Low Skew 1 to 4 Clock Buffer

Description

RENESAS

The 524S is a low skew, single input to four output, clock buffer. The 524S has best in class additive phase jitter of sub 50 fsec. The 524S is Power Down Tolerant (PDT). PDT designated inputs may be driven before VDD is applied, without damage to the device.

Renesas makes many non-PLL and PLL based low skew output devices as well as Zero Delay Buffers to synchronize clocks. Contact us for all of your clocking needs.

Features

- Low additive phase jitter RMS: 50fs
- Extremely low skew outputs (50ps)
- Low cost clock buffer
- Packaged in 8-SOIC and 8-DFN, Pb-free
- ICLK is PDT and may be driven before VDD is applied
- Direct-coupled signal path suitable for 1pps clocks
- Input/Output clock frequency up to 200MHz
- Non-inverting output clock
- Ideal for networking clocks
- Operating Voltages: 1.8V to 3.3V
- Advanced, low power CMOS process
- Extended temperature range (-40°C to +105°C)

Block Diagram

Pin Assignments

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	ICLK	Input	Clock input. This pin is Power Down Tolerant (PDT).
2	Q0	Output	Clock output 0.
3	Q1	Output	Clock output 1.
4	NC	-	No connect.
5	VDD	Power	Connect to +1.8V, +2.5 V, or +3.3 V.
6	Q2	Output	Clock Output 2.
7	Q3	Output	Clock Output 3.
8	GND	Power	Connect to ground.

External Components

A minimum number of external components are required for proper operation. A decoupling capacitor of 0.01μ F should be connected between VDD on pin 5 and GND on pin 8, as close to the device as possible. A 33Ω series terminating resistor may be used on each clock output if the trace is longer than 1 inch.

To achieve the low output skew that the 524S is capable of, careful attention must be paid to board layout. Essentially, all four outputs must have identical terminations, identical loads and identical trace geometries. If they do not, the output skew will be degraded. For example, using a 30Ω series termination on one output (with 33Ω on the others) will cause at least 15ps of skew.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 524S. These ratings, which are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	3.465V
Outputs	-0.5 V to VDD+0.5 V
ICLK	3.465V
Ambient Operating Temperature (extended)	-40° to +105°C
Storage Temperature	-65° to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature (extended)	-40		+105	°C
Power Supply Voltage (measured in respect to GND)	+1.71		+3.465	V

DC Electrical Characteristics

(VDD = 1.8V, 2.5V, 3.3V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		1.71		1.89	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7xVDD		3.465	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -10mA	1.3			V
Output Low Voltage	V _{OL}	I _{OL} = 10mA			0.35	V
Operating Supply Current	IDD	No load, 135MHz		16		mA
Nominal Output Impedance	Z _O			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

VDD = 1.8V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise

Notes: 1. Nominal switching threshold is VDD/2.

VDD = 2.5 V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		2.375		2.625	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7xVDD		3.465	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -16mA	1.8			V
Output Low Voltage	V _{OL}	I _{OL} = 16mA			0.5	V
Operating Supply Current	IDD	No load, 135MHz		18		mA
Nominal Output Impedance	ZO			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

VDD = 3.3 V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.15		3.45	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7xVDD		3.465	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -25mA	2.2			V
Output Low Voltage	V _{OL}	I _{OL} = 25mA			0.7	V
Operating Supply Current	IDD	No load, 135MHz		22		mA
Nominal Output Impedance	Z _O			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

Output Fall Time

Start-up Time

Propagation Delay

Output to Output Skew

Device to Device Skew

Buffer Additive Phase Jitter, RMS

Units

MHz

ns

ns

ns

ps

ps

ps

ms

Max.

200

1.0

1.0

4

0.05

65

200

2

0.6

2

1.5

AC Electrical Characteristics

(VDD = 1.8V, 2.5V, 3.3V)

	•			
Parameter	Symbol	Conditions	Min.	Тур.
Input Frequency			0	
Output Rise Time	t _{OR}	0.36 to 1.44 V, C _L = 5pF		0.6

Note 1

ramp-up

1.44 to 0.36 V, $C_L = 5pF$

Rising edges at VDD/2

Rising edges at VDD/2, Note 2

125MHz, Integration Range: 12kHz-20MHz

Part start-up time for valid outputs after VDD

VDD = 1.8V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise

t_{OF}

t_{START-UP}

VDD = **2.5** V \pm **5%**, Ambient Temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.5 to 2.0 V, C _L = 5pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.0 to 0.5 V, C _L = 5pF		0.6	1.0	ns
Propagation Delay		Note 1	1.8	2.5	4.5	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12kHz–20MHz			0.05	ps
Output to Output Skew		Rising edges at VDD/2, Note 2			65	ps
Device to Device Skew		Rising edges at VDD/2			200	ps
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms

VDD = 3.3 V \pm5%, Ambient Temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.66 to 2.64 V, C _L = 5pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.64 to 0.66 V, C _L = 5pF		0.6	1.0	ns
Propagation Delay		Note 1	1.5	2	4	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12kHz–20MHz			0.05	ps
Output to Output Skew		Rising edges at VDD/2, Note 2			65	ps
Device to Device Skew		Rising edges at VDD/2			200	ps
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms

Notes:

1. With rail to rail input clock.

2. Between any 2 outputs with equal loading.

3. Duty cycle on outputs will match incoming clock duty cycle. Consult Renesas for tight duty cycle clock generators.

Phase Noise Plots

Figure 1. 524S Reference Phase Noise 63fs (12kHz to 20MHz)

Figure 2. 524S Output Phase Noise 76fs (12kHz to 20MHz)

The phase noise plots above show the low Additive Jitter of the 524S high-performance buffer. With an integration range of 12kHz to 20MHz, the reference input has about 63fs of RMS phase jitter while the output of 524S has about 76fs of RMS phase jitter. This results in a low Additive Phase Jitter of only 42fs.

Test Load and Circuit

Thermal Characteristics (8SOIC)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to Ambient	θ_{JA}	Still air		150		°C/W
	θ_{JA}	1 m/s air flow		140		°C/W
	θ_{JA}	3 m/s air flow		120		°C/W
Thermal Resistance Junction to Case	θ_{JC}			40		°C/W

Marking Diagrams

Notes:

1. "**" is the lot number.

2. "YYWW" or "YW" are the last digits of the year and week that the part was assembled.

3 "G" denotes RoHS compliant package.

4. "\$" denotes the mark code.

5. "I" denotes extended temperature range device.

Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see Ordering Information for POD links). The package information is the most current data available and is subject to change without revision of this document.

Ordering Information

Orderable Part Number	Carrier Type	Package	Temperature
524SDCGI	Tubes	8-SOIC	-40° to +105°C
524SDCGI8	Tape and Reel	8-SOIC	-40° to +105°C
524SCMGI	Cut Tape	8-DFN	-40° to +105°C
524SCMGI8	Tape and Reel	8-DFN	-40° to +105°C

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

Revision History

Revision Date	Description
August 9, 2021	Updated front page description and features.
	 Updated "Input High Voltage, ICLK" maximum ratings for 1.8V, 2.5V, and 3.3V.
	 Updated Package Outline Drawings and Ordering Information sections.
March 18, 2015	Initial release.