20 $=7.7, \mathrm{Q}=3000$
1.2	MV21007 СТО/СТ30 $=4.2, \mathrm{Q}=5000$	MV32003 CT2/CT20 $=3.2, \mathrm{Q}=3000$	MV30013 CT2/CT20 $=4.9, ~ Q=3000$	MV31014 CT2/CT20 $=8.3, Q=3000$
1.5	MV21008 СТО/СТ30 $=4.3, \mathrm{Q}=5000$	MV32004 CT2/CT20 $=3.3, \mathrm{Q}=3000$	MV30014 CT2/CT20 $=5.2, \mathrm{Q}=3000$	MV31015 CT2/CT20 = 9.1, Q = 3000
1.8	MV21009 СТО/СТ30 = 4.5, Q = 5000	MV32005 CT2/CT20 = 3.4, Q = 3000	MV30015 CT2/CT20 = 5.4, Q = 3000	MV31016 CT2/CT20 = 9.6, Q = 3000
2.0				MV31017 CT2/CT20 = 9.9, Q = 3000
2.2	MV21010 СТО/СТ30 = 4.6, Q = 4000	MV32006 CT2/CT20 = 3.5, Q = 3000	MV30016 CT2/CT20 = 5.6, Q = 3000	MV31018 CT2/CT20 $=10.2, ~ Q=3000$
2.5		MV32007 CT2/CT20 $=3.6, \mathrm{Q}=2500$	MV30017 CT2/CT20 $=5.8, \mathrm{Q}=2500$	
2.7				MV31019 $\mathrm{CT} 2 / \mathrm{CT} 20=10.8, \mathrm{Q}=2000$
3.0		MV32008 CT2/CT20 = 3.6, Q = 2500	MV30018 CT2/CT20 = 6.0, Q = 2500	
3.3				MV31020 CT2/CT20 $=11.3, Q=2000$
3.6		MV32009 CT2/CT20 = 3.7, Q = 2000	MV30019 CT2/CT20 = 6.1, Q = 2000	
3.7				MV31021 CT2/CT20 $=11.5, \mathrm{Q}=2000$
4.5		MV32010 CT2/CT20 = 3.8, Q = 1500	MV30020 CT2/CT20 = 6.3, Q = 1500	
4.7				MV31022 CT2/CT20 $=12.0, \mathrm{Q}=1500$
5.6				MV31023 CT2/CT20 $=12.3, \mathrm{Q}=1500$
6.8				MV31024 CT2/CT20 $=12.6, Q=1500$
8.2				MV31025 CT2/CT20 $=12.9, \mathrm{Q}=1500$
10.0				MV31026 CT2/CT20 $=13.1, \mathrm{Q}=1500$

Various packages available upon request.
Tightened capacitance tolerances available upon request. Q measured at -4 V , referenced to 50 MHz .

Capacitance

$\pm 10 \% @$	$V_{\mathrm{BR}} @ 10 \mu \mathrm{~A}=15 \mathrm{~V}$ Min.
$-4 \mathrm{~V}(\mathrm{pF})$	$(0-15 \mathrm{~V}$ Tuning Range $)$

	Gamma $=0.50$	Gamma $=1.00$	Gamma $=1.25$	Gamma $=1.50$
0.3	MV20001 CT0/CT15 $=2.4, \mathrm{Q}=8000$			
0.4	MV20002 CT0/CT15 = 2.6, Q = 7500			
0.5	MV20003 CT0/CT15 $=2.8, \mathrm{Q}=7000$			MV34001 CT2/CT12 $=4.5, \mathrm{Q}=3000$
0.6	MV20004 СТо/CT15 = 2.9, $\mathrm{Q}=6500$	MV30001 CT2/CT12 $=3.2, \mathrm{Q}=4000$	MV31001 CT2/CT12 $=4.2, \mathrm{Q}=4000$	
0.8	MV20005 CT0/CT15 = 3.0, Q = 6000			
1.0	MV20006 CT0/CT15 = 3.1, Q = 5700	MV30002 CT2/CT12 $=3.7, \mathrm{Q}=3000$	MV31002 CT2/CT12 $=5.1, \mathrm{Q}=4000$	MV34002 CT2/CT12 $=5.9, \mathrm{Q}=2500$
1.2	MV20007 CTO/CT15 = 3.2, Q = 5000	MV30003 CT2/CT12 $=3.8, \mathrm{Q}=3000$	MV31003 CT2/CT12 $=5.4, \mathrm{Q}=3000$	
1.5	MV20008 CT0/CT15 = 3.3, Q = 5000	MV30004 CT2/CT12 $=4.0, \mathrm{Q}=3000$	MV31004 CT2/CT12 $=5.7, \mathrm{Q}=3000$	
1.8	MV20009 CTO/CT15 $=3.4, \mathrm{Q}=5000$	MV30005 CT2/CT12 $=4.1, \mathrm{Q}=3000$	MV31005 CT2/CT12 $=5.9, \mathrm{Q}=3000$	MV34003 CT2/CT12 $=7.1, \mathrm{Q}=2500$
2.0				MV34004 CT2/CT12 $=7.3, \mathrm{Q}=2500$
2.2	MV20010 CT0/CT15 = 3.4, Q = 4000	MV30006 CT2/CT12 $=4.2, \mathrm{Q}=3000$	MV31006 CT2/CT12 $=6.2, \mathrm{Q}=3000$	MV34005 CT2/CT12 $=7.4, \mathrm{Q}=1800$
2.5		MV30007 CT2/CT12 $=4.3, \mathrm{Q}=2500$	MV31007 CT2/CT12 $=6.3, \mathrm{Q}=3000$	MV34006 CT2/CT12 $=7.6, \mathrm{Q}=1800$
3.0		MV30008 CT2/CT12 $=4.4, \mathrm{Q}=2500$	MV31008 CT2/CT12 $=6.5, \mathrm{Q}=3000$	MV34007 CT2/CT12 $=7.9, \mathrm{Q}=1800$
3.6		MV30009 CT2/CT12 $=4.5, \mathrm{Q}=2000$	MV31009 CT2/CT12 $=6.7, Q=2000$	
3.8				MV34008 CT2/CT12 = 8.1, $\mathrm{Q}=1800$
4.5		MV30010 CT2/CT12 $=4.5, \mathrm{Q}=1500$	MV31010 CT2/CT12 $=6.8, \mathrm{Q}=2000$	MV34009 CT2/CT12 $=8.3, Q=1200$
10.0				MV34010 CT2/CT12 $=8.9, \mathrm{Q}=1200$

[^0]Q measured at -4 V , referenced to 50 MHz .

GaAs PIN Diodes

Part Number ${ }^{1}$	Max. C ${ }^{\text {@ }}$ -10 V Max. (pf)	Min $V_{B R}$ (V)	Max. R_{S} @ 20 mA (Ω)	Typ. Switching Speed (ns)	Typ. Minority Carrier Lifetime (ns) ${ }^{2}$
MP61001	0.03	200	3.0	20.0	50
MP61002	0.04	200	3.0	20.0	50
MP61003	0.05	200	3.0	20.0	50
MP61004	0.06	100	2.0	9.0	15
MP61005	0.07	100	2.0	9.0	15
MP61006	0.08	100	2.0	9.0	15
MP61007	0.10	75	2.0	6.0	10
MP61008	0.12	75	2.0	6.0	10
MP61009	0.15	50	1.0	3.5	5
MP61010	0.18	50	1.0	3.5	5
MP61011	0.23	50	0.8	3.5	5
MP61012	0.35	50	0.8	3.5	5

${ }^{1}$ Suffix of the model number indicates the package style. Suggested package styles are M11, M14, M21, M26, M36, M40, M46 and chip P10. (For example MP61001-26).
2 Minority carrier lifetime is inferred from stored charge measurement with a forward current of 10 mA .
Note: All GaAs PIN diodes are passivated with Silicon Nitride with a minimum bonding area diameter of 50 microns.

Silicon Chip Capacitors

Part Number	Capacitance (pF)	Voltage Rating (V)	Nominal Chip Size (mils)	Minimum Contact Pad Size $($ mils $)$	
MCOR8K100	0.8	100	12×12	1.5×1.5	38.1×38.1
MC1R0K100	1.0	100	12×12	1.5×1.5	38.1×38.1
MC1R2K100	1.2	100	12×12	1.5×1.5	38.1×38.1
MC1R8K100	1.8	100	12×12	1.5×1.5	38.1×38.1
MC2R6K100	2.6	100	12×12	3×3	76.2×76.2
MC3R8K100	3.8	100	12×12	3×3	76.2×76.2
MC4R7K100	4.7	100	12×12	3×3	76.2×76.2
MC6R8K100	6.8	100	12×12	5×5	127×127
MC8R2K100	8.2	100	12×12	5×5	127×127
MC10ROK100	10.0	100	25×25	7×7	177×177
MC15ROK100	15.0	100	25×25	9×9	230×230
MC22ROK100	22.0	100	25×25	11×11	281×281
MC33R0K100	33.0	100	25×25	14×14	356×356
MC47ROK100	47.0	100	25×25	17×17	432×432

Miniature Ferrite Isolators

Frequency, W/G, Flange	Bandwidth (\%)	Isolation (dB)	Insertion Loss	$\begin{gathered} \text { VSWR } \\ \text { (In \& Out) } \end{gathered}$	Average Power Forward (W)	Reverse (W)
18.0-26.5GHZ, WR-42, UG595/U	10	20	0.3	1.30	40	1
26.5-40.0GHz, WR-28, UG599/U	10	20	0.4	1.30	30	1
33.0-50.0GHz, WR-22, UG599/U-M	8	20	0.5	1.30	20	0.8
40.0-60.0GHz, WR-19, UG599/U-M	7	18	0.6	1.35	5	0.5
75.0-110.0GHz, WR-10, UG599/U-M	2	18	0.7	1.30	0.2	0.2

Operating Temperature range -10 to +60 deg C but for WR-10 units 0 . Temp. is -10 to +50 deg C .
\square

MMI	28	599	T
\uparrow	\uparrow	\uparrow	\uparrow
Model	W/G Size	Flange	Tapped Flange

Specifications @ $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice

Gunn Diodes

Discrete Frequency: Cathode Ground (CW EPI-Down)

Minimum Power (mW)	$\begin{gathered} \text { C } \\ (5.4-6.9) \\ \text { GHz } \end{gathered}$	$\begin{gathered} X \\ (8.0-12.4) \\ G H z \end{gathered}$	$\begin{gathered} \mathrm{Ku} \\ (12.4-18.0) \\ \mathrm{GHz} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \left(\begin{array}{c} 18.0-26.5) \\ \mathrm{GHz} \end{array}\right. \end{gathered}$	$\begin{gathered} \mathrm{Ka} \\ \underset{\substack{26.5-40.0 \\ \mathrm{GHz}}}{ } . \end{gathered}$	$\underset{\left(\begin{array}{c} \text { U } \\ (40-60.0) \\ G H z \end{array}\right)}{ }$	$\begin{gathered} (60.5-85.0) \\ G H z \end{gathered}$	$\begin{gathered} \text { (85.0-95.0) } \\ \mathrm{GHz} \end{gathered}$
10							$\begin{gathered} \text { MG1036-16 } \\ \mathrm{V}_{\mathrm{op}}=4.5 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=900 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { MG1024-16 } \\ \mathrm{V}_{\mathrm{op}}=4.5 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1100 \mathrm{~mA} \end{gathered}$
20								$\begin{gathered} \text { MG1025-16 } \\ \mathrm{V}_{\mathrm{op}}=4.5 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1000 \mathrm{~mA} \end{gathered}$
50	$\begin{aligned} & \text { MG1001-11 } \\ & \mathrm{V}_{\mathrm{OP}}=12 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=400 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MG1005-11 } \\ & \mathrm{V}_{\mathrm{op}}=10 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=400 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MG1009-11 } \\ & \mathrm{V}_{\mathrm{OP}}=8 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=500 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MG1013-16 } \\ & \mathrm{V}_{\text {OP }}=6 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=600 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \text { MG1017-16 } \\ \mathrm{V}_{\mathrm{OP}}=4.5 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=700 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \text { MG1021-16 } \\ & \mathrm{V}_{\mathrm{op}}=4 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=800 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \text { MG1037-16 } \\ \mathrm{V}_{0 P}=5 \mathrm{~V} @ \\ \mathrm{I}_{0 \mathrm{P}}=1100 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { MG1038-16 } \\ \mathrm{V}_{\mathrm{OP}}=5 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1200 \mathrm{~mA} \\ \hline \end{gathered}$
100	$\begin{aligned} & \text { MG1002-11 } \\ & V_{\mathrm{Op}}=12 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=600 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MG1006-11 } \\ & \mathrm{V}_{\mathrm{OP}}=10 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=700 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MG1010-11 } \\ & \mathrm{V}_{\mathrm{OP}}=8 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=800 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { MG1014-16 } \\ \mathrm{V}_{\text {OP }}=6 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1000 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MG1018-16 } \\ \mathrm{V}_{\mathrm{OP}}=4.5 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1100 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MG1022-16 } \\ \mathrm{V}_{\mathrm{OP}}=4 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1200 \mathrm{~mA} \\ \hline \end{gathered}$		
150						$\begin{gathered} \text { MG1023-16 } \\ \mathrm{V}_{\mathrm{OP}}=4 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1600 \mathrm{~mA} \\ (40-50 \mathrm{GHz}) \\ \hline \end{gathered}$		
200				$\begin{gathered} \hline \text { MG1015-16 } \\ \mathrm{V}_{\mathrm{OP}}=6 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1400 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MG1019-16 } \\ \mathrm{V}_{\mathrm{OP}}=5 \mathrm{~V} @ \\ \mathrm{I}_{0 \mathrm{P}}=1400 \mathrm{~mA} \\ \hline \end{gathered}$			
250	$\begin{gathered} \text { MG1003-15 } \\ V_{o p}=12 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1100 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \text { MG1007-15 } \\ V_{o p}=10 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1200 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \text { MG1011-15 } \\ \mathrm{V}_{\mathrm{OP}}=8 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1200 \mathrm{~mA} \\ \hline \end{gathered}$		$\begin{gathered} \text { MG1020-16 } \\ \mathrm{V}_{\mathrm{OP}}=5.5 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1600 \mathrm{~mA} \\ \hline \end{gathered}$			
300					MG1039-16 $\begin{aligned} & \mathrm{V}_{\mathrm{op}}=5.5 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{op}}=1700 \mathrm{~mA} \\ & (26.5-35 \mathrm{GHz}) \end{aligned}$			
350					MG1040-16 $\mathrm{V}_{\mathrm{OP}}=5.5 \mathrm{~V}$ @ $\mathrm{I}_{0 \mathrm{P}}=1800 \mathrm{~mA}$ ($26.5-35 \mathrm{GHz}$)			
400				$\begin{gathered} \text { MG1016-17 } \\ \mathrm{V}_{\text {Op }}=6 \mathrm{~V} @ \\ \mathrm{I}_{0 \mathrm{P}}=1700 \mathrm{~mA} \\ (18.0-23.0 \mathrm{GHz}) \\ \hline \end{gathered}$				
500	$\begin{gathered} \text { MG1004-15 } \\ \mathrm{V}_{\mathrm{OP}}=12 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1300 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { MG1008-15 } \\ \mathrm{V}_{\mathrm{OP}}=10 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1600 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { MG1012-15 } \\ \mathrm{V}_{\mathrm{OP}}=8 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=1700 \mathrm{~mA} \end{gathered}$					

Polarity: anode is the cap and cathode is the heat-sink.

Discrete Frequency: Anode Ground (CW EPI-Up)

Minimum Power (mW)	$\begin{gathered} \mathrm{X} \\ (9.5-11.5) \\ \mathrm{GHz} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ (23.0-25.0) \\ \mathrm{GHz} \end{gathered}$	$\begin{gathered} \mathrm{Ka} \\ (33.5-35.5) \\ \mathrm{GHz} \end{gathered}$	Package Outline
5		$\begin{aligned} & \hline \text { MG1054-11 } \\ & \mathrm{V}_{\mathrm{OP}}=5 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=200 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MG1059-11 } \\ & \mathrm{V}_{\mathrm{OP}}=5 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=300 \mathrm{~mA} \\ & \hline \end{aligned}$	M11
10	$\begin{aligned} & \text { MG1052-11 } \\ & V_{O P}=8 \mathrm{~V} @ \\ & \mathrm{I}_{O P}=140 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { MG1058-11 } \\ & V_{O P}=5 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=300 \mathrm{~mA} \end{aligned}$		M11
20	$\begin{aligned} & \hline \text { MG1056-11 } \\ & V_{O P}=8 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=200 \mathrm{~mA} \\ & \hline \end{aligned}$			M11

Polarity: cathode is the cap and anode is the heat-sink.

Operation over a narrow band around a specific center frequency. Other frequencies available upon request. Call factory.
Operating voltage (V_{OP}) typ. Operating current (I_{OP}) max.
Power measured with diode inserted in a critically coupled cavity.
Specifications @ $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Discrete Frequency: Anode Ground (Pulsed EPI-Up)

Minimum Power (mW)	$\begin{gathered} X \\ (9.5-11.5) \\ G H z \end{gathered}$	$\begin{gathered} \text { K } \\ (23.0-25.0) \\ \text { GHz } \end{gathered}$	Package Outline GHz
5		$\begin{gathered} \hline \text { MG1044-11 } \\ \mathrm{V}_{\mathrm{OP}}=8 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=120 \mathrm{~mA} \\ \hline \end{gathered}$	M11
10	$\begin{aligned} & \text { MG1041-11 } \\ & V_{O P}=9 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=110 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \text { MG1045-11 } \\ \mathrm{V}_{\mathrm{OP}}=8 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=150 \mathrm{~mA} \end{gathered}$	M11
20	$\begin{aligned} & \text { MG1042-11 } \\ & V_{O P}=9 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=140 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline \text { MG1046-11 } \\ \mathrm{V}_{\mathrm{OP}}=8 \mathrm{~V} @ \\ \mathrm{I}_{\mathrm{OP}}=200 \mathrm{~mA} \\ \hline \end{gathered}$	M11
30	$\begin{aligned} & \text { MG1043-11 } \\ & \mathrm{V}_{\mathrm{OP}}=10 \mathrm{~V} @ \\ & \mathrm{I}_{\mathrm{OP}}=180 \mathrm{~mA} \end{aligned}$		M11

Polarity: cathode is the cap and anode is the heat-sink.
Pulse width $=1 \mu \mathrm{sec}$. Duty factor $=1 \%$ typ.
Alternative pulse width and duty factors can be specified by customer.

Impatts

CW IMPATT Diodes

Part Number	$\begin{aligned} & \text { FOP } \\ & \text { (GHz) } \end{aligned}$	Min. PO (W)	$\mathrm{V}_{\mathrm{BR}}{\underset{(V)}{@ 1 m A}}^{1 \mathrm{~mA}}$	$\underset{(\mathrm{pF})}{\text { Typ. }}$	$\text { Typ. } \mathrm{V}_{\mathrm{OP}}$ (V)	Typ. I_{OP} (A)	Min. Eff. (\%)	$\begin{gathered} \text { Max. } \theta \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	Pkg. Style
MI5022	9.5-10.2	3.5	30	20	50	0.43	20	12.0	M18

Pulsed IMPATT Diodes

Part Number	$\begin{gathered} \text { FOP } \\ (\mathrm{GHz}) \end{gathered}$	Min. PO (W)	$\begin{gathered} V_{B R} @ 1 \mathrm{~mA} \\ (\mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { Typ. } \mathrm{C}_{\top}(0 \mathrm{~V}) \\ (\mathrm{pF}) \end{gathered}$	Typ. $\mathrm{V}_{\text {op }}$ (V)	Typ. I_{op} (A)	Min. Eff. (\%)	Max. θ (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	Pkg. Style
MI5001	5.1-5.4	10^{1}	70	80	95	1.2	13	8.0	M 15
MI5003	9.1-9.6	15^{1}	45	75	65	1.8	15	9.5	M 18
MI5004	9.1-9.5	12^{2}	35	42	58	1.2	18	9.5	M 18

${ }^{1}$ Pulse width $0.5-10 \mu \mathrm{~S}$; duty cycle: $0.5-5 \%$.
Pulse width $1-2 \mu \mathrm{~S}$; duty cycle: 20-30\%.

Notes:
Power output is measured in a critically coupled cavity at the customer-specified frequency-FOP
Total capacitance is measured at 1 MHz .
Test procedure for measuring thermal resistance is available on request.
Breakdown Voltage is measured at 1 mA .

High Cut-off GaAs Frequency Multiplier Diodes

Part Number	$\begin{gathered} \mathrm{C}_{30} \pm 10 \% \\ (\mathrm{pF})^{1,3,4} \end{gathered}$	Typ. $\mathrm{C}_{\text {TO }} / \mathrm{C}_{\text {TVBR }}{ }^{5}$	$\begin{gathered} V_{B R} @ 10 \mu A \\ (V) \end{gathered}$	Typical Q @ - ${ }^{\text {V }}$ ²
MV71001	0.2	2.1	15	8000
MV71002	0.3	2.4	15	8000
MV71003	0.4	2.6	15	7500
MV71004	0.5	2.8	15	7000
MV71005	0.3	2.8	30	8000
MV71006	0.4	3.1	30	7500
MV71007	0.5	3.4	30	7000
MV71008	0.6	3.6	30	6500
MV71009	0.7	3.7	30	6000
MV71010	0.8	3.8	30	6000
MV71011	0.9	3.9	30	5700
MV71012	1.0	4.0	30	5700
MV71013	1.2	4.2	30	5000

${ }^{1}$ Capacitance is measured at 1 MHz using a shielded fixture.
${ }^{2}$ Measured by DeLoach Technique and referenced to 50 MHz .
${ }^{3}$ Tightened tolerances available upon request.
${ }^{4}$ Package parasitics are not included in above specifications. The contributions of package capacitance add to the overall total capacitance and will vary depending upon package style selected.
The values for package capacitance, C_{p}, can be made available upon request.
5 The capacitance ratio is calculated using $C_{p}=0.15 \mathrm{pF}$. Ratios will vary depending upon case style selection.

2 Stack ISIS Diodes-
 Breakdown Voltage: 55V min

Part Number	C_{J} @ 0v (pF)	Min. Cut-off Frequency (GHz) ${ }^{\mathbf{1}}$	Package Capacitance (pF)
MIV41001-21	$0.1-0.3$	1000	0.15
MIV41002-21	$0.3-0.5$	700	0.15
MIV41003-21	$0.5-1.0$	600	0.15
MIV41001-29	$0.1-0.3$	1000	0.01
MIV41002-29	$0.3-0.5$	700	0.01
MIV41003-29	$0.5-1.0$	600	0.01

3 Stack ISIS Diodes-
 Breakdown Voltage: 75V min

Part	C_{J} @ Ov	Min. Cut-off	Package Number
(pF)	Frequency $(\mathrm{GHz})^{1}$	Capacitance (pF)	

MIV41011-21	$0.1-0.3$	1000	0.15
MIV41012-21	$0.3-0.5$	700	0.15
MIV41013-21	$0.5-1.0$	600	0.15
MIV41011-29	$0.1-0.3$	1000	0.01
MIV41012-29	$0.3-0.5$	700	0.01
MIV41013-29	$0.5-1.0$	600	0.01

${ }^{1}$ Cut-off frequency measured at 6 volts.
Other package styles are available on reque
Other package styles are available on request.
Different breakdown voltages are available on request.

Specifications @ $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

GaAs Schottky Barrier Diodes

Part Number ${ }^{1}$	$\begin{aligned} & \text { Typ. } \mathrm{C}_{\mathrm{J}} \\ & (\mathrm{pF})^{2} \end{aligned}$	$\begin{aligned} & \text { Min./Max. } \mathrm{R}_{\mathrm{S}} \\ & (\Omega)^{3} \end{aligned}$	LO Test Freq. (GHz)	Typ. Noise Figure (dB) ${ }^{4}$	$\begin{gathered} \text { Min./Max. } \\ \text { IF Impedance }(\Omega) \end{gathered}$	$\begin{gathered} \operatorname{Min} . V_{B R} \\ @ 10 \mu \mathrm{~A}(\mathrm{~V}) \end{gathered}$
MS8001	0.10	3-6	9.375	5.6	250/500	5
MS8002	0.10	3-6	16.000	5.6	250/500	5
MS8003	0.07	3-6	24.000	6.5	250/500	5
MS8004	0.06	3-6	36.000	6.5	250/500	5

Si Schottky Barrier Diodes

| Part
 Number | Typ. C_{T}
 $(p F)^{2}$ | Typ. R_{S}
 $(\Omega)^{3}$ | Max I_{R}
 $@ 1 v(n A)$ | Max V_{F}
 $@ 1 \mathrm{~mA}(\mathrm{mV})$ |
| :---: | :---: | :---: | :---: | :---: | | Min. V_{B}
 $@ 10 \mu A(V)$ |
| :---: |
| MS8520-48 |

${ }^{1}$ Suffix of the model number indicates the package style. Suggested package styles are M22, M26, M38, M39, M46 and M48 as well as in chip form P10. (For example MS8002-38)
${ }_{2}^{2}$ Capacitance C_{j} is measured at zero bias with a 1 MHz signal.
${ }^{3}$ Series resistance, R_{S}, is calculated by subtracting the barrier resistance $R_{D}=k T / q I$ from the measured total resistance R_{T} at $10 \mathrm{~mA}: R_{S}=R_{T}-R_{D}$
$\mathrm{k}=$ Boltzmann Constant, $\mathrm{T}=$ diode temperature in degrees $\mathrm{K}, \mathrm{q}=$ electronic charge, $\mathrm{I}=$ rectified current.
4 The quoted noise figure (NF) is a single side band NF measured at $L 0$ power of 6 dBm for a single, and 10 dBm for a balanced mixer with a 30 MHz IF amplifier of minimum NF of 1.5 dB .

GaAs Schottky Flip Chip Diodes

Part Number	$\begin{gathered} \operatorname{Max.}_{C_{T}} \\ @ 0 V(\mathrm{pF}) \end{gathered}$	$\begin{gathered} {\text { Max. } \mathrm{R}_{\mathrm{S}}}^{\text {@ }} \mathbf{1 0 \mathrm { mA } (\Omega)} \end{gathered}$	$\begin{gathered} \operatorname{Min} . V_{B R} \\ @ 10 \mu \mathrm{~A}(\mathrm{~V}) \end{gathered}$	Min/Max V_{F} @ $1 \mathrm{~mA}(\mathrm{mV})$	Configuration
MS8150	0.08	7	3	650-750	Single
MS8151	0.06	9	3	600-800	Single
MS8250	$0.08{ }^{1}$	7	3	650-750	Anti-parallel
MS8251	$0.06{ }^{1}$	9	3	600-800	Anti-parallel
MS8350	$0.08{ }^{1}$	7	3	650-750	Series Pair
MS8351	$0.06{ }^{1}$	9	3	600-800	Series Pair

${ }^{1}$ Capacitance value is for individual diode and not for complete device.

GaAs PIN Flip Chip Diodes

Part Number	$\begin{gathered} \text { Max. } \mathrm{C}_{\mathrm{T}} \\ @ 0 \mathrm{~V}, 1 \mathrm{MHz}(\mathrm{pF}) \end{gathered}$	$\begin{gathered} \text { Min. } V_{B R} \\ @ 10 \mu \mathrm{~A}(\mathrm{~V}) \end{gathered}$		Max. \mathbf{R}_{S} $@ 10 \mathrm{~mA}, 2 \mathrm{GHz}(\Omega)$	Typ. Switching Speed (nsec)
MP6250	0.055	40	1.45	7	2

GaAs Hyperabrupt Varactor Flip Chip Diodes

Part Number	$\begin{gathered} \text { Max. } \mathrm{C}_{\mathrm{T}} \\ @-4 \mathrm{~V}, 1 \mathrm{MHz}(\mathrm{pF}) \end{gathered}$	$\begin{gathered} \text { Min. } V_{B R} \\ @ 10 \mu \mathrm{~A}(\mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { Cap. ratio } \\ C_{T}-2 V / C_{T}-12 V \end{gathered}$	Gamma
MV39001	0.40-0.60	18	3.3-4.1	1.0
MV39002	0.25-0.40	18	4.3-5.3	1.25
MV39003	0.40-0.60	18	4.5-5.6	1.25

Specifications @ $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Package Outlines

M11

	$\begin{array}{c}\text { Dimensions } \\ \text { Min. }\end{array}$					
A Inches)						
Max.			$]$	\mathbf{B}	0.119	0.127
:---:	:---:	:---:				
C	0.060	0.064				
\mathbf{D}	0.205	0.2252				
\mathbf{E}	0.079	0.083				
\mathbf{F}	0.016	0.024				
\mathbf{G}	0.060	0.0643				
\mathbf{H}	0.060	0.073				

$\mathrm{LP}=0.40 \mathrm{nH}$ typ.
$\mathrm{CP}=0.17 \mathrm{pF}$ typ.

M16

	Dimensions Min.	
(Inches) Max.		
A	0.027	0.034
\mathbf{B}	0.113	0.118
\mathbf{C}	0.156	0.164
\mathbf{D}	0.015	0.025
\mathbf{E}	0.025	0.045
\mathbf{F}	0.018	0.022
\mathbf{G}	0.016	0.019

$\mathrm{LP}=0.10 \mathrm{nH}$ typ.
$\mathrm{CP}=0.15 \mathrm{pF}$ typ.

M26

M38

Dimensions (Inches)
Min.
Max.

A	0.059	0.064
\mathbf{B}	0.076	0.084
\mathbf{C}	0.190	0.210
\mathbf{D}	0.007	0.015
\mathbf{E}	0.059	0.065
\mathbf{F}	0.069	0.087
\mathbf{G}	0.059	0.065

$\mathrm{LP}=0.50 \mathrm{nH}$ typ.
$\mathrm{CP}=0.15 \mathrm{pF}$ typ.

M39

$\mathrm{LP}=0.40 \mathrm{nH}$ typ.
P2613

Dimensions (Inches)

Min. Max.

A	0.0255	0.0265
B	0.0125	0.0135
C	0.0046	0.0056
D	0.0075	0.0085
E	0.0170	0.0180
F	0.0050	0.0060
G	0.0045	0.0055

M09062

Many other packages available.
Specifications @ $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Transceivers

Fixed Frequency Gunn Transceivers

Part Number	Description	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$	Mixer Phasing (Degrees)	Min. Output Power (mW)	Min. Sensitivity (dBc)	Operating Voltage (V) ${ }^{2}$	Max. Operating Current (mA)
M086728	X Band Transceiver	10.525	na	5	-95	+7.5 to +8.5	150
M086735	Dual IF Output, X Band Transceiver	10.525	75 to 105	5	-95	+8.5	200
M09061	K Band Transceiver	24.125	na	5	-92	+5.0	100
M09062	Dual IF Output, K Band Transceiver	24.125	50 to 130	5	-92	+5.0	100
M09081 ${ }^{1}$	Pulsed DC, K Band Transceiver	24.125	na	10 to 20	-90	+6.0 to +8.0	100
M09082 ${ }^{1}$	Pulsed DC, Dual IF Output, K Band Transceiver	24.125	50 to 130	10 to 20	-90	+6.0 to +8.0	100
M09300	K Band Transceiver	24.125	na	2 to 5	-90	+4.0 to +6.0	250
M09062-22	Dual IF Output, K Band Transceiver	24.125	75 to 105	5	-90	+5.0	250
M09096	Dual IF Output, K Band Transceiver w/Planar Antenna	24.125	60 to 120	8.0	-90	+3.5 to +6.5	220
M09402	Ka Band Stereo Transceiver	35.5	75 to 105	5	-90	3.5-6.0	300

${ }^{1}$ M09081 and M09082 pulse width $=10$ microseconds, duty factor $=50 \%$.
${ }^{2}$ Actual operating voltage specified with product.
Other pulse widths and duty factors available upon request.
Other frequencies and power levels available upon request.

Voltage Controlled Gunn Transceivers

Part Number	Description	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$	Min. Electronic Tuning (MHz)	Min. Output Power (mW)	Min. Sensitivity (dBc)	Operating Voltage (V) ${ }^{1}$	Max. Operating Current (mA)
M087127-1	X Band VCO Transceiver	10.300	40 (+1 to +20 V)	10	-110	+8.0 to +10.0	200
M087127-2	X Band VCO Transceiver	10.300	40 (+1 to +20 V)	20	-110	+8.0 to +10.0	600
M087127-3	X Band VCO Transceiver	10.300	40 (+1 to +20 V)	35	-110	+8.0 to +10.0	600
M09071	K Band VCO Transceiver	24.125	50 (+1 to +20 V)	5	-90	+5.0	150
M09072	Dual IF Output, K Band VCO Transceiver	24.125	50 (+1 to +20 V)	5	-90	+5.0	150
M087849	K Band VCO Transceiver	24.125	150 (+0.5 to +20 V)	5	-95	+5.0 to +8.0	400
M087930	K Band VCO Transceiver	24.125	350 (0 to +9 V)	5 to 10	-95	+5.0 to +8.0	400
M09410-1	Ka Band VCO Transceiver	35.5	100 (+1 to +20 V)	7.5	-90	3.5-6.0	350
M09410-2	Ka Band VCO Transceiver	34.7	100 (+1 to +20 V)	7.5	-90	3.5-6.0	350
M09410-3	Ka Band VCO Transceiver	33.8	100 (+1 to +20 V)	7.5	-90	3.5-6.0	350

${ }^{1}$ Actual operating voltage specified with product.

RF Modulators

Part Number	Description	Fequency (GHz)	Modulation Rate $\mathbf{(H z)}$	Typical Modulation Depth	Drive Voltage (V)	Typ. Drive Current (mA)
M09207	K Band Waveguide Modulator	24.125	$1 \mathrm{~Hz}-100,000 \mathrm{~Hz}$	$>90 \%$	1.3	20

[^1]Specifications subject to change without notice.

Oscillators

Fixed Frequency Gunn Oscillators

Part Number	Description	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$	Min. Output Power (mW)	Operating Voltage (V)	Max Operating Current (mA)
M086751A	X Band Oscillator	10.525	10	+8.5	200
M086751B	X Band Oscillator	10.525	25	+9.0 to +10.0	500
M086751C	X Band Oscillator	10.525	50	+9.0 to +10.0	600
M086751D	X Band Oscillator	10.525	100	+9.0 to +10.0	800
M09060	K Band Oscillator	24.125	5	+5.0	100
M09080 ${ }^{1}$	K Band Oscillator (Pulsed)	24.125	11-20 Peak	+6.0 to +7.0	300 Peak
M086790	K Band Oscillator	24.150	10-20	+3.5 to +6.5	250
M086791	K Band Oscillator	24.150	40-100	+5.0 to +8.0	1000
M086797	Ka Band Oscillator	35.500	15-25	+3.0 to +6.0	450
M09205	Ka Band Oscillator	35.500	15-30	+5.0	400

M09080 pulse width $=10$ microseconds, duty factor $=50 \%$. Other pulse widths and duty factors available upon request.
Other frequencies and power levels available upon request.

Voltage Controlled Gunn Oscillators

Part Number	Description	$\begin{aligned} & \text { Frequency } \\ & \text { (GHz) } \end{aligned}$	Min. Electronic Tuning (MHz)	Min. Output Power (mW)	Tuning Voltage (V)	Operating Voltage (V)	Max. Operating Current(mA)
M087108-1	X Band Oscillator	10.300	40	15	+1 to +20	+8.0 to +10.0	200
M087108-2	X Band Oscillator	10.300	40	25	+1 to +20	+8.0 to +10.0	600
M087108-3	X Band Oscillator	10.300	40	40	+1 to +20	+8.0 to +10.0	600
M087603B	X Band Oscillator	9.405	60	7	0 to +13	+10.5	200
M09070	K Band Oscillator	24.125	25	3	+2 to +10	+5.0	100
M087828-1	K Band Oscillator	21.500	40	10	0 to +15	+5.0 to +8.0	400
M087828-2	K Band Oscillator	22.100	40	10	0 to +15	+5.0 to +8.0	400
M087828-3	K Band Oscillator	22.700	40	10	0 to +15	+5.0 to +8.0	400
M087828-4	K Band Oscillator	23.300	40	10	0 to +15	+5.0 to +8.0	400
M087827-1	K Band Oscillator	21.500	30	60	0 to +10	+5.0 to +8.0	1400
M087827-2	K Band Oscillator	22.100	30	60	0 to +10	+5.0 to +8.0	1400
M087827-3	K Band Oscillator	22.700	30	60	0 to +10	+5.0 to +8.0	1400
M087827-4	K Band Oscillator	23.300	30	60	0 to +10	+5.0 to +8.0	1400
M09405-1	Ka Band Oscillator	34.0	100	15	+1 to +20	+4.0 to +6.0	400

Other frequencies available upon request.

Horn Antennas

Part Number	Description	Center Frequency (GHz)	Usable Frequency Range (GHz)	Antenna 3dB Beamwidth E Plane (deg)	Antenna 3dB Beamwidth H Plane (deg)
MDT86552	K Band Pyramidal Horn Antenna	24.150	18.0 to 26.5	20	27
MDT86554	K Band Pyramidal Horn Antenna	10.525	8.0 to 12.0	70	17
MDT5864	K Band Planar Array Antenna	24.125	24.0 to 24.25	14	12
MHA4200	V Band Pyramidal Horn Antenna	77.000	76.0 to 78.0	20	14
MDT6386	K Band Pyramidal Horn Antenna	24.150	18.0 to 26.5	17	15

MDT6386 has an integrated harmonic filter.

Specifications @ $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Waveguide Detectors

| Part
 Number | Description | Center Frequency (GHz) | Minimum Detectable
 Signal (dBm) $\mathbf{1}^{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: | :---: |
| M086561 | K Band Detector, Waveguide Mount | 24.125 | -45 |
| M086571 | X Band Detector, Waveguide Mount | 10.525 | -45 |

Video bandwidth $=1 \mathrm{MHz}$; N.F. $=2 \mathrm{~dB}$
Other frequencies available upon request.

Specifications @ $25^{\circ} \mathrm{C}$.

Specifications subject to change without notice.

Microsemi.

Microsemi Corporation 75 Technology Drive Lowell, MA 01851-5293 phone: (978) 442-5600
fax: (978) 937-3748
sales_MMPI@microsemi.com

[^0]: Various packages available upon request.
 Tightened capacitance tolerances available upon request.

[^1]: Specifications @ $25^{\circ} \mathrm{C}$.

