

# 7.9 - 11.0 GHz, 40 W, Packaged GaN MMIC Power Amplifier

#### **Description**

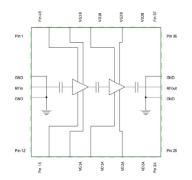
Wolfspeed's CMPA801B030S is a packaged, 40W HPA utilizing Wolfspeed's high performance, 0.15  $\mu$ m GaN-on-Silicon Carbide production process. The CMPA801B030S operates from 7.9 - 11.0 GHz and targets pulsed radar systems supporting both defense and commercial applications. With 2 stages of gain, this high performance amplifier provides 20dB of large signal gain and 40% efficiency to support lower system DC power requirements and simplify system thermal management solutions. Packaged in a 7x7 mm plastic overmold QFN, the CMPA801B030S also supports reduced board space requirements and high-throughput manufacturing lines.



Package Type: 7x7 QFN PN:CMPA801B030S

#### Typical Performance Over 7.9 - 11.0 GHz ( $T_c = 25^{\circ}C$ )

| Parameter              | 8.0 GHz | 8.5 GHz | 9.0 GHz | 10.0 GHz | 11.0 GHz | Units |
|------------------------|---------|---------|---------|----------|----------|-------|
| Small Signal Gain      | 28.2    | 27.5    | 27.1    | 24.6     | 24.0     | dB    |
| Output Power           | 39.3    | 45.9    | 48.9    | 42.3     | 40.7     | W     |
| Power Gain             | 19.9    | 20.6    | 21.0    | 20.3     | 20.1     | dB    |
| Power Added Efficiency | 38.2    | 40.6    | 41.3    | 39.4     | 37.0     | %     |


Note:  $P_{IN} = 26$  dBm, Pulse Width = 100 $\mu$ s; Duty Cycle = 10%

#### **Features**

- Freq: 7.9 11.0 GHz
- P<sub>SAT</sub>: 40 W
- PAE: 40%
- LS Gain: 20 dB
- 7x7 mm Overmold QFN
- Lower system costs
- Reduced board area

#### **Applications**

- Military pulsed radar
- Civil pulsed radar
- Satellite Communications



#### Note

Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.



## Absolute Maximum Ratings (not simultaneous) at 25°C

| Parameter                    | Symbol                       | Rating    | Units    | Conditions |
|------------------------------|------------------------------|-----------|----------|------------|
| Drain-source Voltage         | $V_{\scriptscriptstyle DSS}$ | 84        | V        | ar°c       |
| Gate-source Voltage          | V <sub>GS</sub>              | -10, +2   | $V_{DC}$ | 25°C       |
| Storage Temperature          | T <sub>STG</sub>             | -65, +150 | °C       |            |
| Maximum Forward Gate Current | I <sub>G</sub>               | 12        | mA       | 25°C       |
| Maximum Drain Current        | I <sub>DMAX</sub>            | 6         | Α        |            |
| Soldering Temperature        | Ts                           | 260       | °C       |            |

#### Electrical Characteristics (Frequency = 7.9 GHz to 11.0 GHz unless otherwise stated; $T_c = 25^{\circ}C$ )

| Characteristics                      | Symbol            | Min. | Тур.  | Max. | Units           | Conditions                                                                         |
|--------------------------------------|-------------------|------|-------|------|-----------------|------------------------------------------------------------------------------------|
| DC Characteristics                   |                   |      |       |      |                 |                                                                                    |
| Gate Threshold Voltage               | $V_{GS(th)}$      | -2.6 | _     | -1.6 | V               | $V_{DS} = 10 \text{ V}, I_{D} = 13 \text{ mA}$                                     |
| Gate Quiescent Voltage               | $V_{GS(Q)}$       | _    | -1.75 | _    | V <sub>DC</sub> | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$                                   |
| Saturated Drain Current <sup>1</sup> | I <sub>DS</sub>   | _    | 4     | _    | Α               | $V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$                                   |
| Drain-Source Breakdown Voltage       | V <sub>BD</sub>   | 84   | _     | _    | V               | V <sub>GS</sub> = -8 V, I <sub>D</sub> = 13 mA                                     |
| RF Characteristics <sup>2,3</sup>    |                   |      |       |      |                 |                                                                                    |
| Small Signal Gain at 8.0 GHz         | S21 <sub>1</sub>  | _    | 28.2  | _    |                 |                                                                                    |
| Small Signal Gain at 8.5 GHz         | S21 <sub>2</sub>  | _    | 27.5  | _    |                 |                                                                                    |
| Small Signal Gain at 9.0 GHz         | S21 <sub>3</sub>  | _    | 27.1  | _    | dB              | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$                                   |
| Small Signal Gain at 10.0 GHz        | S21 <sub>4</sub>  | _    | 24.6  | _    |                 |                                                                                    |
| Small Signal Gain at 11.0 GHz        | S21 <sub>5</sub>  | _    | 24.0  | _    |                 |                                                                                    |
| Output Power at 8.0 GHz              | P <sub>OUT1</sub> | _    | 39.3  | _    |                 |                                                                                    |
| Output Power at 8.5 GHz              | P <sub>OUT2</sub> | _    | 45.9  | _    |                 |                                                                                    |
| Output Power at 9.0 GHz              | Роитз             | _    | 48.9  | _    | w               |                                                                                    |
| Output Power at 10.0 GHz             | P <sub>OUT4</sub> | _    | 42.3  | _    |                 |                                                                                    |
| Output Power at 11.0 GHz             | P <sub>OUT5</sub> | _    | 40.7  | _    |                 | V = 20 V I = 200 m A D = 20 dDm                                                    |
| Power Added Efficiency at 8.0 GHz    | PAE <sub>1</sub>  | _    | 38    | _    |                 | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}$          |
| Power Added Efficiency at 8.5 GHz    | PAE <sub>2</sub>  | _    | 41    | _    |                 |                                                                                    |
| Power Added Efficiency at 9.0 GHz    | PAE <sub>3</sub>  | _    | 41    | _    | %               |                                                                                    |
| Power Added Efficiency at 10.0 GHz   | PAE <sub>4</sub>  | _    | 39    | _    |                 |                                                                                    |
| Power Added Efficiency at 11.0 GHz   | PAE₅              | _    | 37    | _    |                 |                                                                                    |
| Power Gain                           | G <sub>P</sub>    | _    | 21.0  | _    |                 |                                                                                    |
| Input Return Loss                    | S11               | _    | -13   | _    | dB              | $V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$                                   |
| Output Return Loss                   | S12               | _    | -10   | _    |                 |                                                                                    |
| Output Mismatch Stress               | VSWR              | _    | _     | 5:1  | Ψ               | No damage at all phase angles,<br>V <sub>DD</sub> = 28 V, I <sub>DQ</sub> = 800 mA |

#### Notes:

<sup>&</sup>lt;sup>1</sup>Scaled from PCM data

<sup>&</sup>lt;sup>2</sup> All data pulse tested in CMPA801B030S-AMP1

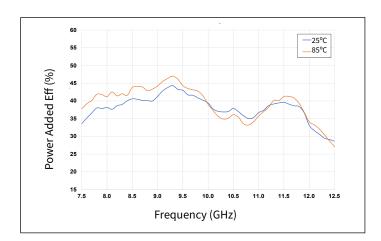
<sup>&</sup>lt;sup>3</sup> Pulse Width = 100μs; Duty Cycle = 10%

#### **Thermal Characteristics**

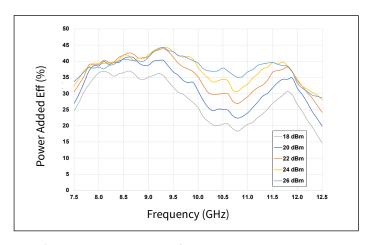
| Parameter                                                    | Symbol           | Rating | Units | Conditions                             |
|--------------------------------------------------------------|------------------|--------|-------|----------------------------------------|
| Operating Junction Temperature                               | T <sub>J</sub>   | 225    | °C    |                                        |
| Thermal Resistance, Junction to Case (packaged) <sup>1</sup> | R <sub>θJC</sub> | 2.5    | °C/W  | 100μs, 10%, P <sub>DISS</sub> = 25.5 W |


#### Notes

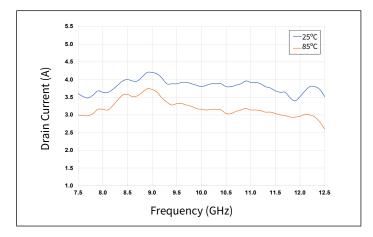
 $<sup>^{1}</sup>$  Measured for the CMPA801B030S at P<sub>DISS</sub> = 25.5 W


#### **Typical Performance of the CMPA801B030S**

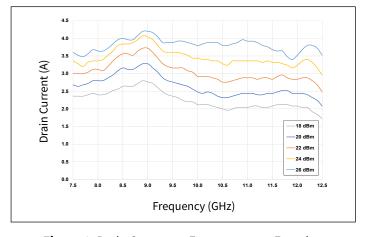



**Figure 1.** Output Power vs Frequency as a Function of Temperature




**Figure 2.** Output Power vs Frequency as a Function of Input Power




**Figure 3.** Power Added Eff. vs Frequency as a Function of Temperature



**Figure 4.** Power Added Eff. vs Frequency as a Function of Input Power



**Figure 5.** Drain Current vs Frequency as a Function of Temperature



**Figure 6.** Drain Current vs Frequency as a Function of Input Power

#### **Typical Performance of the CMPA801B030S**

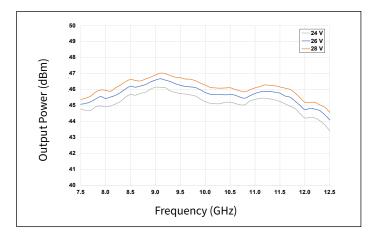



Figure 7. Output Power vs Frequency as a Function of V<sub>D</sub>

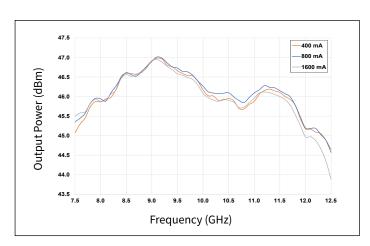
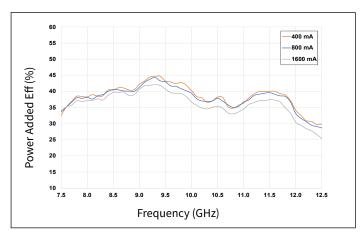




Figure 8. Output Power vs Frequency as a Function of IDQ



Figure 9. Power Added Eff. vs Frequency as a Function of V<sub>D</sub>



**Figure 10.** Power Added Eff. vs Frequency as a Function of I<sub>DO</sub>

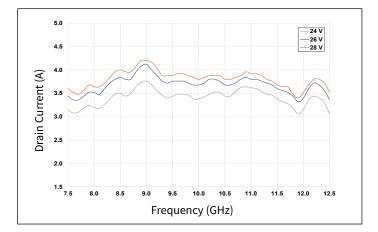



Figure 11. Drain Current vs Frequency as a Function of V<sub>D</sub>

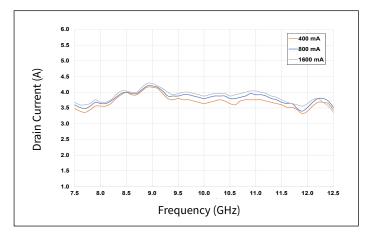
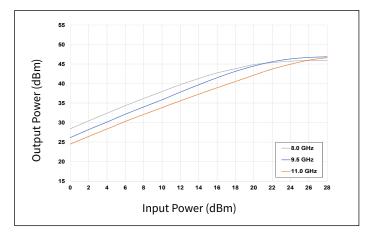
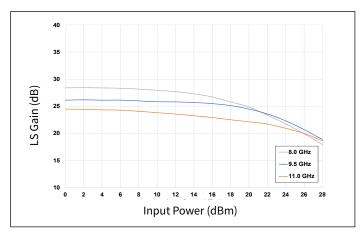
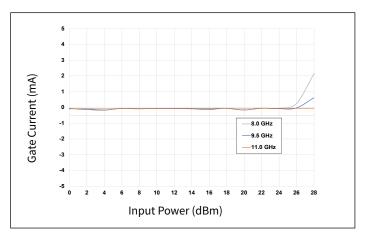
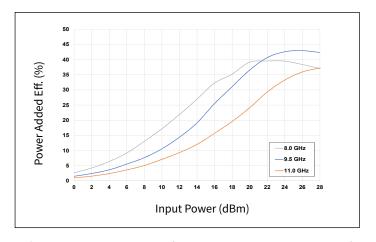




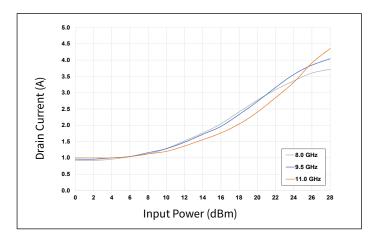

Figure 12. Drain Current vs Frequency as a Function of IDO


## **Typical Performance of the CMPA801B030S**




**Figure 13.** Output Power vs Input Power as a Function of Frequency




**Figure 15.** Large Signal Gain vs Input Power as a Function of Frequency

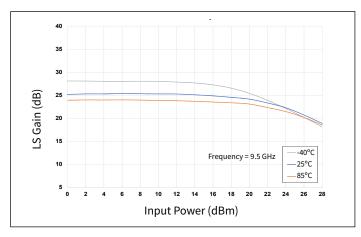


**Figure 17.** Gate Current vs Input Power as a Function of Frequency

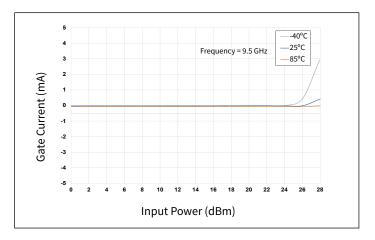


**Figure 14.** Power Added Eff. vs Input Power as a Function of Frequency

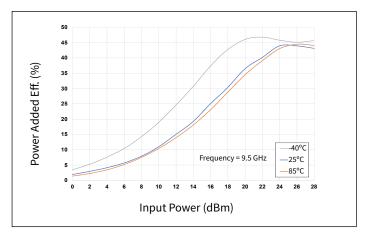



**Figure 16.** Drain Current vs Input Power as a Function of Frequency

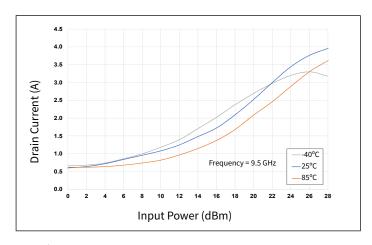
# 7


### **Typical Performance of the CMPA801B030S**




**Figure 18.** Output Power vs Input Power as a Function of Temperature




**Figure 20.** Large Signal Gain vs Input Power as a Function of Temperature



**Figure 22.** Gate Current vs Input Power as a Function of Temperature



**Figure 19.** Power Added Eff. vs Input Power as a Function of Temperature



**Figure 21.** Drain Current vs Input Power as a Function of Temperature

#### **Typical Performance of the CMPA801B030S**

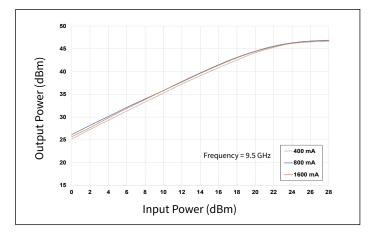
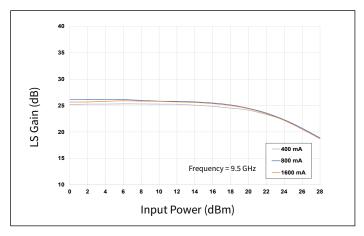




Figure 23. Output Power vs Input Power as a Function of  $I_{DQ}$ 



**Figure 25.** Large Signal Gain vs Input Power as a Function of  $I_{DO}$ 

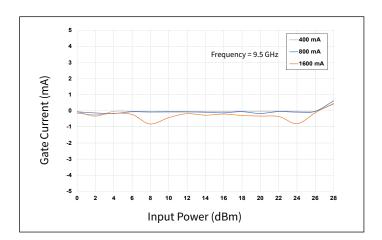



Figure 27. Gate Current vs Input Power as a Function of IDQ

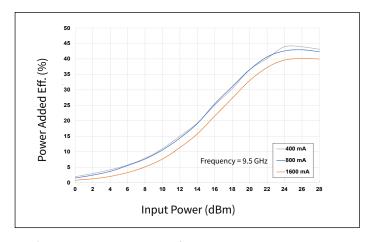



Figure 24. Power Added Eff. vs Input Power as a Function of  $I_{\text{DQ}}$ 

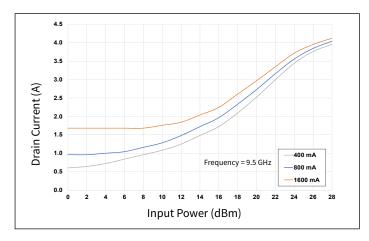
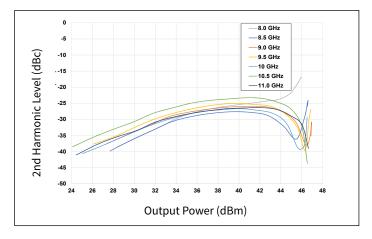
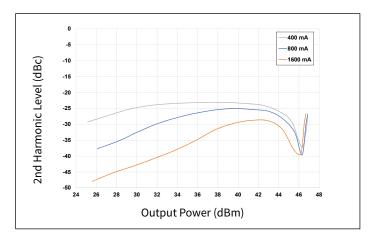
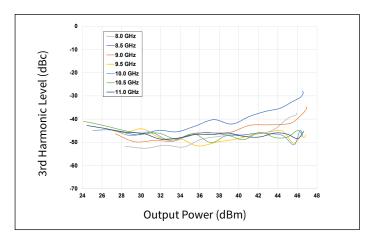
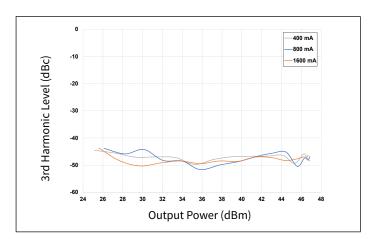





Figure 26. Drain Current vs Input Power as a Function of IDQ


#### **Typical Performance of the CMPA801B030S**




**Figure 28.** 2nd Harmonic vs Output Power as a Function of Frequency



**Figure 30.** 2nd Harmonic vs Output Power as a Function of  $I_{DO}$ 



**Figure 29.** 3rd Harmonic vs Output Power as a Function of Frequency



**Figure 31.** 3rd Harmonic vs Output Power as a Function of  $I_{DQ}$ 

#### Typical Performance of the CMPA801B030S

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DQ} = 800 \text{ mA}$ ,  $P_{IN} = -20 \text{ dBm}$ ,  $T_{BASE} = +25 ^{\circ}\text{C}$ 

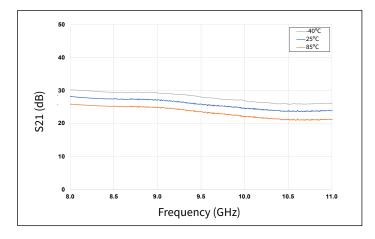



Figure 32. Gain vs Frequency as a Function of Temperature

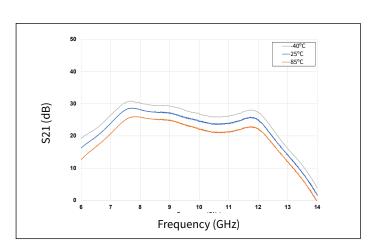
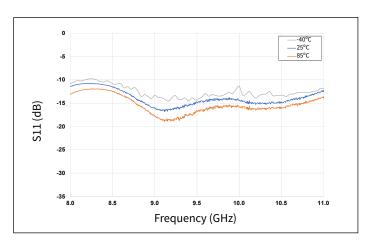




Figure 33. Gain vs Frequency as a Function of Temperature



**Figure 34.** Input RL vs Frequency as a Function of Temperature

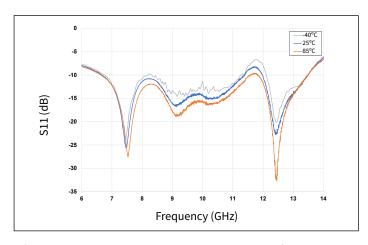
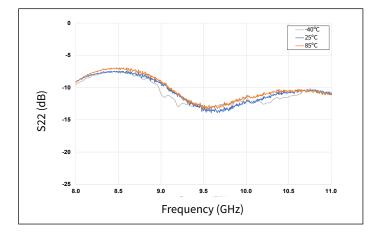
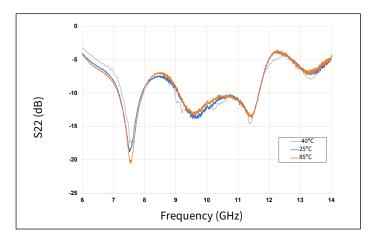





Figure 35. Input RL vs Frequency as a Function of Temperature



**Figure 36.** Output RL vs Frequency as a Function of Temperature



**Figure 37.** Output RL vs Frequency as a Function of Temperature

#### **Typical Performance of the CMPA801B030S**

Test conditions unless otherwise noted:  $V_D = 28 \text{ V}$ ,  $I_{DQ} = 800 \text{ mA}$ ,  $P_{IN} = -20 \text{ dBm}$ ,  $T_{BASE} = +25 ^{\circ}\text{C}$ 

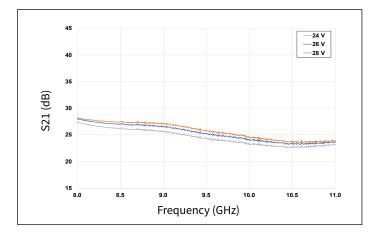



Figure 38. Gain vs Frequency as a Function of Voltage

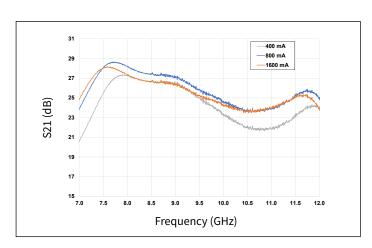



Figure 39. Gain vs Frequency as a Function of IDQ

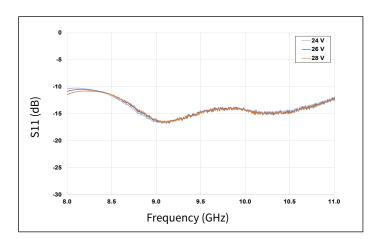



Figure 40. Input RL vs Frequency as a Function Voltage

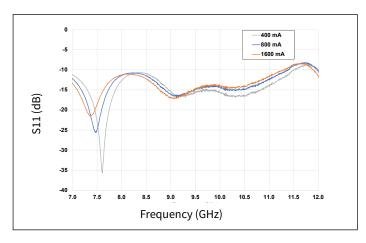



Figure 41. Input RL vs Frequency as a Function of I<sub>DO</sub>

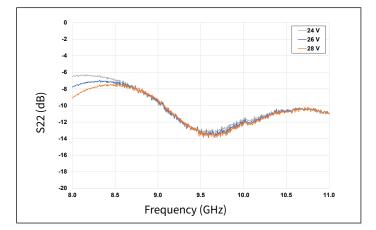



Figure 42. Output RL vs Frequency as a Function of Voltage

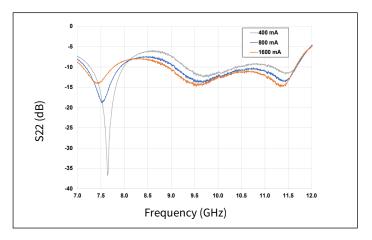
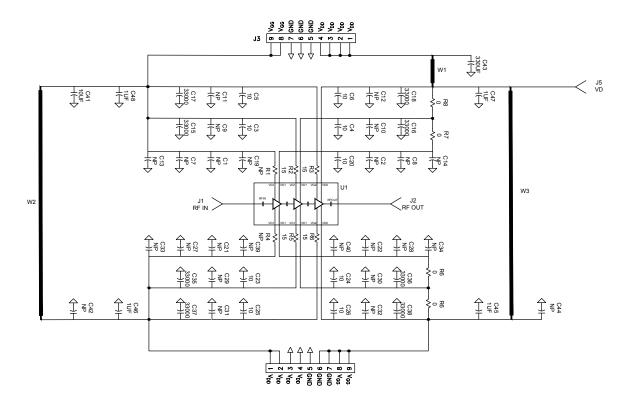
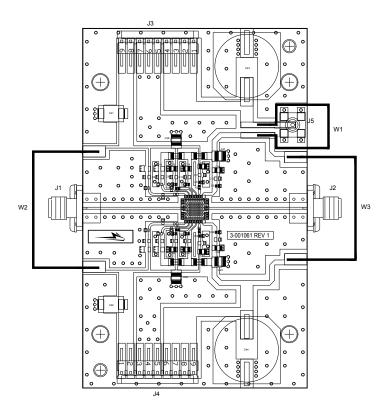





Figure 43. Output RL vs Frequency as a Function of IDO

#### CMPA801B030S-AMP1 Application Circuit

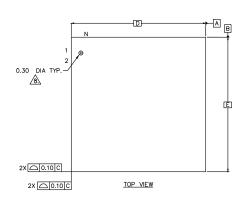


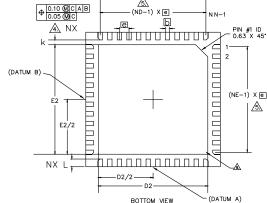
#### CMPA801B030S-AMP1 Evaluation Board Layout



#### CMPA801B030S-AMP1 Evaluation Board Bill of Materials

| Designator                             | Description                                                          | Qty |
|----------------------------------------|----------------------------------------------------------------------|-----|
| C3, C4, C5, C6, C23, C24, C25, C26     | CAP, 10pF, +/-5%, pF, 200V, 0402                                     | 8   |
| C15, C16, C17, C18, C35, C36, C37, C38 | CA, 330000pF, 0805,100V, X7R                                         | 8   |
| C45, C46, C47, C48                     | CAP, 1.0μF, 100V, 10%, X7R, 1210                                     | 4   |
| C41                                    | CAP 10μF 16V TANTALUM, 2312                                          | 1   |
| C43                                    | CAP, 330μF, +/-20%, 100V, ELECTROLYTIC, CASE SIZE K16                | 1   |
| R2, R3, R5, R6                         | RES 15 OHM, +/-1%, 1/16W, 0402                                       | 6   |
| R8, R10                                | RES 0.0 OHM 1/16W 1206 SMD                                           | 2   |
| J1,J2                                  | CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL       | 4   |
| J5                                     | CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED          | 1   |
| J3, J4                                 | HEADER RT>PLZ .1CEN LK 9POS                                          | 1   |
| W2, W3                                 | WIRE, BLACK, 20 AWG ~ 2.5"                                           | 2   |
| W1                                     | WIRE, BLACK, 20 AWG ~ 3.0"                                           | 1   |
|                                        | PCB, TEST FIXTURE, RF-35TC, 0.010 THK, 7X7 Overmold QFN SOCKET BOARD | 1   |
|                                        | 2-56 SOC HD SCREW 3/16 SS                                            | 4   |
|                                        | #2 SPLIT LOCKWASHER SS                                               | 4   |
| Q1                                     | CMPA801B030S                                                         | 1   |


# **Electrostatic Discharge (ESD) Classifications**


| Parameter           | Symbol | Class | Classification Level           | Test Methodology    |
|---------------------|--------|-------|--------------------------------|---------------------|
| Human Body Model    | НВМ    | 1A    | ANSI/ESDA/JEDEC JS-001 Table 3 | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | C2B   | ANSI/ESDA/JEDEC JS-002 Table 3 | JEDEC JESD22 C101-C |

# Moisture Sensitivity Level (MSL) Classification

| Parameter                  | Symbol | Level         | Test Methodology   |
|----------------------------|--------|---------------|--------------------|
| Moisture Sensitivity Level | MSL    | 3 (168 hours) | IPC/JEDEC J-STD-20 |

# Product Dimensions CMPA801B030S (Package Type — 7x7 QFN)







#### NOTES :

- UIES :

  1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M. 1994.

  2. ALL DIMENSION'S ARE IN MILLIMETERS, 0 IS IN DEGREES.

  3. N IS THE TOTAL NUMBER OF TERMINALS.

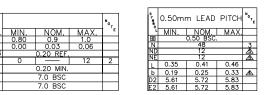
  \$\frac{1}{2}\] NICHARD STOLEN OF TERMINALS.

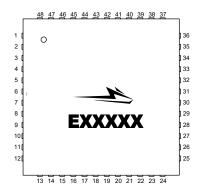
  \$\frac{1}{2}\] DIMENSION B APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL ITP.

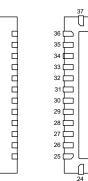
  5. NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.

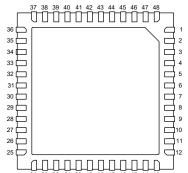
  6. MAX. PACKAGE WARPAGE IS 0.05 mm.

  7. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.


  \$\frac{1}{2}\] PIN 411 IN ON YOP WILL BE I JASFE MARKED.


- A PIN #1 ID ON TOP WILL BE LASER MARKED.
- 9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE
- TERMINALS.


  10. THIS DRAWING CONFORMS TO JEDEC REGISTERED OUTLINE MO-220


  11. ALL PLATED SURFACES ARE TIN 0.010 mm +/- 0.005mm.

| ⊕ 0.10 @C A B<br>0.05 @C <br>k 1 | (ND-1) X @          | PIN #1 ID 0.63 X 45 |
|----------------------------------|---------------------|---------------------|
| (DATUM B)                        | D2/2 D2 BOITOM VIEW | (NE-1) X (E)        |
|                                  |                     |                     |









| PIN | DESC. | PIN | DESC. | PIN | DESC. | PIN | DESC. |
|-----|-------|-----|-------|-----|-------|-----|-------|
| 1   | NC    | 15  | NC    | 29  | NC    | 43  | NC    |
| 2   | NC    | 16  | NC    | 30  | RFGND | 44  | VG1B  |
| 3   | NC    | 17  | VG1A  | 31  | RFOUT | 45  | NC    |
| 4   | NC    | 18  | NC    | 32  | RFGND | 46  | NC    |
| 5   | RFGND | 19  | VD1A  | 33  | NC    | 47  | NC    |
| 6   | RFIN  | 20  | NC    | 34  | NC    | 48  | NC    |
| 7   | RFGND | 21  | VG2A  | 35  | NC    |     |       |
| 8   | NC    | 22  | NC    | 36  | NC    |     |       |
| 9   | NC    | 23  | VD2A  | 37  | NC    |     |       |
| 10  | NC    | 24  | NC    | 38  | VD2B  |     |       |
| 11  | NC    | 25  | NC    | 39  | NC    |     |       |
| 12  | NC    | 26  | NC    | 40  | VG2B  |     |       |
| 13  | NC    | 27  | NC    | 41  | NC    |     |       |
| 14  | NC    | 28  | NC    | 42  | VD1B  |     |       |

#### **Part Number System**

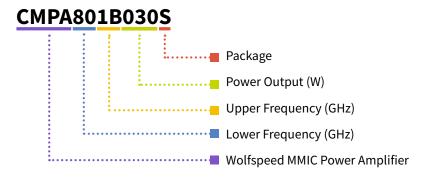



Table 1.

| Parameter       | Value         | Units |  |
|-----------------|---------------|-------|--|
| Lower Frequency | 7.9           | GHz   |  |
| Upper Frequency | 11.0          | GHZ   |  |
| Power Output    | 40            | W     |  |
| Package         | Surface Mount | -     |  |

#### Note:

Table 2.

| Character Code | Code Value                     |
|----------------|--------------------------------|
| А              | 0                              |
| В              | 1                              |
| С              | 2                              |
| D              | 3                              |
| E              | 4                              |
| F              | 5                              |
| G              | 6                              |
| Н              | 7                              |
| J              | 8                              |
| K              | 9                              |
| Examples       | 1A = 10.0 GHz<br>2H = 27.0 GHz |

<sup>&</sup>lt;sup>1</sup> Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

# **Product Ordering Information**

| Order Number      | Description                              | Unit of Measure | Image |
|-------------------|------------------------------------------|-----------------|-------|
| CMPA801B030S      | Packaged GaN MMIC PA                     | Each            |       |
| CMPA801B030S-AMP1 | Evaluation Board with GaN MMIC Installed | Each            |       |

#### For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

#### Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2021-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.