Renesas
 3.3 VOLT CMOS CLOCKED FIFO WITH BUS-MATCHING AND BYTE SWAPPING

64×36

FEATURES:

- 64×36 storage capacity FIFO buffering data from Port A to Port B
- Supports clock frequencies up to 67 MHz
- Fast access times of 10ns
- Free-running CLKA and CLKB may be asynchronous or coincident (permits simultaneous reading and writing of data on a single clock edge)
- Mailbox bypass registers in each direction
- Dynamic Port B bus sizing of 36 bits (long word), 18 bits (word), and 9 bits (byte)
- Selection of Big- or Little-Endian format for word and byte bus sizes
- Three modes of byte-order swapping on Port B
- Programmable Almost-Full and Almost-Empty flags
- Microprocessor interface control logic
- $\overline{\mathrm{FF}}, \overline{\mathrm{AF}}$ flags synchronized by CLKA
- $\overline{\mathrm{EF}}, \overline{\mathrm{AE}}$ flags synchronized by CLKB
- Passive parity checking on each Port
- Parity Generation can be selected for each Port
- Available in space saving 120-pin thin quad flat package (TQFP)
- Green parts available, see ordering information

DESCRIPTION:

The IDT72V3613 is designed to run offa3.3V supply for exceptionally lowpower consumption. This device is a monolithic, high-speed, low-power, CMOS synchronous(clocked)FIFO memory whichsupportsclockfrequencies up to 67 MHz and has read-access times as fast as 10 ns . The 64×36 dualportSRAM FIFO buffers data from port A to port B. The FIFO op sa \sin ID Standard mode and has flags to dicate empty and full conc no two programmable flags, Almost + Ill ($-\overline{\text { T }}$) and Almost-Empt $(A E)$, in cate when a selected number of h rds storeuin memory, $1 F O$ 'vas port B can be output in 36-bit, 1 ait, as 9-bltormats with ac, of BIg-or Little-Endian configuration Th desofbyte-ord ap ping, re possible with any bussizeselec on on hunicationbetwe year portcanbypasstheFIFO viatwo

FUNCTION AL BLOCK DIAGRAM

DESCRIPTION (CONTINUED)

36-bitmailbox registers. Each mailbox register has a flag to signal when new mail has been stored. Parity is checked passively on each port and may be ignored ifnotdesired. Parity generationcanbe selected for dataread fromeach port. Two or more devices may be used in parallel to create wider data paths.

The IDT72V3613 is a synchronous (clocked) FIFO, meaning each port employs a synchronous interface. All data transfers through a port are gated to the LOW-to-HIGH transition of a continuous (free-running) port clock by enable signals. The continuous clocks for each port are independent of one
another and can be asynchronous or coincident. The enablesfor each portare arranged to provide asimple interface between microprocessors and/orbuses with synchronous interfaces.

The Full Flag ($\overline{\mathrm{FF}}$) and Almost-Full ($\overline{\mathrm{AF}}$) flag of the FIFO are two-stage synchronized to the portclock (CLKA)thatwrites data into its array. The Empty Flag $(\overline{\mathrm{EF}})$ and Almost-Empty $(\overline{\mathrm{AE}})$ flag of the FIFO are two-stage synchronized to the port clock (CLKB) that reads data from its array.

The IDT72V3613 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. This device is fabricated using high speed, submicron CMOS technology.

PIN CONFIGURATION

1. Pin 1 idenifier in corner.
2. $N C=$ No internal connection

PIN DESCRIPTION

Symbol	Name	110	Description
A0-A35	Port A Data	$1 / 0$	36-bit bidirectional data portfor side A.
$\overline{\mathrm{AE}}$	Almost-Empty Flag	$\underset{\text { PortB }}{0}$	Programmable Almost-Empty flag synchronized to CLKB. It is LOW when Port B the number of 36 -bit words in the FIFO is less than or equal to the value in the offset register, X.
$\overline{\mathrm{AF}}$	Almost-Full Flag	$\begin{gathered} 0 \\ \text { PortA } \end{gathered}$	Programmable Almost-Full flag synchronized to CLKA. It is LOW when the number of 36 -bit empty empty locations in the FIFO is less than or equal to the value in the offset register, X .
B0-B35	Port B Data	I/O	36-bit bidirectional data portfor side B
$\overline{\mathrm{BE}}$	Big-EndianSelect	1	Selects the bytes on port B used during byte or word FIFO reads. A LOW on $\overline{\mathrm{BE}}$ selects the most significant bytes on B0-B35 for use, and a HIGH selects the leastsignificant bytes.
CLKA	Port A Clock	1	CLKA is a continuous clock that synchronizes all data transfers through port A and can be asynchronous or coincident to CLKB. FF and $\overline{\mathrm{AF}}$ are synchronized to the LOW-to-HIGH transition of CLKA.
CLKB	Port B Clock	1	CLKB is a continuous clock that synchronizes all data transfers through port B and can be asynchronous or coincident to CLKA. Port-B byte swapping and data port sizing operations are also synchronous to the LOW-to-HIGH transition of CLKB. EF and $\overline{\text { AE }}$ are synchronized tothe LOW-to-HIGH transition of CLKB.
$\overline{\text { CSA }}$	Port A Chip Select	1	$\overline{\text { CSA }}$ must be LOW to enable a LOW-to-HIGH transition of CLKA to read or write data on port A. The AOA35 outputs are in the high-impedance state when $\overline{\text { SSA }}$ is HIGH.
$\overline{\mathrm{CSB}}$	Port B Chip Select	1	$\overline{\text { CSB }}$ must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on port B. The BOB35 outputs are in the high-impedance state when $\overline{\mathrm{CSB}}$ is HIGH.
$\overline{\mathrm{EF}}$	Empty Flag	$\begin{gathered} 0 \\ \text { PortB } \end{gathered}$	$\overline{\mathrm{EF}}$ is synchronized to the LOW-to-HIGH transition of CLKB. When $\overline{\mathrm{EF}}$ is LOW, the FIFO is empty, and reads from its memory are disabled. Data can be read from the FIFO to its output register when EF is HIGH. $\overline{E F}$ is forced LOW when the device is reset and is set HIGH by the second LOW-to-HIGH transition of CLKB after data is loaded into empty FIFO memory.
ENA	Port A Enable	1	ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port A.
ENB	Port B Enable	1	ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on port B.
$\overline{\mathrm{F}} \overline{\mathrm{F}}$	Full Flag	$\begin{gathered} 0 \\ \text { PortA } \end{gathered}$	$\overline{\text { FF }}$ is synchronized to the LOW-to-HIGH transition of CLKA. When $\overline{\text { FF }}$ is LOW, the FIFO is full, and writes to its memory are disabled. FF is forced LOW when the device is reset and is set HIGH by the second LOW-to-HIGH transition of CLKA after reset.
FS1, FS0	Flag OffsetSelects	1	The LOW-to-HIGH transition of $\overline{\text { RST }}$ latches the values of FSO and FS1, which loads one of four preset values into the Almost-Fullflag and Almost-Empty flag offsets.
MBA	Port A Mailbox Select	1	A high level on MBA chooses a mailbox register for a port A read or write operation. When the A0-A35 outputs are active, mail2 register data is output.
$\overline{\text { MBF1 }}$	Mail1 Register Flag	0	$\overline{\mathrm{MBF}}$ is set LOW by a LOW-to-HIGH transition of CLKA that writes datato the mail1 register. Writes to the mail1 register are inhibited while $\overline{\text { MBF1 }}$ is set LOW. $\overline{\text { MBF1 }}$ is set HIGH by aLOW-to-HIGH transition of CLKB when a port B read is selected and both SIZ1 and SIZ0 are HIGH. MBF1 is set HIGH when the device is reset.
$\overline{\text { MBF2 }}$	Mail2 Register Flag	0	$\overline{\text { MBF2 }}$ is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the mail2 register. Writes to the mail2 register are inhibited while $\overline{\text { MBF2 }}$ is set LOW. MBF2 is set HIGH by a LOW-to-HIGH transition of CLKA when a port A read is selected and MBA is HIGH. $\overline{\text { MBF2 }}$ is set HIGH when the device is reset.
$\begin{array}{\|l\|l\|} \hline \text { ODD } \\ \hline \text { EVEN } \end{array}$	Odd/Even Parity Select	1	Odd parity is checked on each port when ODD/EVEN is HIGH, and even parity is checked when ODD/EVEN is LOW. ODD/EVEN also selects the type of parity generated for each port if parity generation is enabled for a read operation.
$\overline{\text { PEFA }}$	Port A Parity Error Flag	0	When any valid byte applied to terminals AO-A35 fails parity, PEFA is LOW. Bytes (PortA) are organized as A0-A8, A9-A17, A18-A26, and A27-A35, with the most significant bit of each byte serving as the parity bit. The type of parity checked is determined by the state of the ODD/EVEN input. The parity trees used to check the AO-A35 inputs are shared by the mail2 register to generate parity if parity generation is selected by PGA. Therefore, if a mail2 read with parity generation is set up by having CSA LOW, ENA HIGH, W/R्RA LOW, MBA HIGH and PGA HIGH, the PEFA flag is forced HIGH regardless of the state of the AO-A35 inputs.

PIN DESCRIPTION (CONTINUED)

Symbol	Name	110	Description
PEFB	Port B Parity Error Flag	$\begin{array}{\|c\|} \hline 0 \\ \text { (PortB) } \end{array}$	When any valid byte applied to terminals B0-B35 fails parity, $\overline{\text { PEFB }}$ is LOW. Bytes are organized as $\mathrm{B} 0-\mathrm{B} 8, \mathrm{~B} 9-\mathrm{B} 17, \mathrm{~B}-18-\mathrm{B} 26$, and $\mathrm{B} 27-\mathrm{B} 35$, with the most significant bit of each byte serving as the parity bit. A byte is valid when it is used by the bus size selected for port B. The type of parity checked is determined by the state of the ODD/EVEN input. The parity trees used to check the BO-B35 inputs are shared by the mail1 register to generate parity if parity generation is selected by PGB. Therefore, if a mail1 read with parity generation is set up by having $\overline{C S B}$ LOW, ENB HIGH, W/RBB LOW, SIZ1 and SIZO HIGH and PGB HIGH, the PEFB flag is forced HIGH regardless of the state of the BO-B35 inputs.
PGA	Port A Parity Generation	1	Parity is generated for data reads from the mail2 register when PGA is HIGH. The type of parity generated is selected by the state of the ODD/EVEN input. Bytes are organized at A0-A8, A9-A17, A18A26, and A27-A35. The generated parity bits are output in the most significant bit of each byte.
PGB	Port B Parity Generation	1	Parity is generated for data reads from port B when PGB is HIGH. The type of parity generated is selected by the state of the ODD/EVEN input. Bytes are organized as B0-B8, B9-B17, B18-B26, and B27-B35. The generated parity bits are output in the mostsignificant bit of each byte.
$\overline{\mathrm{RST}}$	Reset	I	To reset the device, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB must occur while $\overline{R S T}$ is LOW. This sets the $\overline{A F}, \overline{M B F 1}$, and $\overline{M B F 2}$ flags HIGH and the $\overline{\mathrm{EF}}, \overline{\mathrm{AE}}$, and $\overline{\mathrm{FF}}$ flags LOW. The LOW-to-HIGH transition of $\overline{\text { RST }}$ latches the status of the FS1 and FSO inputs to select Almost-Full flag and Almost-Emptyflag offset.
$\begin{aligned} & \hline \mathrm{SIZO}, \\ & \mathrm{SIZ1} \end{aligned}$	Port B Bus Size Selects	$\begin{array}{\|c\|} \hline 1 \\ \text { (Port B) } \end{array}$	A LOW-to-HIGH transition of CLKB latches the states of SIZO, SIZ1, and $\overline{\mathrm{EE}}$, and the following LOW-toHIGH transition of CLKB implements the latched states as a port B bus size. Port B bus sizes can be long word, word, or byte. A HIGH on both SIZO and SIZ1 chooses a mailbox register for a port B 36-bit write or read.
SW0, SW1	Port B Byte Swap Selects	$\left\lvert\, \begin{gathered} 1 \\ \text { (PortB) } \end{gathered}\right.$	At the beginning of each long word FIFO read, one of four modes of byte-order swapping is selected by SW0 and SW1. The four modes are no swap, byte swap, word swap, and byte-word swap. Byte-order swapping is possible with any bus-size selection.
W/ $\bar{R} A$	PortA Write/Read Select	1	A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-HIGH transition of CLKA. The AO-A35 outputs are in the high-impedance state when W/RA is HIGH.
W/ $\bar{R} B$	PortBWrite/Read Select	1	A HIGH selects a write operation and a LOW selects a read operation on port B for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the high-impedance state when W/RB is HIGH.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (unless otherwise noted) ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
Vcc	Supply Voltage Range	-0.5 to +4.6	V
$\mathrm{V}^{(2)}$	Input Voltage Range	-0.5 to Vcc +0.5	V
Vo ${ }^{(2)}$	Output Voltage Range	-0.5 to Vcc +0.5	V
IIK	Input Clamp Current, (VI < 0 or $\mathrm{VI}>\mathrm{Vcc}$)	± 20	mA
IOK	Output Clamp Current, (Vo < 0 or Vo > Vcc)	± 50	mA
Iout	Continuous Output Current, (Vo = 0 to Vcc)	± 50	mA
IcC	Continuous Current Through Vcc or GND	± 500	mA
TstG	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING
 CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Supply Voltage	3.0	3.3	3.6	V
VIH	HIGH Level Input Voltage	2	-	Vcc +0.5	V
VIL	LOW-Level InputVoltage	-	-	0.8	V
IOH	HIGH-Level Output Current	-	-	-4	mA
IOL	LOW-Level OutputCurrent	-	-	8	mA
TA	Operating Free-air Temperature	0	-	70	${ }^{\circ} \mathrm{C}$

ELECTRICALCHARACTERISTICS OVERRECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT72V3613 Commercial tCLK $=15 \mathrm{~ns}$			Unit
				Min.	Typ. ${ }^{(1)}$	Max.	
VOH	OutputLogic "1"Voltage	$\mathrm{Vcc}=3.0 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-	V
Vol	OutputLogic "0"Voltage	$\mathrm{Vcc}=3.0 \mathrm{~V}$,	$\mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	Input Leakage Current (Any Input)	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}$ or 0	-	-	± 5	$\mu \mathrm{A}$
ILO	OutputLeakage Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$ or 0	-	-	± 5	$\mu \mathrm{A}$
ICC ${ }^{(2)}$	Standby Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0	-	-	500	$\mu \mathrm{A}$
CIN	InputCapacitance	$\mathrm{VI}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	-	4	-	pF
Cout	OutputCapacitance	$\mathrm{Vo}=0$,	$\mathrm{f}=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. All typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs).

DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing the FIFO on the IDT72V3613 with CLKA and CLKB set tofs. All date inputs and data outputs change state during each clock cycle to consume the highestsupply current. Data outputs were disconnected to normalize the graph to azero-capacitance load. Once the capacitive lead per data-output channel is known, the power dissipation can be calculated with the equation below.

CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of the IDT72V3613 may be calculated by:

$$
\text { PT }=\operatorname{Vcc} x \operatorname{ICC}(f)+\Sigma\left(\operatorname{CL} x(\mathrm{VoH}-\mathrm{VoL})^{2} \times \mathrm{fo}_{0}\right)
$$

N
where:

N	$=$	number of used outputs (36-bit (long word), 18-bit (word) or 9-bit (byte) bus-size)
CL	$=$	outputcapacitance load
fo_{0}	$=$	switching frequency of an output
VoH	$=$	outputhigh-levelvoltage
VoL	$=$	outputhigh-levelvoltage

Whenno reads or writes are occurring onthe IDT72V3613, the power dissipated by a single clock(CLKA orCLKB) inputrunning atfrequency fs iscalculated by:

PT $=\mathrm{Vcc} x$ fs $\times 0.025 \mathrm{~mA} / \mathrm{MHz}$

Figure 1. Typical Characteristics: Supply Current (Icc) vs Clock Frequency (fs)

AC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE

Commercial: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.30 \mathrm{~V} ; \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant

Symbol	Parameter	IDT72V3613L15		Unit
		Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	66.7	MHz
tCLK	Clock Cycle Time, CLKA or CLKB	15	-	ns
tCLKH	Pulse Duration, CLKA and CLKB HIGH	6	-	ns
tCLKL	Pulse Duration, CLKA and CLKB LOW	6	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and B0-B35 before CLKB \uparrow	4	-	ns
tens	Setup Time, $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}}$, ENA, and MBA before CLKA \uparrow; $\overline{\mathrm{CSB}}, \overline{\mathrm{W}} / \overline{\mathrm{R}} \mathrm{B}$, and ENB before CLKB \uparrow	5	-	ns
tSZS	Setup Time, SIZ0, SIZ1, and $\overline{\mathrm{BE}}$ before CLKB \uparrow	4	-	ns
tsws	Setup Time, SW0 and SW1 before CLKB \uparrow	6	-	ns
tPGS	Setup Time, ODD/EVEN and PGB before CLKB $\uparrow^{(1)}$	4	-	ns
tRSTS	Setup Time, $\overline{\text { RST }}$ LOW before CLKA \uparrow or CLKB $\uparrow^{(2)}$	5	-	ns
tFSS	Setup Time, FS0 and FS1 before $\overline{\text { RST }}$ HIGH	5	-	ns
$\pm{ }_{\text {D }}$	Hold Time, A0-A35 after CLKA \uparrow and B0-B35 after CLKB \uparrow	1	-	ns
tENH	Hold Time, $\overline{\mathrm{CSA}} \mathrm{W} / \overline{\mathrm{R}}$ A, ENA and MBA after CLKA \uparrow; $\overline{\mathrm{CSB}}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{B}$, and ENB after CLKB \uparrow	1	-	ns
tSZH	Hold Time, SIZO, SIZ1, and $\overline{\mathrm{BE}}$ after CLKB \uparrow	2	-	ns
tSWH	Hold Time, SW0 and SW1 after CLKB \uparrow	2	-	ns
tPGH	Hold Time, ODD/EVEN and PGB after CLKB $\uparrow^{(1)}$	0	-	ns
tRSTH	Hold Time, $\overline{\mathrm{RST}}$ LOW after CLKA \uparrow or CLKB $\uparrow^{(2)}$	5	-	ns
tFSH	Hold Time, FS0 and FS1 after $\overline{\text { RST }}$ HIGH	4	-	ns
tSKEW1 ${ }^{(3)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$	8	-	ns
tSKEW2 ${ }^{(3,4)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$	14	-	ns

NOTES:

1. Only applies for a clock edge that does a FIFO read.
2. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
3. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
4. Design simulated, not tested.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL $=30 \mathrm{pF}$

Commercial: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.30 \mathrm{~V} ; \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant

Symbol	Parameter	IDT72V3613L15		Unit
		Min.	Max.	
tA	Access Time, CLKA \uparrow to A0-A35 and CLKB \uparrow to B0-B35	2	10	ns
tWFF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{FF}}$	2	10	ns
tREF	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{EF}}$	2	10	ns
tPAE	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{AE}}$	2	10	ns
tPAF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AF}}$	2	10	ns
tPMF	Propagation Delay Time, CLKA to $\overline{\text { MBF1 }}$ LOW or $\overline{\text { MBF2 }} \mathrm{HIGH}$ and CLKB \uparrow to $\overline{\text { MBF2 }}$ LOW or $\overline{\text { MBF1 }}$ HIGH	1	9	ns
tPMR	Propagation Delay Time, CLKA \uparrow to $\mathrm{B} 0-\mathrm{B} 35{ }^{(1)}$ and CLKB \uparrow to $\mathrm{A} 0-\mathrm{A} 35{ }^{(2)}$	2	10	ns
tPPE ${ }^{(3)}$	Propagation delay time, CLKB \uparrow to $\overline{\text { PEFB }}$	2	10	ns
tMDV	Propagation Delay Time, SIZ1, SIZO to B0-B35 valid	1	10	ns
tPDPE	Propagation Delay Time, A0-A35 valid to $\overline{\text { PEFA }}$ valid; $\mathrm{B0}-\mathrm{B} 35$ valid to $\overline{\text { PEFB }}$ valid	2	10	ns
tPOPE	Propagation Delay Time, ODD/ $\overline{\mathrm{EVEN}}$ to $\overline{\mathrm{PEFA}}$ and $\overline{\mathrm{PEFB}}$	2	10	ns
tPOPB ${ }^{(4)}$	Propagation Delay Time, ODD/EVEN to parity bits (A8, A17, A26, A35) and (B8, B17, B26, B35)	2	10	ns
tPEPE	Propagation Delay Time, $\overline{\mathrm{CSA}}, \mathrm{ENA}, \mathrm{W} / \overline{\mathrm{R} A}, \mathrm{MBA}$, or PGA to $\overline{\mathrm{PEFA}} ; \overline{\mathrm{CSB}}, \mathrm{ENB}, \mathrm{W} / \overline{\mathrm{RB}}$, SIZ1, SIZO, or PGB to $\overline{\text { PEFB }}$	1	10	ns
tPEPB ${ }^{(4)}$	Propagation Delay Time, $\overline{\mathrm{CSA}}, \mathrm{ENA}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}, \mathrm{MBA}$, or PGA to parity bits (A8, A17, A26, A35); $\overline{\mathrm{CSB}}, \mathrm{ENB}, \mathrm{W} / \overline{\mathrm{R} B}, \mathrm{SIZ1}, \mathrm{SIZ0} ,\mathrm{or} \mathrm{PGB} \mathrm{to} \mathrm{parity} \mathrm{bits} \mathrm{(B8}, \mathrm{B17}, \mathrm{B26}, \mathrm{B35)}$	2	10	ns
tRSF	Propagation Delay Time, $\overline{\mathrm{RST}}$ to $\overline{\mathrm{AE}}, \overline{\mathrm{EF}}$ LOW and $\overline{\mathrm{AF}}, \overline{\mathrm{MBF}}$, $\overline{\mathrm{MBF}}$ HIGH	1	15	ns
ten	Enable Time, $\overline{\mathrm{CSA}}$ and $W / \overline{\mathrm{R}} \mathrm{A}$ LOW to AO-A35 active and $\overline{\mathrm{CSB}}$ LOW and W/砛 HIGH to B0-B35active	2	10	ns
tDIS	Disable Time, $\overline{C S A}$ or W/RA HIGH to A0-A35 at high-impedance and $\overline{\mathrm{CSB}}$ HIGH or W/RBBLOW to B0-B35 athigh-impedance	1	8	ns

NOTES:

1. Writing data to the mail1 register when the B0-B35 outputs are active and SIZ1 and SIZO are HIGH.
2. Writing data to the mail2 register when the A0-A35 outputs are active.
3. Only applies when a new port-B bus size is implemented by the rising CLKB edge.
4. Only applies when reading data from a mail register.

FUNCTIONALDESCRIPTION

RESET ($\overline{\operatorname{RST}})$

The IDT72V3613 is reset by taking the Reset($\overline{\mathrm{RST}})$ inputLOW for at least four port A Clock (CLKA) and four port B Clock (CLKB) LOW-to-HIGH transitions. The Resetinputcan switch asynchronously to the clocks. Adevice reset initializes the internal read and write pointers of the FIFO and forces the Full Flag $(\overline{\mathrm{FF}})$ LOW, theEmptyFlag $(\overline{\mathrm{EF}})$ LOW, the Almost-Emptyflag $(\overline{\mathrm{AE}})$ LOW, and the Almost-Full flag $(\overline{\mathrm{AF}}) \mathrm{HIGH}$. A reset also forces the Mailbox Flags (MBF1, $\overline{\text { MBF2 }}$) HIGH. After a reset, $\overline{\mathrm{FF}}$ is set HIGH after two LOW-to-HIGH transitions of CLKA. The device must be reset after power up before data is writtentoits memory.

A LOW-to-HIGH transition on the $\overline{\text { RST }}$ input loads the Almost-Full and Almost-Empty Offsetregister(X) withthe value selected bytheFlagSelect(FSO, FS1) inputs. The values that can be loaded into the register are shown in Table 1. See Figure5for relevantFIFOResetand presetvalueloadingtiming diagram.

FIFO WRITE/READ OPERATION

The state of the portA data (A0-A35) outputs is controlled by the port-AChip Select $(\overline{\mathrm{CSA}})$ and the port-A Write/Read select $(W / \bar{R} A)$. The A0-A35 outputs are in the high-impedance state when either $\overline{\mathrm{CSA}}$ or $W / \overline{\mathrm{R}} A$ is HIGH . The A0A35 outputs are active when both $\overline{C S A}$ and $W / \bar{R} A$ are LOW.
TABLE 1 - FLAG PROGRAMMING

FS1	FS0	$\overline{\text { RST }}$	ALMOST-FULL AND ALMOST-EMPTYFLAG OFFSET REGISTER (X)
H	H	\uparrow	16
H	L	\uparrow	12
L	H	\uparrow	8
L	L	\uparrow	4

Data is loaded into the FIFO from the A0-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{\mathrm{CSA}}$ is LOW, W/RA is HIGH, ENA is HIGH, MBA is LOW, and $\overline{\mathrm{FF}}$ is HIGH (see Table 2). The relevant FIFO write timing diagram can found in Figure 6.

The state of the port B data (B0-B35) outputs is controlled by the portB Chip Select ($\overline{\mathrm{CSB}}$) and the port B Write/Read select (W/RB). The B0-B35 outputs are inthe high-impedance state when either $\overline{C S B}$ orW/R \bar{R} is $H I G H$. The $B 0-B 35$ outputs are active when both $\overline{C S B}$ and $W / \bar{R} B$ are LOW. Data is read from the FIFO totheB0-B35outputsbyaLOW-to-HIGHtransition ofCLKB when $\overline{C S B}$ is LOW, W/RB is LOW, ENB is HIGH, $\overline{\mathrm{EFB}}$ is HIGH, and either SIZO or SIZ1 is LOW (see Table3). RelevantFIFO read timing diagrams togetherwith Bus-Matching, Endian select and Byte-swapping operation can be found in Figures 7, 8 and 9.

The setup and hold-time constraintstotheportclocksfortheportChipSelects ($\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}}$) andWrite/Read selects (W/R̄A, W/RB) are only for enabling write and read operations and are not related tohigh-impedance control of the data outputs. IfaportenableisLOWduringaclockcycle,theport'sChipSelectandWrite/ Readselectcanchange statesduring the setup andholdtimewindow ofthe cycle.

SYNCHRONIZED FIFO FLAGS

EachFIFO flag is synchronized to its portclock throughtwo flip-flopstages. This is done to improve the flags' reliability by reducing the probability of metastable events on their outputs when CLKA and CLKB operate asynchronously to one another. $\overline{\mathrm{FF}}$ and $\overline{\mathrm{AF}}$ are synchronized to CLKA. $\overline{\mathrm{EF}}$ and $\overline{\mathrm{AE}}$ are synchronized to CLKB. Table 4 shows the relationship of each port flag to the level of FIFO fill.

EMPTY FLAG ($\overline{\mathrm{EF}}$)

TheFIFO Empty Flag is synchronized to the port clock that reads datafrom its array (CLKB). Whenthe EF isHIGH, new data canbe read to the FIFO output register. When the $\overline{E F}$ is LOW, the FIFO is empty and attempted FIFO reads

TABLE 2 - PORT A ENABLE FUNCTION TABLE

$\overline{\mathrm{CSA}}$	WIRA	ENA	MBA	CLKA	Data A (A0-A35) I/O	Port Function
H	X	X	X	X	Input	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	FIFO write
L	H	H	H	\uparrow	Output	Mail1 write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	None
L	L	L	H	X	Output	None
L	L	H	H	\uparrow	Mail2 read (set $\overline{\text { MBF2 HIGH) }}$	

TABLE 3 - PORT B ENABLE FUNCTION TABLE

$\overline{\text { CSB }}$	W/RB	ENB	SIZ1, SIZ0	CLKB	Data B (B0-B35) I/O	Port Function
H	X	X	X	X	Input	None
L	H	L	X	X	Input	None
L	H	H	One, both LOW	\uparrow	Input	None
L	H	H	Both HIGH	\uparrow	Input	Mail2 write
L	L	L	One, both LOW	X	Output	None
L	L	H	One, both LOW	\uparrow	Output	FIFO read
L	L	L	Both HIGH	X	Output	None
L	L	H	Both HIGH	\uparrow	Output	Mail1 read (set $\overline{\text { MBF1 }}$ HIGH)

are ignored. When reading the FIFO with a byte or word size on port B, $\overline{\mathrm{EF}}$ is set LOW when the fourth byte or second word of the last long word is read.

The FIFO read pointer is incremented each time a new word is clocked to its outputregister. Thestate machinethatcontrolsthe $\overline{\text { FF }}$ monitors awrite-pointer and read-pointer comparator that indicates when the FIFO memory status is empty, empty +1 , or empty +2 . A word written to the FIFO can be read to the FIFO output register in a minimum of three port B clock (CLKB) cycles. Therefore, an $\overline{\mathrm{FF}}$ is LOW if a word in memory is the next data to be sent to the FIFO outputregister andtwo CLKB cycles have notelapsed since the time the word was written. The EF ofthe FIFO is set HIGH bythe second LOW-to-HIGH transition of CLKB, and the new data word can be read to the FIFO output register inthe following cycle.

ALOW-to-HIGH transition on CLKB begins the firstsynchronization cycle of a write ifthe clocktransition occurs attime tSkEW1 or greater after the write. Otherwise, the subsequent CLKB cycle can be the first synchronization cycle (see Figure 10).

FULL FLAG (FF)

The FIFO Full Flag is synchronized to the port clock that writes data to its array (CLKA). Whenthe FF is HIGH, aFIFO memory location is free to receive new data. No memory locations are free when the FF is LOW and attempted writes to the FIFO are ignored.

Each time a word is writtentothe FIFO, itswrite-pointer is incremented. The state machine that controls the FF monitors a write-pointer and read-pointer comparator that indicates when the FIFO memory status is full, full -1, or full- 2 . Fromthetime aword is readfrom the FIFO, its previous memorylocationis ready to be writtenin a minimum ofthree CLKA cycles. Therefore, a FF is LOWifless thantwo CLKA cycles have elapsed since the nextmemory write location has been read. The second LOW-to-HIGHtransition on the $\overline{F F}$ synchronizing clock afterthereadsetsthe $\overline{F F}$ HIGH anddatacanbewritteninthefollowing clockcycle.

ALOW-to-HIGHtransition onCLKA begins the firstsynchronization cycle of a read if the clock transition occurs at time tskew1 or greater after the read. Otherwise, the subsequent clock cycle can be the firstsynchronization cycle (see Figure 11).

ALMOST-EMPTY FLAG ($\overline{\text { AE }})$

TheFIFO Almost-Emptyflagissynchronizedtothe portclockthatreadsdata fromits array (CLKB). The state machine that controls the $\overline{\mathrm{AE}}$ flag monitors a write-pointer and read-pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty +1 , or almost-empty +2 . The almost-emptystate is defined bythe value ofthe Almost-Full and Almost-Empty Offsetregister (X). This register is loaded with one offour presetvalues during adevice reset(see resetabove). The $\overline{\text { AE }}$ flagis LOWwhenthe FIFO contains

TABLE 4 - FIFO FLAG OPERATION

NUMBER OF 36-BIT WORDS IN THE FIFO ${ }^{(1)}$	```SYNCHRO- NIZED TO CLKB```		$\begin{gathered} \text { SYNCHRO- } \\ \text { NIZED } \\ \text { TOCLKA } \\ \hline \end{gathered}$	
	$\overline{\text { EF }}$	$\overline{\mathrm{AE}}$	$\overline{\mathrm{AF}}$	$\overline{\mathrm{F}} \overline{\mathrm{F}}$
0	L	L	H	H
1 to X	H	L	H	H
$(\mathrm{X}+1)$ to [64-($\mathrm{X}+1)$]	H	H	H	H
(64-X) to 63	H	H	L	H
64	H	H	L	L

NOTE:

1. X is the value in the Almost-Empty flag and Almost-Full flag Offset register

X or less long words in memory and is HIGH when the FIFO contains ($\mathrm{X}+1$) or more long words.

TwoLOW-to-HIGHtransitions onthe portBClock(CLKB) are required after aFIFO write for the $\overline{A E}$ flag to reflect the newlevel offill. Therefore, the $\overline{A E}$ flag of aFIFO containing $(X+1)$ or more long words remains LOWiftwoCLKB cycles have notelapsed since the write that filled the memory to the $(X+1)$ level. The AEflagissetHIGHbythe second CLKBLOW-to-HIGHtransition afterthe FIFO write that fills memory to the $(X+1)$ level. A LOW-to-HIGH transition of CLKB begins the firstsynchronization cycle ifitoccurs attimetskEW2 or greater after the writethatillsthe FIFOto $(\mathrm{X}+1)$ long words. Otherwise, the subsequentCLKB cycle can be the first synchronization cycle (see Figure 12).

ALMOST FULL FLAG ($\overline{\mathrm{AF}})$

The FIFO Almost-Fullflagis synchronized to the port clockthatwrites data toits array (CLKA). The state machinethat controls an $\overline{\text { AF flag monitors a write- }}$ pointer and read-pointer comparator that indicates when the FIFO memory statusisalmost-full, almost-full-1, oralmost-full-2. Thealmost-full stateisdefined bythe value ofthe Almost-Full and Almost-Empty Offsetregister (X). This register isloaded with one offourpresetvalues during adevice reset(see Resetsection). The $\overline{\text { AF }}$ flag is LOW when the FIFO contains ($64-\mathrm{X}$) or more long words in memory and is HIGH when the FIFO contains [$64-(\mathrm{X}+1)]$ or less long words.

Two LOW-to-HIGH transitions on the portA Clock (CLKA) are required after aFIFO read for the $\overline{A F}$ flag to reflect the new level of fill. Therefore, the $\overline{A F}$ flag of aFIFO containing $[64-(X+1)]$ orlesswords remains LOWiftwo CLKA cycles have not elapsed since the read that reduced the number of long words in memory to [64-(X+1)]. The $\overline{\mathrm{AF}}$ flag is set HIGH by the second CLKALOW-toHIGH transition after the FIFO read that reduces the number of long words in memory to $[64-(\mathrm{X}+1)]$. A LOW-to-HIGH transition on CLKA begins the first synchronization cycle if it occurs at time tSKEW2 or greater after the read that reduces the number of long words in memory to $[64-(X+1)]$. Otherwise, the subsequentCLKA cycle can be the firstsynchronizationcycle (see Figure 13).

MAILBOX REGISTERS

Two 36-bitbypass registers (mail1, mail2) are on the IDT72V3613to pass command and control information between port A and port B without putting it in queue. ALOW-to-HIGH transition on CLKA writes A0-A35 datato the mail1 registerwhen aportA write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH. ALOW-to-HIGH transition on CLKB writes BO-B35 data to the mail 2 register when a port B write is selected by $\overline{\mathrm{CSB}}, W / \overline{\mathrm{R}}$ and ENB , and both SIZO and SIZ1 are HIGH. Writing datato a mail registersetsits corresponding flag(MBF1 or MBF2) LOW. Attempted writes to a mail register are ignored while its mail flagisLOW.

When the portBdata(B0-B35) outputs are active, the dataonthe bus comes from the FIFO output register wheneither one or both SIZ1 and SIZO are LOW and from the mail1 register when both SIZ1 and SIZO are HIGH. The Mail1 Register Flag ($\overline{\text { MBF1 }}$) is set HIGH by a rising CLKB edge when a port B read is selected by $\overline{C S B}, W / \bar{R} B$, and ENB, and both SIZ1 and SIZOHIGH. The Mail2 Register Flag (MBF2) is set HIGH by a rising CLKA edge when a port A read is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBA HIGH. The datain a mail register remains intactafter itis read and changes only when new data is written to the register. See Figure 14 and 15 for relevant mail register and mail register flag timing diagrams.

DYNAMIC BUS SIZING

The port B bus can be configured in a 36 -bit long word, 18 -bit word, or 9 bitbyte formatfor data read from the FIFO. Word-and byte-size bus selections can utilize the mostsignificant bytes of the bus (Big-Endian) or leastsignificant bytes of the bus (Little-Endian). PortB bus-size can be changed dynamically and synchronoustoCLKB to communicate with peripherals ofvarious bus widths.

The levels applied to the port B bus-size select(SIZ0, SIZ1) inputs and the Big-Endianselect($\overline{\mathrm{BE}}$)inputare stored oneachCLKBLOW-to-HIGHtransition. The stored port B bus-size selection is implemented by the nextrising edge on CLKB according to Figure 2.

Only 36-bit long-word data is written to or read from the FIFO memory on the IDT72V3613. Bus-matching operations are done after datais read fromthe FIFO RAM. Port B bus sizing does not apply to mail register operations.

BUS-MATCHING FIFO READS

Data is read from the FIFO RAM in 36-bitlong-word increments. If alongword bus-size is implemented, the entire long word immediately shifts to the FIFO output register upon a read. If byte or word size is implemented on port B, only the first one or two bytes appear on the selected portion of the FIFO output register, with the rest of the long word stored in auxiliary registers. In this case, subsequent FIFO reads with the same bus-size implementation output the rest of the long word to the FIFO output register in the order shown by Figure 2.

EachFIFO read with a newbus-size implementation automatically unloads data from theFIFORAM to its outputregister and auxiliary registers. Therefore, implementing anew portB bus-size and performing aFIFO read before all bytes or words stored in the auxiliary registers have been read results in aloss of the unread data in these registers.

When reading data from FIFO in byte or word format, the unused B0-B35 outputs are indeterminate.

BYTE SWAPPING

The byte-order arrangement of data read from the FIFO can be changed synchronous to the rising edge of CLKB. Byte-order swapping is not available for mail register data. Four modes of byte-order swapping (including no swap) can be done with any data port size selection. The order of the bytes are rearranged within the long word, but the bit order within the bytes remains constant.

Byte arrangement is chosen by the portB Swap select(SW0, SW1) inputs on a CLKB rising edge that reads a new long word from the FIFO. The byte order chosen onthe firstbyte orfirstword of anewlong word read from the FIFO is maintaineduntil theentirelongword istransferred, regardless of the SW0 and SW1 states during subsequentreads. Figure 4 is an example of the byte-order swapping available for long word reads. Performing a byte swap and bus-size simultaneously for a FIFO read first rearranges the bytes as shown in Figure 4, then outputs the bytes as shown in Figure 2.

PORT-B MAIL REGISTER ACCESS

In addition to selecting portB bus sizes for FIFO reads, the port B bus Size select(SIZO, SIZ1) inputs also access the mail registers. When both SIZO and $\mathrm{SIZ1}$ are HIGH, the mail1 register is accessed for a port B long-word read and the mail2 register is accessed for a port B long-word write. The mail register is accessed immediately and any bus-sizing operation that can be underway is unaffected by the mail register access. After the mail register access is complete, the previousFIFO accesscan resume inthenextCLKB cycle. Thelogic diagram in Figure 3 shows the previous bus-size selection is preserved when the mail registers are accessed from portB. A port B bus-size is implemented on each rising CLKB edge according to the states of SIZO_Q, SIZ1_Q, and $\overline{\mathrm{BE}}$ _ Q .

PARITY CHECKING

The portA datainputs(A0-A35) and portB datainputs(B0-B35) eachhave four parity trees to checkthe parity of incoming (or outgoing) data. A parity failure on one or more bytes of the port A data bus is reported by a low level on the port A Parity Error Flag ($\overline{\mathrm{PEFA}})$. A parity failure on one or more bytes of the
port B datainputs that are valid for the bus-size implementation is reported by alowlevel onthe port B Parity Error Flag ($\overline{\text { PEFB }}$). Odd or Even parity checking can be selected, and the Parity Error Flags can be ignored if this feature is not desired.

Parity status ischecked oneachinputbus according to the level oftheOdd/ Even parity (ODD/EVEN) selectinput. A parity error on one or more valid bytes of a port is reported by a LOW level onthe corresponding port Parity ErrorFlag ($\overline{\mathrm{PEFA}}, \overline{\mathrm{PEFB}}$) output. Port A bytes are arranged as A0-A8, A9-A17, A18-A26, and A27-A35, and port B bytes are arranged as B0-B8, B9-B17, B18-B26, and B27-B35, and its valid bytes are those used in a portB bus size implementation. When Odd/Even parity is selected, a port Parity Error Flag ($\overline{\mathrm{PEFA}}, \overline{\mathrm{PEFB}})$ is LOW if any byte on the port has an odd/even number of LOW levels applied toits bits.

The four parity trees used to check the A0-A35 inputs are shared by the mail2 registerwhen paritygeneration is selectedfor port-A reads(PGA=HIGH). When a portA read from the mail2 register with parity generation is selected with $\overline{\text { CSA }}$ LOW, ENA HIGH, W/R्RA LOW, MBA HIGH, and PGA HIGH, the port A Parity Error Flag ($\overline{\mathrm{PEFA}})$ is held HIGH regardless of the levels applied to the A0-A35 inputs. Likewise, the parity trees used to check the B0-B35 inputs are shared by the mail1 register when parity generation is selected for port B reads ($\mathrm{PGB}=\mathrm{HIGH}$). When a portB read fromthe mail1 register with parity generation is selected with $\overline{C S B} L O W, E N B H I G H, W / \bar{R} B L O W, ~ b o t h S I Z O ~ a n d ~ S I Z 1 H I G H, ~$ and PGB HIGH, the port B Parity Error Flag ($\overline{\text { PEFB }}$) is held HIGH regardless of the levels applied to the B0-B35 inputs.

PARITY GENERATION

A HIGH level on the port A Parity Generate select (PGA) or port B Parity Generate select(PGB) enablesthe IDT72V3613togenerate parity bitsforport reads from a FIFO or mailbox register. Port A bytes are arranged as A0-A8, A9-A17, A18-A26, and A27-A35, withthe mostsignificantbit of each byte used as the parity bit. Port B bytes are arranged as B0-B8, B9-B17, B18-B26, and B27-B35, withthe mostsignificantbit of each byte used as the parity bit. A write to a FIFO or mail register stores the levels applied to all nine inputs of a byte regardless of the state of the Parity Generate select(PGA, PGB) inputs. When data is read from a port with parity generation selected, the lower eight bits of each byte are used to generate a parity bit according to the level on the ODD/ $\overline{\text { EVEN }}$ select. The generated parity bits are substituted for the levels originally written to the most significant bits of each byte as the word is read to the data outputs.

Parity bits for FIFO data are generated after the data is read from the FIFO memory and before the data is written to the outputregister. Therefore, the port AParity Generate select(PGA) and Odd/Even parity select(ODD/EVEN) have setup and hold time constraints to the portA Clock (CLKA) and the portB Parity Generate select (PGB) and ODD/EVEN select have setup and hold time constraints to the port B Clock (CLKB). These timing constraints only apply for a rising clock edge used to read a new long word to the FIFO output register (see Figure 16 and 17).

The circuit used to generate parity for the mail1 data is shared by the port B bus (B0-B35) to check parity and the circuit used to generate parity for the mail2 data is shared by the port A bus (A0-A35) to check parity. The shared parity trees of a portare used to generate parity bits for the data in a mail register when the port Chip Select ($\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}}$) is LOW, Enable (ENA, ENB) is HIGH, and Write/Read select(W/RA, W/RBB) inputisLOW, the mail register is selected (MBA HIGH for portA; both SIZO and SIZ1 are HIGH for portB), and portParity Generate select(PGA, PGB) is HIGH. Generating parity for mail register data does not change the contents of the register. Parity Generationtiming, when reading from a mail register, can be found in Figure 18 and 19.

BYTE ORDER ON PORT A:

$\overline{\mathrm{BE}}$	$\mathrm{SIZ1}$	SIZO
L	L	H

(a) LONG WORD SIZE

B17-B9

(b) WORD SIZE - BIG-ENDIAN

$\overline{\text { BE }}$	SIZ1	SIZO
H	L	H

B26-B18

(c) WORD SIZE - LITTLE-ENDIAN

$\overline{B E}$	SIZ1	SIZO
\mathbf{L}	\mathbf{H}	L

B26-B18

B26-B18

B26-B18

3rd: Read from FIFO

Figure 2. Dynamic Bus Sizing

$\overline{B E}$	SIZ1	SIZO
\mathbf{H}	H	L

(d) BYTE SIZE — LITTLE-ENDIAN

Figure 2. Dynamic Bus Sizing (Continued)

Figure 3. Logic Diagram for SIZ0, SIZ1, and BE Register

SW1	SW0
L	L

(a) NO SWAP

(b) BYTE SWAP

SW1	SW0
H	L

(c) WORD SWAP

SW1	SW0
H	H

(d) BYTE-WORD SWAP
4661 fig 03

Figure 4. Byte Swapping for FIFO Reads (Long-Word Size Example)

Figure 5. FIFO Reset and Loading the X Register with the Value of Eight

NOTE:

1. Written to the FIFO.

Figure 6. Port A Write Cycle Timing

NOTES:

1. $\mathrm{SIZO}=\mathrm{HIGH}$ and $\mathrm{SIZ1}=$ HIGH selects the mail1 register for output on B0-B35.
2. Data read from FIFO1.

DATA SWAP TABLE FOR FIFO LONG-WORD READS

FIFO DATA WRITE				SWAP MODE		FIFO DATAREAD			
A35-A27	A26-A18	A17-A9	A8-A0	SW1	SW0	B35-B27	B26-B18	B17-B9	B8-B0
A	B	C	D	L	L	A	B	C	D
A	B	C	D	L	H	D	C	B	A
A	B	C	D	H	L	C	D	A	B
A	B	C	D	H	H	B	A	D	C

Figure 7. Port B Long-Word Read Cycle Timing

NOTES;

1. $\mathrm{SIZO}=\mathrm{HIGH}$ and $\mathrm{SIZ1}=\mathrm{HIGH}$ selects the mail1 register for output on B0-B35.
2. Unused word B0-B17 or B18-B35 are indeterminate.

DATA SWAP TABLE FOR FIFO WORD READS

FIFO DATA WRITE				SWAP MODE		$\begin{gathered} \text { READ } \\ \text { NO. } \end{gathered}$	FIFO DATA READ				
				BIG-ENDIAN	LITTLE-ENDIAN						
A35-A27	A26-A18	A17-A9	A8-A0			SW1	SW0	B35-B27	B26-B18	B17-B9	B8-B0
A	B	C	D	L	L		$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { D } \\ & \text { B } \end{aligned}$
A	B	C	D	L	H		1	$\begin{aligned} & \text { D } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$
A	B	C	D	H	L	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$	
A	B	C	D	H	H	1	B	A	D	C	

Figure 8. Port B Word Read-Cycle Timing

NOTES:

1. $\mathrm{SIZO}=\mathrm{HIGH}$ and $\mathrm{SIZ1}=$ HIGH selects the mail1 register for output on B0-B35.
2. Unused bytes B0-B26 or B9-B35 are indeterminate.

DATA SWAP TABLE FOR FIFO BYTE READS

FIFO DATA WRITE				SWAP MODE		$\begin{aligned} & \text { READ } \\ & \text { NO. } \end{aligned}$	FIFO DATAREAD		
				BIG-	LItTLE-				
A35-A27	A26-A18	A17-A9	A8-A0			SW1	swo	B35-B27	B8-B0
A	B	C	D	L	L		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$
A	B	C	D	L	H	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { D } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	
A	B	C	D	H	L	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { D } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { D } \\ & \text { C } \end{aligned}$	
A	B	C	D	H	H	1 2 3 4	B A D C	$\begin{aligned} & \text { C } \\ & \text { D } \\ & \text { A } \\ & \text { B } \end{aligned}$	

Figure 9. Port B Byte Read-Cycle Timing

NOTES:

1. tsKEw1 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{E F}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskew1, then the transition of $\overline{E F}$ HIGH may occur one CLKB cycle later than shown.
2. Port B size of long word is selected for the FIFO read by SIZ1 = LOW, SIZO = LOW. If port-B size is word or byte, $\overline{\mathrm{EF}}$ is set LOW by the last word or byte read from the FIFO, respectively.

Figure 10. $\overline{\mathrm{EF}}$ Flag Timing and First Data Read when the FIFO is Empty

NOTES:

1. tSKEw1 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{E F}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then the transition of $\overline{\mathrm{EF}}$ HIGH may occur one CLKA cycle later than shown.
2. Port B size of long word is selected for the FIFO read by SIZ1 = LOW, SIZO = LOW. If port B size is word or byte, tskews is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 11. $\overline{\text { FF }}$ Flag Timing and First Available Write when the FIFO is Full

NOTES:

1. tskEw2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{A E}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskEw2, then $\overline{\mathrm{AE}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO write $(\overline{\mathrm{CSA}}=\mathrm{LOW}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}=\mathrm{HIGH}, \mathrm{MBA}=\mathrm{LOW})$, FIFO read $(\overline{\mathrm{CSB}}=\mathrm{LOW}, \mathrm{W} / \overline{\mathrm{R} B}=\mathrm{LOW}$, either SIZO $=\mathrm{LOW}$ or SIZ1 $=\mathrm{LOW})$.
3. Port B size of long word is selected for the FIFO read by SIZ1 = LOW, SIZO = LOW. If port B size is word or byte, tskEW2 is referenced to the last word or byte of the long word, respectively.

Figure 12. Timing for $\overline{\mathrm{AE}}$ when the FIFO is Almost-Empty

NOTES:

1. tsKew2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tSKEw2, then $\overline{\mathrm{AF}}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO write ($\overline{C S A}=L O W, W / \bar{R} A=H I G H, M B A=L O W)$, FIFO read ($\overline{C S B}=L O W, W / \bar{R} B=L O W$, either SIZO $=L O W$ or SIZ1 $=L O W$).
3. Port-B size of long word is selected for FIFO read by SIZ1 = LOW, SIZO = LOW. If port B size is word or byte, tskEw is referenced from the last word or byte read of the long word, respectively.

Figure 13. Timing for $\overline{\mathrm{AF}}$ when the FIFO is Almost-Full

NOTE:

1. Port-B parity generation off $(P G B=L O W)$.

Figure 14. Timing for Mail1 Register and MBF1 Flag

NOTE:

1. Port-A parity generation off ($\mathrm{PGA}=\mathrm{LOW}$).

Figure 15. Timing for Mail2 Register and MBF2 Flag

NOTE:

1. $\overline{C S A}=L O W$ and $E N A=H I G H$.

Figure 16. ODD/EVEN, $W / \bar{R} A, M B A$, and PGA to $\overline{\text { PEFA }}$ Timing

NOTE:

1. $\overline{C S B}=$ LOW and $E N B=H I G H$.

Figure 17. ODD/EVEN, W/RB, SIZ1, SIZ0, and PGB to $\overline{\text { PEFB }}$ Timing

NOTE:

1. $\mathrm{ENA}=\mathrm{HIGH}$.

Figure 18. Parity Generation Timing when Reading from the Mail2 Register

Figure 19. Parity Generation Timing when Reading from the Mail1 Register

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY
LOAD CIRCUIT

NOTE:

1. Includes probe and jig capacitance.

Figure 20. Load Circuit and Voltage Waveforms

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

pg. 1.
pg. 6.
pgs. 1, 2, 3 and 26 .
pg. 26.
pgs. 1, 2, 5, 7, 8, 20, 21 and 25.
pg. 2.
Datasheetchanged to ObsoleteStatus.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

