

Adafruit PCA9685 16-Channel Servo
Driver

Created by Bill Earl

https://learn.adafruit.com/16-channel-pwm-servo-driver

Last updated on 2023-01-20 01:57:58 PM EST

©Adafruit Industries Page 1 of 29

5

6

7

9

12

14

16

18

18

Table of Contents

Overview

Pinouts

• Power Pins

• Control Pins

• Output Ports

Assembly

• Install the Servo Headers

• Solder all pins

• Add Headers for Control

• Install Power Terminals

Hooking it Up

• Connecting to the Arduino

• Power for the Servos

• Adding a Capacitor to the thru-hole capacitor slot

• Connecting a Servo

• Adding More Servos

Chaining Drivers

• Addressing the Boards

Using the Adafruit Library

• Install Adafruit PCA9685 library

• Test with the Example Code:

• Connect a Servo

• Calibrating your Servos

• Converting from Degrees to Pulse Length

Library Reference

• setPWMFreq(freq)

• Description

• setPWM(channel, on, off)

• Using as GPIO

Arduino Library Docs

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of PCA9685 and ServoKit Libraries

• Python Installation of PCA9685 and ServoKit Libraries

• CircuitPython & Python Usage

• Dimming LEDs

• Full Example Code

• Controlling Servos

• Standard Servos

• Continuous Rotation Servos

• Full Example Code

©Adafruit Industries Page 2 of 29

27

27

27

29

Python Docs

Python Docs: ServoKit

Downloads

• Files

• Schematic & Fabrication Print

FAQ

©Adafruit Industries Page 3 of 29

©Adafruit Industries Page 4 of 29

Overview

Driving servo motors with the Arduino Servo library is pretty easy, but each one

consumes a precious pin - not to mention some Arduino processing power. The

Adafruit 16-Channel 12-bit PWM/Servo Driver will drive up to 16 servos over I2C with

only 2 pins. The on-board PWM controller will drive all 16 channels simultaneously

with no additional Arduino processing overhead. What's more, you can chain up to 6

2 of them to control up to 992 servos - all with the same 2 pins!

The Adafruit PWM/Servo Driver is the perfect solution for any project that requires a

lot of servos.

©Adafruit Industries Page 5 of 29

Pinouts

There are two sets of control input pins on either side. Both sides of the pins are

identical! Use whichever side you like, you can also easily chain by connecting up two

side-by-side

Power Pins

GND - This is the power and signal ground pin, must be connected

VCC - This is the logic power pin, connect this to the logic level you want to use

for the PCA9685 output, should be 3 - 5V max! It's also used for the 10K pullups

on SCL/SDA so unless you have your own pullups, have it match the

microcontroller's logic level too!

V+ - This is an optional power pin that will supply distributed power to the

servos. If you are not using for servos you can leave disconnected. It is not used

at all by the chip. You can also inject power from the 2-pin terminal block at the

top of the board. You should provide 5-6VDC if you are using servos. If you have

to, you can go higher to 12VDC, but if you mess up and connect VCC to V+ you

could damage your board!

Control Pins

SCL - I2C clock pin, connect to your microcontrollers I2C clock line. Can use 3V

or 5V logic, and has a weak pullup to VCC

•

•

•

•

©Adafruit Industries Page 6 of 29

SDA - I2C data pin, connect to your microcontrollers I2C data line. Can use 3V or

5V logic, and has a weak pullup to VCC

OE - Output enable. Can be used to quickly disable all outputs. When this pin is l

ow all pins are enabled. When the pin is high the outputs are disabled. Pulled

low by default so it's an optional pin!

Output Ports

There are 16 output ports. Each port has 3 pins: V+, GND and the PWM output. Each

PWM runs completely independently but they must all have the same PWM frequency.

That is, for LEDs you probably want 1.0 KHz but servos need 60 Hz - so you cannot

use half for LEDs @ 1.0 KHz and half @ 60 Hz.

They're set up for servos but you can use them for LEDs! Max current per pin is

25mA.

There are 220 ohm resistors in series with all PWM Pins and the output logic is the

same as VCC so keep that in mind if using LEDs.

Assembly

Install the Servo Headers
Install 4 3x4 pin male headers into the

marked positions along the edge of the

board.

•

•

©Adafruit Industries Page 7 of 29

https://learn.adafruit.com//assets/2286
https://learn.adafruit.com//assets/2286

Solder all pins
There are a lot of them!

Add Headers for Control
A strip of male header is included. Where

you want to install headers and on what

side depends a little on use:

For breadboard (http://adafru.it/239) use,

install headers on the bottom of the board.

For use with jumper wires (http://adafru.it/

758), install the headers on top of the

board.

For use with our 6-pin cable (http://

adafru.it/206), install the headers on top of

the board.

If you are chaining multiple driver boards,

you will want headers on both ends.

Install Power Terminals
If you are chaining multiple driver boards,

you only need a power terminal on the first

one.

©Adafruit Industries Page 8 of 29

https://learn.adafruit.com//assets/2287
https://learn.adafruit.com//assets/2287
https://learn.adafruit.com//assets/2288
https://learn.adafruit.com//assets/2288
http://www.adafruit.com/products/239
http://www.adafruit.com/products/239
http://www.adafruit.com/products/758
http://www.adafruit.com/products/758
http://www.adafruit.com/products/206
http://www.adafruit.com/products/206
https://learn.adafruit.com//assets/2290
https://learn.adafruit.com//assets/2290

Hooking it Up

Connecting to the Arduino

The PWM/Servo Driver uses I2C so it take only 4 wires to connect to your Arduino:

"Classic" Arduino wiring:

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)

GND -> GND

Analog 4 -> SDA

Analog 5 -> SCL

Older Mega wiring:

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)

GND -> GND

Digital 20 -> SDA

Digital 21 -> SCL

R3 and later Arduino wiring (Uno, Mega & Leonardo):

(These boards have dedicated SDA & SCL pins on the header nearest the USB

connector)

+5v -> VCC (this is power for the BREAKOUT only, NOT the servo power!)

GND -> GND

SDA -> SDA

SCL -> SCL

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 29

Power for the Servos

Most servos are designed to run on about 5 or 6v. Keep in mind that a lot of servos

moving at the same time (particularly large powerful ones) will need a lot of current.

 Even micro servos will draw several hundred mA when moving. Some High-torque

servos will draw more than 1A each under load.

Good power choices are:

5v 2A switching power supply (http://adafru.it/276)

5v 10A switching power supply (http://adafru.it/658)

4xAA Battery Holder (http://adafru.it/830) - 6v with Alkaline cells. 4.8v with

NiMH rechargeable cells.

4.8 or 6v Rechargeable RC battery packs from a hobby store.

The VCC pin is just power for the chip itself. If you want to connect servos or

LEDs that use the V+ pins, you MUST connect the V+ pin as well. The V+ pin can

be as high as 6V even if VCC is 3.3V (the chip is 5V safe). We suggest

connecting power through the blue terminal block since it is polarity protected.

•

•

•

•

It is not a good idea to use the Arduino 5v pin to power your servos. Electrical

noise and 'brownouts' from excess current draw can cause your Arduino to act

erratically, reset and/or overheat.

©Adafruit Industries Page 10 of 29

https://www.adafruit.com/products/276
https://www.adafruit.com/products/658
https://www.adafruit.com/products/830

Adding a Capacitor to the thru-hole capacitor slot

We have a spot on the PCB for soldering in an electrolytic capacitor. Based on your

usage, you may or may not need a capacitor. If you are driving a lot of servos from a

power supply that dips a lot when the servos move, n * 100uF where n is the number

of servos is a good place to start - eg 470uF or more for 5 servos. Since its so

dependent on servo current draw, the torque on each motor, and what power supply,

there is no "one magic capacitor value" we can suggest which is why we don't include

a capacitor in the kit.

Connecting a Servo

Most servos come with a standard 3-pin female connector that will plug directly into

the headers on the Servo Driver. Be sure to align the plug with the ground wire

(usually black or brown) with the bottom row and the signal wire (usually yellow or

white) on the top.

Adding More Servos

Up to 16 servos can be attached to one board. If you need to control more than 16

servos, additional boards can be chained as described on the next page.

©Adafruit Industries Page 11 of 29

Chaining Drivers

Multiple Drivers (up to 62) can be chained to control still more servos. With headers

at both ends of the board, the wiring is as simple as connecting a 6-pin parallel cable

(http://adafru.it/206) from one board to the next.

Addressing the Boards

Each board in the chain must be assigned a unique address. This is done with the

address jumpers on the upper right edge of the board. The I2C base address for

each board is 0x40. The binary address that you program with the address jumpers is

©Adafruit Industries Page 12 of 29

https://www.adafruit.com/products/206

added to the base I2C address.

To program the address offset, use a drop of solder to bridge the corresponding

address jumper for each binary '1' in the address.

Board 0: Address = 0x40 Offset = binary 00000 (no jumpers required)

Board 1: Address = 0x41 Offset = binary 00001 (bridge A0 as in the photo above)

Board 2: Address = 0x42 Offset = binary 00010 (bridge A1)

Board 3: Address = 0x43 Offset = binary 00011 (bridge A0 & A1)

Board 4: Address = 0x44 Offset = binary 00100 (bridge A2)

etc.

In your sketch, you'll need to declare a separate pobject for each board. Call begin on

each object, and control each servo through the object it's attached to. For example:

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>

Adafruit_PWMServoDriver pwm1 = Adafruit_PWMServoDriver(0x40);
Adafruit_PWMServoDriver pwm2 = Adafruit_PWMServoDriver(0x41);

void setup() {
 Serial.begin(9600);
 Serial.println("16 channel PWM test!");

 pwm1.begin();
 pwm1.setPWMFreq(1600); // This is the maximum PWM frequency

 pwm2.begin();
 pwm2.setPWMFreq(1600); // This is the maximum PWM frequency
}

©Adafruit Industries Page 13 of 29

Using the Adafruit Library

Since the PWM Servo Driver is controlled over I2C, its super easy to use with any

microcontroller or microcomputer. In this demo we'll show using it with the Arduino

IDE but the C++ code can be ported easily

Install Adafruit PCA9685 library

To begin reading sensor data, you will need to install the Adafruit_PWMServo library

(code on our github repository) (). It is available from the Arduino library manager so

we recommend using that.

From the IDE open up the library manager...

And type in adafruit pwm to locate the library. Click Install

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Test with the Example Code:

First make sure all copies of the Arduino IDE are closed.

©Adafruit Industries Page 14 of 29

https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Next open the Arduino IDE and select File->Examples->Adafruit_PWMServoDriver-

>Servo. This will open the example file in an IDE window.

If using a Breakout:

Connect the driver board and servo as shown on the previous page. Don't forget to

provide power to both Vin (3-5V logic level) and V+ (5V servo power). Check the

green LED is lit!

If using a Shield:

Plug the shield into your Arduino. Don't forget you will also have to provide 5V to the

V+ terminal block. Both red and green LEDs must be lit.

If using a FeatherWing:

Plug the FeatherWing into your Feather. Don't forget you will also have to provide 5V

to the V+ terminal block. Check the green LED is lit!

Connect a Servo

A single servo should be plugged into the PWM #0 port, the first port. You should see

the servo sweep back and forth over approximately 180 degrees.

©Adafruit Industries Page 15 of 29

Calibrating your Servos

Servo pulse timing varies between different brands and models. Since it is an analog

control circuit, there is often some variation between samples of the same brand and

model. For precise position control, you will want to calibrate the minumum and

maximum pulse-widths in your code to match known positions of the servo.

Find the Minimum:

Using the example code, edit SERVOMIN until the low-point of the sweep reaches the

minimum range of travel. It is best to approach this gradually and stop before the

physical limit of travel is reached.

Find the Maximum:

Again using the example code, edit SERVOMAX until the high-point of the sweep

reaches the maximum range of travel. Again, is best to approach this gradually and

stop before the physical limit of travel is reached.

Converting from Degrees to Pulse Length

The Arduino "map()" function () is an easy way to convert between degrees of rotation

and your calibrated SERVOMIN and SERVOMAX pulse lengths. Assuming a typical

servo with 180 degrees of rotation; once you have calibrated SERVOMIN to the 0-

degree position and SERVOMAX to the 180 degree position, you can convert any

angle between 0 and 180 degrees to the corresponding pulse length with the

following line of code:

pulselength = map(degrees, 0, 180, SERVOMIN, SERVOMAX);

Library Reference

setPWMFreq(freq)

Description

This function can be used to adjust the PWM frequency, which determines how many

full 'pulses' per second are generated by the IC. Stated differently, the frequency

Use caution when adjusting SERVOMIN and SERVOMAX. Hitting the physical

limits of travel can strip the gears and permanently damage your servo.

©Adafruit Industries Page 16 of 29

http://arduino.cc/en/Reference/Map

determines how 'long' each pulse is in duration from start to finish, taking into account

both the high and low segments of the pulse.

Frequency is important in PWM, since setting the frequency too high with a very small

duty cycle can cause problems, since the 'rise time' of the signal (the time it takes to

go from 0V to VCC) may be longer than the time the signal is active, and the PWM

output will appear smoothed out and may not even reach VCC, potentially causing a

number of problems.

Arguments

freq: A number representing the frequency in Hz, between 40 and 1600

Example

The following code will set the PWM frequency to 1000Hz:

pwm.setPWMFreq(1000)

setPWM(channel, on, off)

Description

This function sets the start (on) and end (off) of the high segment of the PWM pulse on

a specific channel. You specify the 'tick' value between 0..4095 when the signal will

turn on, and when it will turn off. Channel indicates which of the 16 PWM outputs

should be updated with the new values.

Arguments

channel: The channel that should be updated with the new values (0..15)

on: The tick (between 0..4095) when the signal should transition from low to

high

off:the tick (between 0..4095) when the signal should transition from high to low

•

•

•

•

©Adafruit Industries Page 17 of 29

Example

The following example will cause channel 15 to start low, go high around 25% into the

pulse (tick 1024 out of 4096), transition back to low 75% into the pulse (tick 3072), and

remain low for the last 25% of the pulse:

pwm.setPWM(15, 1024, 3072)

Using as GPIO

There's also some special settings for turning the pins fully on or fully off

You can set the pin to be fully on with

pwm.setPWM(pin, 4096, 0);

You can set the pin to be fully off with

pwm.setPWM(pin, 0, 4096);

Arduino Library Docs

Arduino Library Docs ()

Python & CircuitPython

It's easy to use the PCA9685 sensor with Python or CircuitPython and the Adafruit

CircuitPython PCA9685 () module. This module allows you to easily write Python

code that control servos and PWM with this breakout.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

First wire up a PCA9685 to your board exactly as shown on the previous pages for

Arduino. Here's an example of wiring a Feather M0 to the sensor with I2C:

©Adafruit Industries Page 18 of 29

http://adafruit.github.io/Adafruit-PWM-Servo-Driver-Library/html/class_adafruit___p_w_m_servo_driver.html
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Board 3V to sensor VCC

Board GND to sensor GND

Board SCL to sensor SCL

Board SDA to sensor SDA

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired with I2C:

Pi 3V3 to sensor VCC

Pi GND to sensor GND

Pi SCL to sensor SCL

Pi SDA to sensor SDA

Don't try to power your servos from the RasPi or Linux board's 5V power, you can

easily cause a power supply brown-out and mess up your Pi! Use a separate 5v

2A or 4A adapter

©Adafruit Industries Page 19 of 29

https://learn.adafruit.com//assets/59270
https://learn.adafruit.com//assets/59270
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/59271
https://learn.adafruit.com//assets/59271

5V 2A (2000mA) switching power supply -

UL Listed

This is an FCC/CE certified and UL listed

power supply. Need a lot of 5V power?

This switching supply gives a clean

regulated 5V output at up to 2000mA. 110

or 240 input, so it works...

https://www.adafruit.com/product/276

5V 4A (4000mA) switching power supply -

UL Listed

Need a lot of 5V power? This switching

supply gives a clean regulated 5V output

at up to 4 Amps (4000mA). 110 or 240

input, so it works in any country. The

plugs are "US...

https://www.adafruit.com/product/1466

CircuitPython Installation of PCA9685 and
ServoKit Libraries

You'll need to install the Adafruit CircuitPython PCA9685 () library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually

install the necessary libraries from the bundle:

adafruit_pca9685.mpy

adafruit_bus_device

•

•

©Adafruit Industries Page 20 of 29

https://www.adafruit.com/product/276
https://www.adafruit.com/product/276
https://www.adafruit.com/product/276
https://www.adafruit.com/product/1466
https://www.adafruit.com/product/1466
https://www.adafruit.com/product/1466
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

adafruit_register

adafruit_motor

adafruit_servokit

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_pca9685.mpy, adafruit_register, adafruit_servokit, adafruit_motor and

adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Python Installation of PCA9685 and
ServoKit Libraries

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following commands:

sudo pip3 install adafruit-circuitpython-pca9685

sudo pip3 install adafruit-circuitpython-servokit

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

The following section will show how to control the PCA9685 from the board's Python

prompt / REPL. You'll learn how to interactively control servos and dim LEDs by typing

in the code below.

Dimming LEDs

Run the following code to import the necessary modules and initialize the I2C

connection with the sensor:

•

•

•

•

•

©Adafruit Industries Page 21 of 29

https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

import board
import busio
import adafruit_pca9685
i2c = busio.I2C(board.SCL, board.SDA)
pca = adafruit_pca9685.PCA9685(i2c)

Each channel of the PCA9685 can be used to control the brightness of an LED. The

PCA9685 generates a high-speed PWM signal which turns the LED on and off very

quickly. If the LED is turned on longer than turned off it will appear brighter to your

eyes.

First wire a LED to the board as follows. Note you don't need to use a resistor to limit

current through the LED as the PCA9685 will limit the current to around 10mA:

LED cathode / shorter leg to PCA9685

channel GND / ground.

LED anode / longer leg to PCA9685

channel PWM.

The PCA9685 class provides control of the PWM frequency and each channel's duty

cycle. Check out the PCA9685 class documentation () for more details.

For dimming LEDs you typically don't need to use a fast PWM signal frequency and

can set the board's PWM frequency to 60hz by setting the frequency attribute:

pca.frequency = 60

The PCA9685 supports 16 separate channels that share a frequency but can have

independent duty cycles. That way you could dim 16 LEDs separately!

The PCA9685 object has a channels attribute which has an object for each channel

that can control the duty cycle. To get the individual channel use the [] to index into ch

annels.

led_channel = pca.channels[0]

©Adafruit Industries Page 22 of 29

https://learn.adafruit.com//assets/59272
https://learn.adafruit.com//assets/59272
https://circuitpython.readthedocs.io/projects/pca9685/en/latest/api.html

Now control the LED brightness by controlling the duty cycle of the channel

connected to the LED. The duty cycle value should be a 16-bit value, i.e. 0 to 0xffff,

which represents what percent of the time the signal is on vs. off. A value of 0xffff is

100% brightness, 0 is 0% brightness, and in-between values go from 0% to 100%

brightness.

For example set the LED completely on with a duty cycle of 0xffff:

led_channel.duty_cycle = 0xffff

After running the command above you should see the LED light up at full brightness!

Now turn the LED off with a duty cycle of 0:

led_channel.duty_cycle = 0

Try an in-between value like 1000:

led_channel.duty_cycle = 1000

You should see the LED dimly lit. Try experimenting with other duty cycle values to

see how the LED changes brightness!

For example make the LED glow on and off by setting duty_cycle in a loop:

Increase brightness:
for i in range(0xffff):
 led_channel.duty_cycle = i

Decrease brightness:
for i in range(0xffff, 0, -1):
 led_channel.duty_cycle = i

These for loops take a while because 16-bits is a lot of numbers. CTRL-C to stop the

loop from running and return to the REPL.

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

This simple test outputs a 50% duty cycle PWM single on the 0th channel. Connect
an LED and
resistor in series to the pin to visualize duty cycle changes and its impact on

©Adafruit Industries Page 23 of 29

brightness.

from board import SCL, SDA
import busio

Import the PCA9685 module.
from adafruit_pca9685 import PCA9685

Create the I2C bus interface.
i2c_bus = busio.I2C(SCL, SDA)

Create a simple PCA9685 class instance.
pca = PCA9685(i2c_bus)

Set the PWM frequency to 60hz.
pca.frequency = 60

Set the PWM duty cycle for channel zero to 50%. duty_cycle is 16 bits to match
other PWM objects
but the PCA9685 will only actually give 12 bits of resolution.
pca.channels[0].duty_cycle = 0x7FFF

Controlling Servos

We've written a handy CircuitPython library for the various PWM/Servo kits called Ada

fruit CircuitPython ServoKit () that handles all the complicated setup for you. All you

need to do is import the appropriate class from the library, and then all the features of

that class are available for use. We're going to show you how to import the

ServoKit class and use it to control servo motors with the Adafruit 16-channel

breakout.

If you aren't familiar with servos be sure to first read this intro to servos page () and

this in-depth servo guide page ().

First connect the servo to channel 0 on the PCA9685. Here is an example of a servo

connected to channel 0:

Servo orange wire to breakout PWM on

channel 0

Servo red wire to breakout V+ on channel

0

Servo brown wire to breakout Gnd on

channel 0

Check your servo data sheet to verify how

to connect it!

©Adafruit Industries Page 24 of 29

https://github.com/adafruit/Adafruit_CircuitPython_ServoKit
https://github.com/adafruit/Adafruit_CircuitPython_ServoKit
https://learn.adafruit.com/adafruit-arduino-lesson-14-servo-motors/servo-motors
https://learn.adafruit.com/adafruit-motor-selection-guide/rc-servos
https://learn.adafruit.com//assets/69571
https://learn.adafruit.com//assets/69571

Be sure you've turned on or plugged in the external 5V power supply to the PCA9685

board too!

First you'll need to import and initialize the ServoKit class. You must specify the

number of channels available on your board. The breakout has 16 channels, so when

you create the class object, you will specify 16 .

from adafruit_servokit import ServoKit
kit = ServoKit(channels=16)

Now you're ready to control both standard and continuous rotation servos.

Standard Servos

To control a standard servo, you need to specify the channel the servo is connected

to. You can then control movement by setting angle to the number of degrees.

For example to move the servo connected to channel 0 to 180 degrees:

pca.frequency = 50

Now that the PCA9685 is set up for servos lets make a Servo object so that we can

adjust the servo based on angle instead of duty_cycle.

By default the Servo class will use actuation range, minimum pulse-width, and

maximum pulse-width values that should work for most servos. However check the

Servo class documentation () for more details on extra parameters to customize the

signal generated for your servos.

import adafruit_motor.servo
servo = adafruit_motor.servo.Servo(servo_channel)

With Servo, you specify a position as an angle. The angle will always be between 0

and the actuation range given when Servo was created. The default is 180 degrees

but your servo might have a smaller sweep--change the total angle by specifying the

actuation_angle parameter in the Servo class initializer above.

Now set the angle to 180, one extreme of the range:

 kit.servo[0].angle = 180

©Adafruit Industries Page 25 of 29

https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#adafruit_motor.servo.Servo
https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#adafruit_motor.servo.Servo

To return the servo to 0 degrees:

kit.servo[0].angle = 0

With a standard servo, you specify the position as an angle. The angle will always be

between 0 and the actuation range. The default is 180 degrees but your servo may

have a smaller sweep. You can change the total angle by setting actuation_range .

For example, to set the actuation range to 160 degrees:

servokit.servo[0].actuation_range = 160

Often the range an individual servo recognises varies a bit from other servos. If the

servo didn't sweep the full expected range, then try adjusting the minimum and

maximum pulse widths using set_pulse_width_range(min_pulse, max_pulse) .

To set the pulse width range to a minimum of 1000 and a maximum of 2000:

kit.servo[0].set_pulse_width_range(1000, 2000)

That's all there is to controlling standard servos with the PCA9685 breakout, Python

and ServoKit !

Continuous Rotation Servos

To control a continuous rotation servo, you must specify the channel the servo is on.

Then you can control movement using throttle .

For example, to start the continuous rotation servo connected to channel 1 to full

throttle forwards:

kit.continuous_servo[1].throttle = 1

To start the continuous rotation servo connected to channel 1 to full reverse throttle:

kit.continuous_servo[1].throttle = -1

To set half throttle, use a decimal:

©Adafruit Industries Page 26 of 29

kit.continuous_servo[1].throttle = 0.5

And, to stop continuous rotation servo movement set throttle to 0 :

kit.continuous_servo[1].throttle = 0

That's all there is to controlling continuous rotation servos with the the PCA9685 16-

channel breakout, Python and ServoKit !

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

"""Simple test for a standard servo on channel 0 and a continuous rotation servo on
channel 1."""
import time
from adafruit_servokit import ServoKit

Set channels to the number of servo channels on your kit.
8 for FeatherWing, 16 for Shield/HAT/Bonnet.
kit = ServoKit(channels=8)

kit.servo[0].angle = 180
kit.continuous_servo[1].throttle = 1
time.sleep(1)
kit.continuous_servo[1].throttle = -1
time.sleep(1)
kit.servo[0].angle = 0
kit.continuous_servo[1].throttle = 0

Python Docs

Python Docs ()

Python Docs: ServoKit

Python Docs: ServoKit ()

Downloads

Files

PCA9685 datasheet ()

Arduino driver library ()

•

•

©Adafruit Industries Page 27 of 29

https://circuitpython.readthedocs.io/projects/pca9685/en/latest/
https://circuitpython.readthedocs.io/projects/servokit/en/latest/
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library

EagleCAD PCB files on GitHub ()

3D models on GitHub ()

Fritzing object in the Adafruit Fritzing library ()

Schematic & Fabrication Print

Holes are 2.5mm diameter

•

•

•

©Adafruit Industries Page 28 of 29

https://github.com/adafruit/Adafruit-16-Channel-PWM-Servo-Driver-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/815%20Servo%20Driver%2016%20Channel
https://github.com/adafruit/Fritzing-Library

FAQ

Can this board be used for LEDs or just servos?

It can be used for LEDs as well as any other PWM-able device!

I am having strange problems when combining this shield
with the Adafruit LED Matrix/7Seg Backpacks

The PCA9865 chip has an "All Call" address of 0x70. This is in addition to the

configured address. Set the backpacks to address 0x71 or anything other than the

default 0x70 to make the issue go away.

With LEDs, how come I cant get the LEDs to turn
completely off?

If you want to turn the LEDs totally off use (in Arduino) setPWM(pin, 0, 4096); not

setPWM(pin, 0, 4095);

©Adafruit Industries Page 29 of 29

	Adafruit PCA9685 16-Channel Servo Driver
	Table of Contents
	Overview
	Pinouts
	Assembly
	Hooking it Up
	Chaining Drivers
	Using the Adafruit Library
	Library Reference
	Arduino Library Docs
	Python & CircuitPython
	Python Docs
	Python Docs: ServoKit
	Downloads
	FAQ

	Overview
	Pinouts
	Power Pins
	Control Pins
	Output Ports
	Assembly
	Install the Servo Headers
	Solder all pins
	Add Headers for Control
	Install Power Terminals

	Hooking it Up
	Connecting to the Arduino
	Power for the Servos
	Adding a Capacitor to the thru-hole capacitor slot
	Connecting a Servo
	Adding More Servos

	Chaining Drivers
	Addressing the Boards

	Using the Adafruit Library
	Install Adafruit PCA9685 library
	Test with the Example Code:
	If using a Breakout:
	If using a Shield:
	If using a FeatherWing:

	Connect a Servo
	Calibrating your Servos
	Converting from Degrees to Pulse Length

	Library Reference
	setPWMFreq(freq)
	Description
	Arguments
	Example

	setPWM(channel, on, off)
	Description
	Arguments
	Example

	Using as GPIO
	Arduino Library Docs
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of PCA9685 and ServoKit Libraries
	Python Installation of PCA9685 and ServoKit Libraries
	CircuitPython & Python Usage
	Dimming LEDs
	Full Example Code
	Controlling Servos
	Standard Servos
	Continuous Rotation Servos
	Full Example Code
	Python Docs
	Python Docs: ServoKit
	Downloads
	Files
	Schematic & Fabrication Print
	FAQ
	Can this board be used for LEDs or just servos?
	I am having strange problems when combining this shield with the Adafruit LED Matrix/7Seg Backpacks
	With LEDs, how come I cant get the LEDs to turn completely off?

