

# 2:1 HDMI Switch Demo

**User Guide** 

FPGA-UG-02036-A

October 2017



#### Contents

| Acronyms in This Document                               | 3  |
|---------------------------------------------------------|----|
| 1. Introduction                                         | 4  |
| 2. Functional Description                               | 5  |
| 2.1. Overview                                           | 5  |
| 2.2. Sil1127A                                           | 5  |
| 2.3. Sil1136                                            | 5  |
| 2.4. ECP5 Mico32 Design                                 | 5  |
| 3. Demo Kit Requirements                                | 7  |
| 4. Jumper Settings                                      | 8  |
| 5. Demo Procedure                                       | 9  |
| 6. Demo Package Directory Structure                     | 10 |
| 7. ECP5 Programing                                      | 11 |
| 7.1. Erase the ECP5 Device SRAM Prior to Re-programming | 11 |
| 7.2. Program the ECP5 VIP Processor Board               | 12 |
| 8. Pinout Information                                   | 15 |
| 9. Ordering Information                                 |    |
| 10. FAQ                                                 | 19 |
| References                                              | 20 |
| Technical Support                                       | 21 |
| Revision History                                        | 22 |

## Figures

| -igure 1.1. 2:1 MIPI CSI-2 to HDMI Bridge System Diagram | 4  |
|----------------------------------------------------------|----|
| Figure 1.2. 2:1 HDMI Switch Demo Board Stackup           | 4  |
| Figure 2.1. 2:1 HDMI Switch Functional Block Diagram     | 5  |
| -igure 2.2. Mico32 System                                | 6  |
| Figure 2.3. Mico32 Software Flow Chart                   | 6  |
| -<br>Figure 5.1. 2:1 HDMI Switch Demo Setup              | 9  |
| Figure 7.1. Device Selection                             | 11 |
| Figure 7.2. Device Operation Options                     | 12 |
| Figure 7.3. Device Properties                            | 13 |
| -<br>Figure 7.4. Output Console                          | 14 |

#### Tables

| Table 4.1. ECP5 Processor Board Jumper Settings | 8  |
|-------------------------------------------------|----|
| Table 8.1. ECP5 Pinouts                         | 15 |
| Table 9.1. Ordering Information                 | 18 |
| 5                                               |    |



## Acronyms in This Document

A list of acronyms used in this document.

| Acronym          | Definition                           |
|------------------|--------------------------------------|
| EBR              | Embedded Block RAM                   |
| GPIO             | General Purpose Input/Output         |
| HDMI             | High Definition Multimedia Interface |
| I <sup>2</sup> C | Inter-Integrated Circuit             |
| RGB              | Red Green Blue                       |
| SCDT             | SYNC Detect                          |
| SRAM             | Static Random Access Memory          |
| VIP              | Video Interface Platform             |
| USB              | Universal Serial Bus                 |



## 1. Introduction

This document describes the design and setup procedure for the Lattice Semiconductor 2:1 HDMI Switch demo design which demonstrates the features of SiI1127A, ECP5 and SiI1136 devices. The 2:1 HDMI Switch demo design allows you to switch between 2 HDMI input ports and output the video onto a single HDMI output port.



Figure 1.1. 2:1 MIPI CSI-2 to HDMI Bridge System Diagram

The demo consists of three boards:

- HDMI Input Bridge Board
- ECP5 Processor Board
- HDMI Output Bridge Board

Figure 1.2 shows the three boards.



Figure 1.2. 2:1 HDMI Switch Demo Board Stackup

# 2. Functional Description

#### 2.1. Overview

The 2:1 HDMI Switch demo design allows you to switch between 2 HDMI input ports onto a single HDMI output port.

The HDMI Input Bridge Board receives unencrypted HDMI input video through either Port 1 or 2. The Sil1127A device converts the incoming HDMI video to parallel RGB video. The parallel RGB video is passed through a FIFO on the ECP5 part and sent to the Sil1136 device where it is converted back to HDMI video. The Mico32 system monitors SW2 on the HDMI Input Bridge Board to determine which input port should be transmitted. The Mico32 system on the ECP5 device configures and monitors the status of the Sil1127A and Sil1136 devices through the I<sup>2</sup>C interface.

Figure 2.1 shows the functional block diagram of the 2:1 HDMI Switch demo design.



Figure 2.1. 2:1 HDMI Switch Functional Block Diagram

#### 2.2. Sil1127A

The Sil1127A device receives up to 1080p @ 60 Hz HDMI-compliant digital audio and video from either HDMI Type A Connector Port 1 or Port 2 and transmits RGB or YCbCr parallel video and I<sup>2</sup>S or SPDIF audio to connectors J1 and J2. The Sil1127A device does not support HDCP decryption, and therefore can only receive unencrypted video.

#### 2.3. Sil1136

The Sil1136 device receives RGB or YCbCr parallel video data and I<sup>2</sup>S audio from connectors J1 and J2. Based on the configuration, the Sil1136 device converts the incoming data to HDMI or DVI and outputs to the HDMI Type-A connector.

#### 2.4. ECP5 Mico32 Design

The Mico32 soft processor configures and monitors the Sil1127A and Sil1136 through the I<sup>2</sup>C interface. The Mico32 also monitors SW2 on the HDMI Input Bridge to select which port should be transmitted. The LEDs provide a visual indicator of SW2 position. Figure 2.2 on the next page shows the Mico32 System Block diagram. The Mico32 soft processor executes code stored in the EBR.

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.





Figure 2.2. Mico32 System





Figure 2.3. Mico32 Software Flow Chart



#### 3. Demo Kit Requirements

- HDMI VIP Input Bridge Board, HDMI-VIP-IB-EVN
- ECP5 VIP Processor Board, LFE5-VIP-P-EVN
- HDMI VIP Output Bridge Board, HDMI-VIP-OB-EVN
- HDMI monitor
- 2 non-encrypted HDMI sources (i.e. laptop with HDMI output, HDMI Media Player for USB drives)
- 3 HDMI cables
- Power adapter (12 V)
- PC or laptop\*
- Bit file\*
- USB 2.0 Type A to Mini-B cable\*
- Lattice Diamond Programmer version 3.7 or higher\*

\*Note: Required for programming only.

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



# 4. Jumper Settings

| Table 4.1. | ECP5 | Processor | Board | Jumper | Settings |
|------------|------|-----------|-------|--------|----------|
|------------|------|-----------|-------|--------|----------|

| Jumper Name | Description                            | Comment                 |
|-------------|----------------------------------------|-------------------------|
| J3          | Connect 1 and 2, also 5 and 6          | Configuration = MSPI    |
| J5          | Connect 1 and 2                        | VCCIO8 = 3.3 V          |
| J6          | Connect 1 and 2                        | VCCIO1 = 3.3 V          |
| J7          | Connect 2 and 3                        | VCCIO0 = 3.3 V          |
| 19          | Connect 1 and 2                        | VCCIO3 = 3.3 V          |
| J50         | Connect 1 and 2, also 3 and 5          | JTAG ECP5 Only          |
| J51         | Connect 2 and 3                        | VCCIO4 = 3.3 V          |
| J52         | Connect 2 and 3                        | TCK pulled High         |
| J53         | Connect 1 and 2                        | FTDI Resetn pulled High |
| J55         | Connect 2 and 3                        | VCCIO2 = 3.3 V          |
| _           | All other headers should be kept open. | —                       |



### 5. Demo Procedure

Follow these steps to set up the display demo boards. It is recommended to use the spacers to ensure proper board connection.

- 1. Connect J1 and J2 connector of HDMI Input Bridge Board to J11 and J10 connector of ECP5 Processor Board.
- 2. Connect J13 and J12 connector of ECP5 Processor Board to J2 and J1 of HDMI Output Bridge Board.
- 3. Power up the board and program the ECP5 device.
- 4. Connect the 12 V wall power adapter cable to J4 of ECP5 Processor Board.
- 5. Connect Micro USB cable from PC to connector J2 of ECP5 Processor Board.
- 6. Open Lattice Diamond Programmer.
- 7. Program the bitstream in to the ECP5 device.

**Note**: Optionally, program the SPI Flash with bitstream to allow the demo to be programmed on power up. Connect HDMI sources and monitor.

- 8. Connect one end of HDMI cable to C1 connector of HDMI Output Bridge Board and the other end to monitor.
- 9. Connect one end of HDMI cable to CN2 and/or CN3 connector of HDMI Input Bridge Board and the other end to a nonencrypted HDMI Source.
- 10. Position SW2 on HDMI Input Bridge Board to HIGH to select Port 1 (CN2) or LOW to select Port 2 (CN3). The monitor displays the image of the selected port.



Figure 5.1. 2:1 HDMI Switch Demo Setup

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



### 6. Demo Package Directory Structure

The key files and directories are list below:



# 7. ECP5 Programing

#### 7.1. Erase the ECP5 Device SRAM Prior to Re-programming

If the ECP5 device is already programmed, either directly or loaded from SPI Flash, follow this procedure to first erase the ECP5 Static Random Access Memory (SRAM), then program the ECP5 SPI Flash using the procedure in the next section, the Program the ECP5 VIP Processor Board section.

**Note**: If you are erasing the ECP5 SRAM, keep the board powered when re-programming the SPI Flash in the next section, the Program the ECP5 VIP Processor Board section.

- 1. Connect the 12 V power supply to the barrel plug at J4.
- 2. Ensure SW2 on ECP5 board is ON to power the board. LEDs should be ON.
- 3. Connect mini-USB cable from PC to mini-USB connector on ECP5 VIP Processor Board.
- 4. Launch Diamond Programmer. In the Getting Started dialog box, select "Create a new blank project" and click OK.
- 5. In the Diamond Programmer main interface, select the device under Device Family and Device as shown in Figure 7.1.



Figure 7.1. Device Selection

6. In the Device Properties dialog box, select "Erase Only" in Operation.



| Enable   | Status             | Device Family     | Device           | Ope          | eration    | File Nar         | ne       |
|----------|--------------------|-------------------|------------------|--------------|------------|------------------|----------|
| <b>v</b> | PASS               | ECP5UM            | LFE5UM-85F       | Erase Only   |            | uments/VIP/LF-EV | DK1-EVN- |
| S EC     | CP5UM ·            | - LFE5UM-85F - D  | evice Properties |              |            | § 23             | Л        |
| G        | eneral<br>Device O | Device Informatio | on               |              |            |                  |          |
|          | Access m           | node:             |                  | JTAG 1532 Mo | de         | •                | 1        |
|          | Operatio           | n:                |                  |              | Erase Only | •                |          |
|          |                    |                   |                  |              |            |                  |          |
|          |                    |                   |                  |              |            |                  |          |
|          |                    |                   |                  |              |            |                  |          |
|          |                    |                   |                  |              |            |                  |          |
|          |                    |                   |                  |              | ОК         | Cancel           |          |

Figure 7.2. Device Operation Options

in Diamond Programmer to start the Erase sequence. 7. Click the Program button

If you power off/on the board, the SPI Flash will program the ECP5 device again. This requires you to repeat steps 1 through 7.

#### 7.2. Program the ECP5 VIP Processor Board

Before proceeding with the programming described in this section, make sure that the content in the flash memory is properly erased. See the Erase the ECP5 Device SRAM Prior to Re-programming section for more details.

- Double-click the selection in the Operation box and change "Access mode" to "SPI Flash Background 1. Programming" to bring up the following dialog.
- Make selections as shown in Figure 7.3. Note that in the "Programming file" field, select the file "hdmi2hdmi.bit". 2. Click OK.



| Device Operation          |                      |                          |                 |
|---------------------------|----------------------|--------------------------|-----------------|
| Access mode:              |                      | SPI Flash Background Pr  | ogramming 🔹 🔻   |
| Operation:                |                      | SPI Flash Erase, Program | n,Verify 🔻      |
| Programming Options       |                      |                          |                 |
| Programming file: rs/jley | //Documents/VIP/LF-E | VDK1-EVN-test/LF-EVDK1   | -EVN-ECP5-2.bit |
| Device Options            |                      |                          |                 |
| Reinitialize part on prog | gram error           |                          |                 |
| SPI Flash Options         |                      |                          |                 |
| Family:                   |                      | SPI Serial Flash         | •               |
| Vendor:                   |                      | Micron                   | •               |
| Device:                   |                      | SPI-N25Q128A             | •               |
| Package:                  |                      | 8-pin SO8                | •               |
| SPI Programming           |                      |                          |                 |
| Data file size (Bytes):   | 1948905              |                          | Load from File  |
| Start address (Hex):      |                      | 0x0000000                | •               |
| End address (Hex):        |                      | 0x001D0000               | •               |
| Erase SPI part on p       | rogramming error     |                          |                 |
|                           |                      |                          |                 |

Figure 7.3. Device Properties

Note: Instead of entering the Data file size, just click "Load from File".

- 3. Click the Program button in the main interface to start the programming sequence.
- 4. Successful programming is displayed in the programmer output console as shown in Figure 7.4.
- 5. Power cycle the board.

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



| Output                                 |   |
|----------------------------------------|---|
| Programming                            | * |
| Disabling                              |   |
| Verifying                              |   |
| INFO - Execution time: 01 min : 34 sec |   |
| INFO - Elapsed time: 01 min : 34 sec   |   |
| INFO - Operation: successful.          | E |
|                                        | - |
| Output Tcl Console                     |   |
| Output Td Console                      | - |

Figure 7.4. Output Console



# 8. Pinout Information

Table 8.1 lists the ECP5 pinouts used for the demo.

#### Table 8.1. ECP5 Pinouts

| Name        | Pin | BANK | IO Direction | ΙΟ_ΤΥΡΕ  | PULLMODE |
|-------------|-----|------|--------------|----------|----------|
| clk_i       | E17 | 1    | Input        | LVCMOS33 | -        |
| reset_n     | AH1 | 8    | Input        | LVCMOS33 | UP       |
| SW2         | C16 | 0    | Input        | LVCMOS33 | UP       |
| pixel_clk_i | P27 | 2    | Input        | LVCMOS33 | -        |
| vsync_i     | J30 | 2    | Input        | LVCMOS33 | -        |
| hsync_i     | D30 | 2    | Input        | LVCMOS33 | -        |
| de_i        | К32 | 2    | Input        | LVCMOS33 | -        |
| red_i[11]   | C13 | 0    | Input        | LVCMOS33 | -        |
| red_i[10]   | D13 | 0    | Input        | LVCMOS33 | -        |
| red_i[9]    | C30 | 2    | Input        | LVCMOS33 | -        |
| red_i[8]    | C29 | 2    | Input        | LVCMOS33 | -        |
| red_i[7]    | F28 | 2    | Input        | LVCMOS33 | -        |
| red_i[6]    | F29 | 2    | Input        | LVCMOS33 | -        |
| red_i[5]    | C15 | 0    | Input        | LVCMOS33 | -        |
| red_i[4]    | D15 | 0    | Input        | LVCMOS33 | -        |
| red_i[3]    | J27 | 2    | Input        | LVCMOS33 | -        |
| red_i[2]    | J26 | 2    | Input        | LVCMOS33 | _        |
| red_i[1]    | K26 | 2    | Input        | LVCMOS33 | -        |
| red_i[0]    | K27 | 2    | Input        | LVCMOS33 | -        |
| green_i[11] | F15 | 0    | Input        | LVCMOS33 | -        |
| green_i[10] | B4  | 0    | Input        | LVCMOS33 | -        |
| green_i[9]  | A14 | 0    | Input        | LVCMOS33 | -        |
| green_i[8]  | B14 | 0    | Input        | LVCMOS33 | —        |
| green_i[7]  | C11 | 0    | Input        | LVCMOS33 | -        |
| green_i[6]  | D11 | 0    | Input        | LVCMOS33 | -        |
| green_i[5]  | E11 | 0    | Input        | LVCMOS33 | -        |
| green_i[4]  | A10 | 0    | Input        | LVCMOS33 | -        |
| green_i[3]  | D31 | 2    | Input        | LVCMOS33 | —        |
| green_i[2]  | К30 | 2    | Input        | LVCMOS33 | —        |
| green_i[1]  | К29 | 2    | Input        | LVCMOS33 | —        |
| green_i[0]  | J29 | 2    | Input        | LVCMOS33 | —        |
| blue_i[11]  | B10 | 0    | Input        | LVCMOS33 | —        |
| blue_i[10]  | C10 | 0    | Input        | LVCMOS33 | —        |
| blue_i[9]   | A9  | 0    | Input        | LVCMOS33 | -        |
| blue_i[8]   | C9  | 0    | Input        | LVCMOS33 | -        |
| blue_i[7]   | D9  | 0    | Input        | LVCMOS33 | -        |
| blue_i[6]   | F9  | 0    | Input        | LVCMOS33 | _        |

<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



| Name        | Pin  | BANK | IO Direction | IO_TYPE  | PULLMODE |
|-------------|------|------|--------------|----------|----------|
| blue_i[5]   | A8   | 0    | Input        | LVCMOS33 | —        |
| blue_i[4]   | A13  | 0    | Input        | LVCMOS33 | _        |
| blue_i[3]   | L30  | 2    | Input        | LVCMOS33 | _        |
| blue_i[2]   | L32  | 2    | Input        | LVCMOS33 | —        |
| blue_i[1]   | H32  | 2    | Input        | LVCMOS33 | -        |
| blue_i[0]   | F32  | 2    | Input        | LVCMOS33 | -        |
| leds[7]     | AM29 | 4    | Output       | LVCMOS33 | _        |
| leds[6]     | AM28 | 4    | Output       | LVCMOS33 | _        |
| leds[5]     | AJ29 | 4    | Output       | LVCMOS33 | -        |
| leds[4]     | AG32 | 4    | Output       | LVCMOS33 | _        |
| leds[3]     | AH32 | 4    | Output       | LVCMOS33 | —        |
| leds[2]     | AK30 | 4    | Output       | LVCMOS33 | _        |
| leds[1]     | AK29 | 4    | Output       | LVCMOS33 | _        |
| leds[0]     | AG30 | 4    | Output       | LVCMOS33 | _        |
| pixel_clk_o | E25  | 1    | Output       | LVCMOS33 | _        |
| vsync_o     | A25  | 1    | Output       | LVCMOS33 | -        |
| hsync_o     | D25  | 1    | Output       | LVCMOS33 | _        |
| de_o        | C25  | 1    | Output       | LVCMOS33 | _        |
| red_0[11]   | F17  | 1    | Output       | LVCMOS33 | —        |
| red_o[10]   | F25  | 1    | Output       | LVCMOS33 | -        |
| red_0[9]    | W28  | 3    | Output       | LVCMOS33 | —        |
| red_o[8]    | D24  | 1    | Output       | LVCMOS33 | -        |
| red_o[7]    | Y27  | 3    | Output       | LVCMOS33 | —        |
| red_o[6]    | AC26 | 3    | Output       | LVCMOS33 | _        |
| red_o[5]    | AB27 | 3    | Output       | LVCMOS33 | —        |
| red_o[4]    | AB28 | 3    | Output       | LVCMOS33 | -        |
| red_o[3]    | AB30 | 3    | Output       | LVCMOS33 | —        |
| red_o[2]    | AB29 | 3    | Output       | LVCMOS33 | _        |
| red_o[1]    | AD27 | 3    | Output       | LVCMOS33 | -        |
| red_o[0]    | AE27 | 3    | Output       | LVCMOS33 | -        |
| green_o[11] | Т30  | 3    | Output       | LVCMOS33 | -        |
| green_o[10] | W30  | 3    | Output       | LVCMOS33 | -        |
| green_o[9]  | Y26  | 3    | Output       | LVCMOS33 | —        |
| green_o[8]  | W32  | 3    | Output       | LVCMOS33 | —        |
| green_o[7]  | V32  | 3    | Output       | LVCMOS33 | _        |
| green_o[6]  | AB31 | 3    | Output       | LVCMOS33 | -        |
| green_o[5]  | AC30 | 3    | Output       | LVCMOS33 | _        |
| green_o[4]  | Т32  | 3    | Output       | LVCMOS33 | _        |
| green_o[3]  | A24  | 1    | Output       | LVCMOS33 | _        |
| green_o[2]  | R26  | 3    | Output       | LVCMOS33 | _        |
| green_o[1]  | T26  | 3    | Output       | LVCMOS33 | _        |



| Name       | Pin  | BANK | IO Direction | ΙΟ_ΤΥΡΕ  | PULLMODE |
|------------|------|------|--------------|----------|----------|
| green_o[0] | AD26 | 3    | Output       | LVCMOS33 | -        |
| blue_o[11] | AD32 | 3    | Output       | LVCMOS33 | -        |
| blue_o[10] | AC32 | 3    | Output       | LVCMOS33 | -        |
| blue_o[9]  | AB32 | 3    | Output       | LVCMOS33 | -        |
| blue_o[8]  | AC31 | 3    | Output       | LVCMOS33 | -        |
| blue_o[7]  | V26  | 3    | Output       | LVCMOS33 | -        |
| blue_o[6]  | V27  | 3    | Output       | LVCMOS33 | -        |
| blue_o[5]  | U28  | 3    | Output       | LVCMOS33 | -        |
| blue_o[4]  | T29  | 3    | Output       | LVCMOS33 | -        |
| blue_o[3]  | W31  | 3    | Output       | LVCMOS33 | -        |
| blue_o[2]  | Y32  | 3    | Output       | LVCMOS33 | -        |
| blue_o[1]  | R32  | 3    | Output       | LVCMOS33 | -        |
| blue_o[0]  | T31  | 3    | Output       | LVCMOS33 | —        |
| SDA        | AJ1  | 8    | Bidir        | LVCMOS33 | -        |
| SCL        | AG1  | 8    | Bidir        | LVCMOS33 | -        |



# 9. Ordering Information

#### Table 9.1. Ordering Information

| Description                  | Ordering Part Number |
|------------------------------|----------------------|
| HDMI VIP Input Bridge Board  | HDMI-VIP-IB-EVN      |
| ECP5 VIP Processor Board     | LFE5-VIP-P-EVN       |
| HDMI VIP Output Bridge Board | HDMI-VIP-0B-EVN      |



### 10. FAQ

Question: My board was working first. But when I cycle the power, it does not work anymore. Why?

Answer: There is a known warm issue caused by a boot from flash.

Issue description: Some boards fail to configure from SPI Flash after the board has been running for a period of time and has become warmer. Once board cools down, the configuration is successful.

Workaround: The problem is believed to be caused by the loading on the SPI interface. Removing the connection to the downstream board appears to solve the issue. On the ECP5 board, remove pin 27 (SCLK) and pin 31 (MISO) from the inside of connector J12. The yellow circle in the following figure depicts the position of the removed pins.



<sup>© 2017</sup> Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



## References

This is a list of the related documents that are available from your Lattice Semiconductor sales representative.

| Document      | Title                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Sil-DS-1059   | Sil9127A/Sil1127A HDMI Receiver with Deep Color Output                                                                                |
| SiI-PR-1019   | Sil9223/9233/9127 HDMI Receivers Programmer's Reference (The Programmer's Reference requires an NDA with Lattice Semiconductor)       |
| FPGA-DS-02012 | ECP5 and ECP5-5G Family Data Sheet                                                                                                    |
| Sil-DS-1084   | Sil9136-3/Sil1136 HDMI Deep Color Transmitter                                                                                         |
| SiI-PR-1060   | Sil9136-3 and Sil9334 HDMI Transmitter Programmer's Reference (The Programmer's Reference requires an NDA with Lattice Semiconductor) |
| FPGA-UG-02015 | Lattice Embedded Vision Development Kit User Guide                                                                                    |
| FPGA-EB-02001 | ECP5 VIP Processing Board                                                                                                             |
| FPGA-EB-02003 | HDMI VIP Output Bridge Board                                                                                                          |
| FPGA-EB-02008 | HDMI VIP Input Bridge Board                                                                                                           |



## **Technical Support**

For assistance, submit a technical support case at <u>www.latticesemi.com/techsupport</u>.



## **Revision History**

Revision A, October 2017

First production release.



7<sup>th</sup> Floor, 111 SW 5<sup>th</sup> Avenue Portland, OR 97204, USA T 503.268.8000 <u>www.latticesemi.com</u>