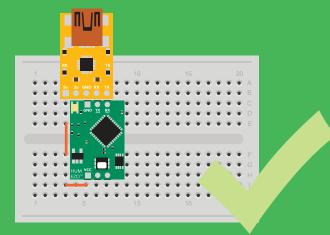
AtlasScientific Environmental Robotics

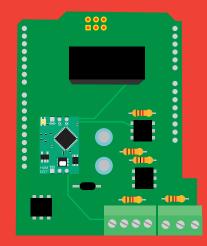
V 1.1

EZO-HUMTM Embedded Humidity Circuit

Reads	Relative humidity Dew point Air temperature	GND TX RX (SDA)
Range	0 – 100%	
Calibration	Factory calibrated	
Response time	1 reading per second (UART mode)	
1 readin	g per 300 milliseconds (I2C mode)	
Accuracy	+/- 2%	
Data protocol	UART & I ² C	HUM VCC
Default I2C addre	ess 111 (0x6F)	EZO [™]
Operating voltag	e 3.3V – 5V	ROLLAND
Data format	ASCII	


Written by Jordan Press Designed by Noah Press

SOLDERING THIS DEVICE VOIDS YOUR WARRANTY.


This is sensitive electronic equipment. Get this device working in a solderless breadboard first. Once this device has been soldered it is no longer covered by our warranty.

This device has been designed to be soldered and can be soldered at any time. Once that decision has been made, Atlas Scientific no longer assumes responsibility for the device's continued operation. The embedded systems engineer is now the responsible party.

Get this device working in a solderless breadboard first!

Do not embed this device without testing it in a solderless breadboard!

Table of contents

Circuit dimensions	5
Power consumption	5
Absolute max ratings	5
Calibration theory	6

UART

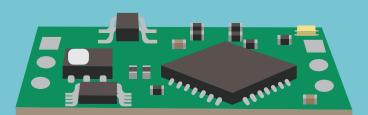
UART mode	10
Receiving data from device	11
Sending commands to device	12
LED color definition	13
UART quick command page	14
LED control	15
Find	16
Continuous mode	17
Single reading mode	18
Enable/disable parameters	19
Naming device	20
Device information	21
Response codes	22
Reading device status	23
Sleep mode/low power	24
Change baud rate	25
Protocol lock	26
Factory reset	27
Change to I ² C mode	28
Manual switching to I ² C	29

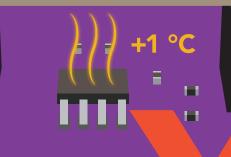
Custom calibration	6
Electrical Isolation	6
Default state	7
Available data protocols	8

1²**C**

I ² C mode	31
Sending commands	32
Requesting data	33
Response codes	34
-	
Processing delay	34
LED color definition	35
I ² C quick command page	36
LED control	37
Find	38
Taking reading	39
Enable/disable parameters	40
Naming device	41
Device information	42
Reading device status	43
Sleep mode/low power	44
Protocol lock	45
I ² C address change	46
Factory reset	47
Change to UART mode	48
Manual switching to UART	49
Manual Switching to OAKI	47

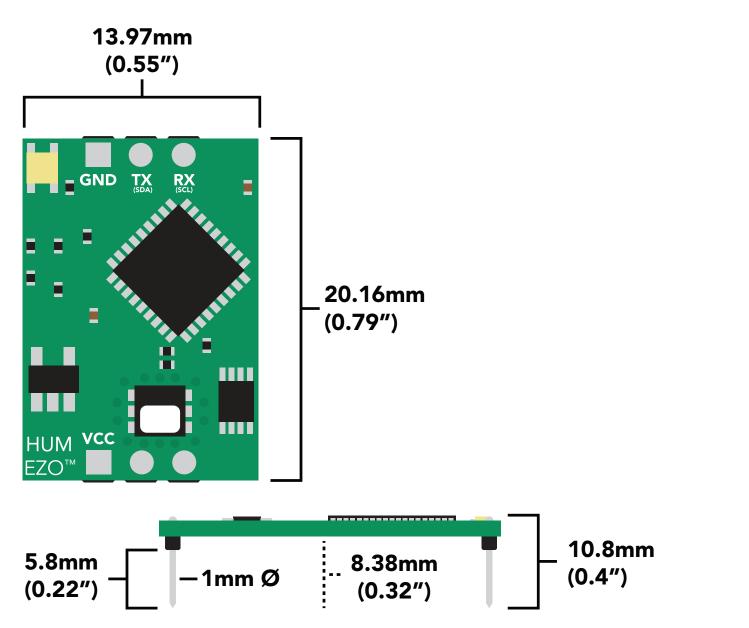
Datasheet change log	50
Firmware updates	50
Warranty	51


Attention


The EZO-HUM[™] is 100% operational out of the box. CALIBRATION IS UNNECESSARY

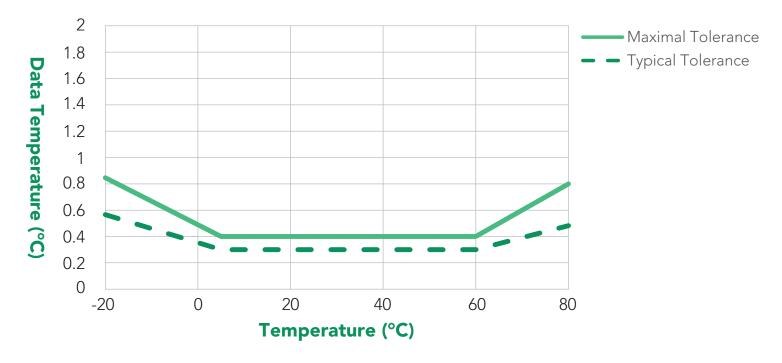
Direct sunlight will heat the circuit above the air temperature, making the readings incorrect.

A small amount of heating can have a noticable change to the humidity readings.


For higher accuracy, don't do this.

Don't do that

EZO[™] circuit dimensions


	LED	MAX	SLEEP
5V	ON	2.6 mA	0.5 mA
	OFF	2.4 mA	0.0 117 (
3.3V	ON	2.2. mA	0.3 mA
	OFF	2.0 mA	0.5 mA

Power consumption Absolute max ratings

Parameter	MIN	ТҮР	MAX
Storage temperature	-30 °C		75 °C
Operational temperature	-20 °C	25 °C	80 °C
VCC	3.3V	3.3V	5.5V

Air temperature

Calibration theory

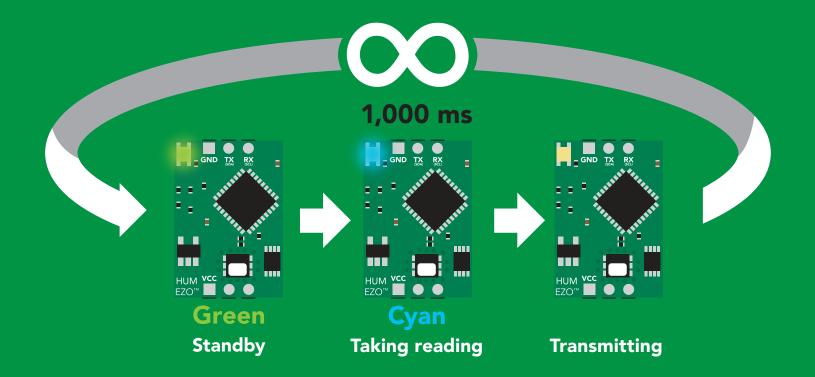
The Atlas Scientific EZO-HUM[™] Embedded Humidity Circuit comes pre-calibrated. The factory calibration data is permanently stored in the circuit and cannot be erased.

Custom calibration

This circuit does not require recalibration, and does not offer onboard custom calibration.

Electrical isolation

Electrical isolation is not needed.


Default state

UARI mode

Baud	
Readings	
Speed	
LED	

9,600 continuous 1 second per reading

on

1²C

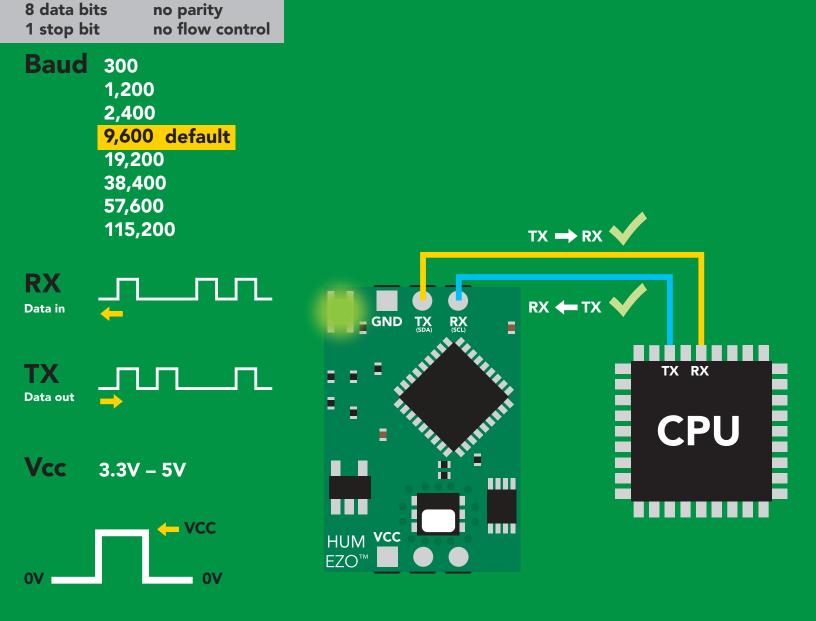
X Unavailable data protocols SPI Analog RS-485 Mod Bus 4–20mA

8 Copyright © Atlas Scientific LLC

UART mode

Settings that are retained if power is cut

Auto monitor Baud rate Continuous mode Device name Enable/disable parameters Enable/disable response codes Hardware switch to I2C mode LED control Protocol lock Software switch to I2C mode


Settings that are **NOT** retained if power is cut

Sleep mode

UART mode

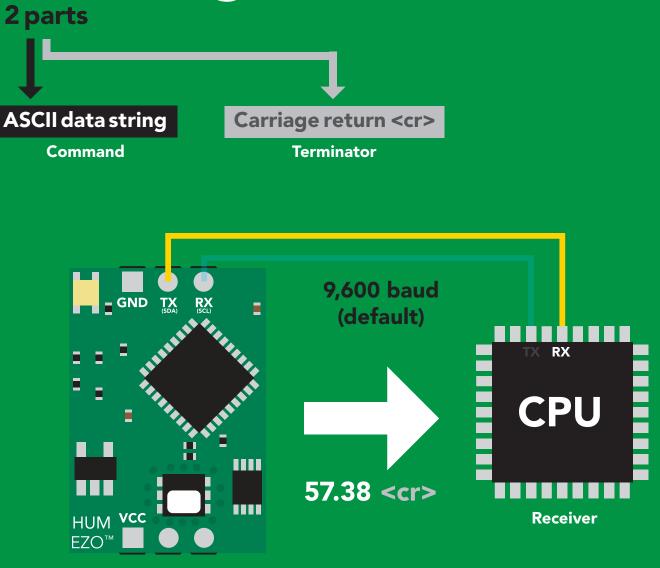
8 data bits

Data format

Reading

Humidity Air Temperature **Dew point**

% Relative humidity Units Air Temperature °C (when enabled) Dew point Temperature °C (when enabled)


ASCII (CSV string if temp/ Encoding dew point enabled)

Terminator carriage return

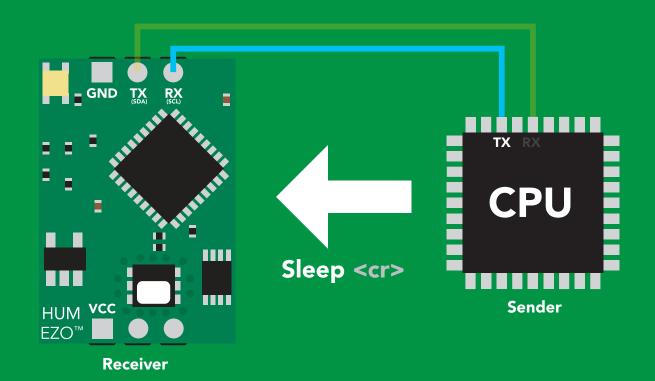
floating point Data type **Decimal places** 2 **4** characters Smallest string 24 characters Largest string

Receiving data from device

Sender

Advanced

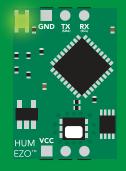
ASCII:	5	7	•	3	8	<cr></cr>
Hex:	35	37	2E	33	38	0D
Dec:	53	55	46	51	56	13

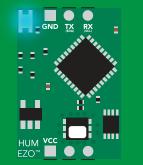

Sending commands to device ^{2 parts}


Command (not case sensitive)

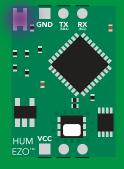
Carriage return <cr>

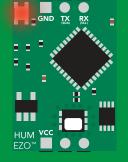
ASCII data string


Terminator



Indicator LED definition





Cyan by Taking reading

5V	LED ON +0.2 mA
3.3V	+0.2 mA

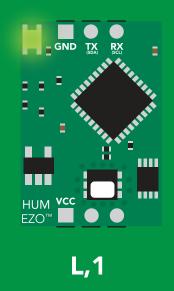
Red Command not understood

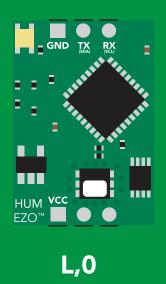
White Find

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Baud	change baud rate	pg. 25	9,600
С	enable/disable continuous mode	pg. 17	enabled
Factory	enable factory reset	pg. 27	n/a
Find	finds device with blinking white LED	pg. 16	n/a
i	device information	pg. 21	n/a
12C	change to I ² C mode	pg. 28	not set
L	enable/disable LED	pg. 15	enabled
Name	set/show name of device	pg. 20	not set
0	enable/disable parameters	pg. 19	НИМ
Plock	enable/disable protocol lock	pg. 26	n/a
R	returns a single reading	pg. 18	n/a
Sleep	enter sleep mode/low power	pg. 24	n/a
Status	Retrieve status information	pg. 23	n/a
*OK	enable/disable response codes	pg. 22	n/a

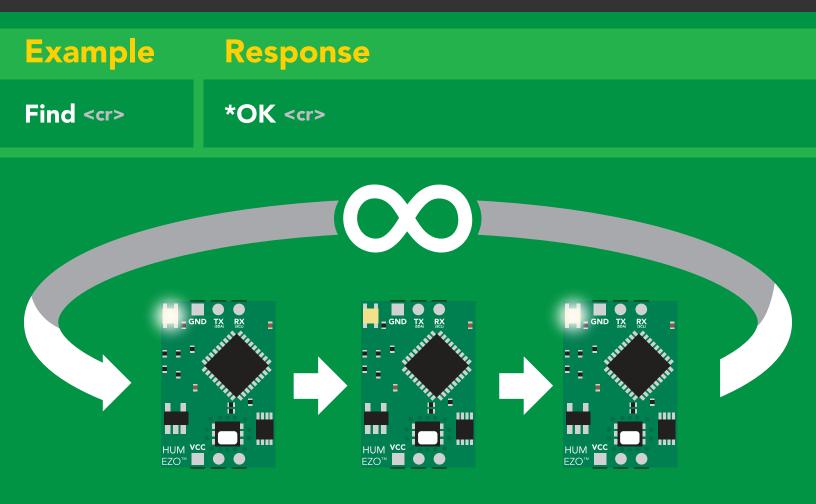

LED control


Command syntax

L,1 <cr> LED on defau</cr>	lt
----------------------------	----

- L,0 <cr>> LED off
- L,? <cr>> LED state on/off?

Example	Response
L,1 <cr></cr>	*OK <cr></cr>
L,0 <cr></cr>	*OK <cr></cr>
L,? <cr></cr>	?L,1 <cr> or ?L,0 <cr> *OK <cr></cr></cr></cr>



Command syntax

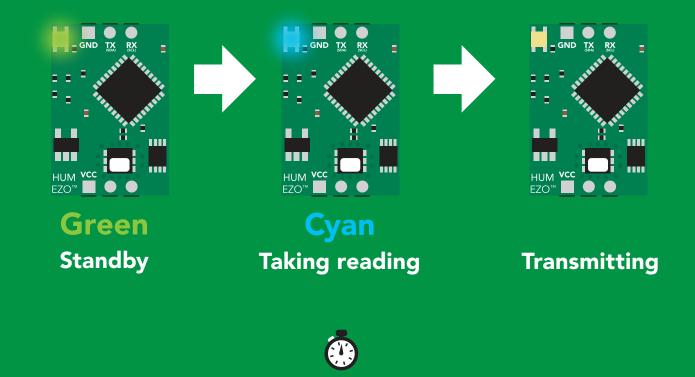
This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device

Continuous mode

Command syntax

C,1 <cr> enable continuous readings once per second default
C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)
C,0 <cr> disable continuous readings
C,? <cr> continuous mode settings


Example	Response
C,1 <cr></cr>	*OK <cr> HUM (1 sec) <cr> HUM (2 sec) <cr> HUM (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> HUM (30 sec) <cr> HUM (60 sec) <cr> HUM (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax

R <cr>> takes single reading

ExampleResponseR <cr>57.38 <cr>*OK <cr>

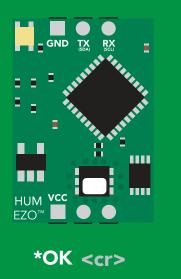
1 second

Enable/disable parameters from output string

Command syntax

O, [parameter],[1,0]	<cr></cr>	enable or disable output parameter
O,?	<cr></cr>	enabled parameter?

Example	Response
O,HUM,1 / O,HUM,0 <cr></cr>	*OK <cr> enable / disable humidity</cr>
O,T,1 / O,T,0 <cr></cr>	*OK <cr> enable / disable temperature</cr>
O,Dew,1 / O,Dew,0 <cr></cr>	*OK <cr> enable / disable dew point</cr>
O,? <cr></cr>	?,O,HUM,T,Dew <cr> if all enabled</cr>
Parameters Hum Humidity	* If you disable all possible data types your readings will display "no output".
T Air temperature in °C Dew Dew point	
Followed by 1 or 01enabled0disabled	


Naming device

Command syntax

	Do not use spaces in the name
n =	

Name,n <cr> set Name, <cr> cle Name,? <cr> sho</cr></cr></cr>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ars name Up to 16 ASCII characters
Example	Response
Name, <cr></cr>	*OK <cr> name has been cleared</cr>
Name,zzt <cr></cr>	*OK <cr></cr>
Name,? <cr></cr>	?Name,zzt <cr> *OK <cr></cr></cr>

Name,zzt <cr>

Name,? <cr>

?Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information</cr>		
Example	Response	
i <cr></cr>	?i,HUM,1.0 <cr> *OK <cr></cr></cr>	

Response breakdown

?i,	HUM,	1.0
	1	1
	Device	Firmware

Response codes

Command syntax

*OK,1 <cr> enab *OK,0 <cr> disat *OK,? <cr> resp</cr></cr></cr>	ole response
Example	Response
R <cr></cr>	57.38 <cr> *OK <cr></cr></cr>
*OK,0 <cr></cr>	no response, *OK disabled
R <cr></cr>	57.38 <cr> *OK disabled</cr>
*OK,? <cr></cr>	?*OK,1 <cr> or ?*OK,0 <cr></cr></cr>

Other response codes

- *ER unknown command
- ***OV** over volt (VCC>=5.5V)
- ***UV** under volt (VCC<=3.1V)
- *RS reset
- *RE boot up complete, ready
- *SL entering sleep mode
- *WA wake up

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example	Response
Status < <r></r>	?Status,P,5.038 <cr> *OK <cr></cr></cr>

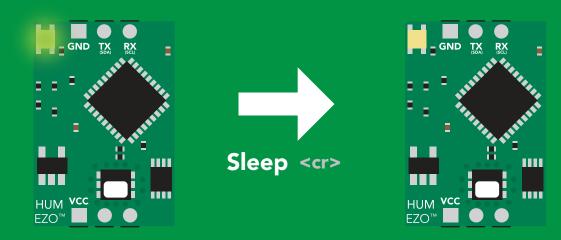
Response breakdown

?Status,	Ρ,	5.038
	1	1
Reas	son for restart	Voltage at Vcc

Restart codes

- P powered off
- **S** software reset
- **B** brown out
- W watchdog
- U unknown

Sleep mode/low power

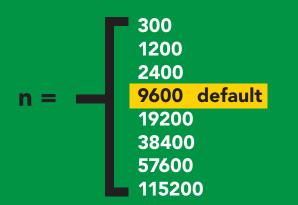

r slaan mada/la

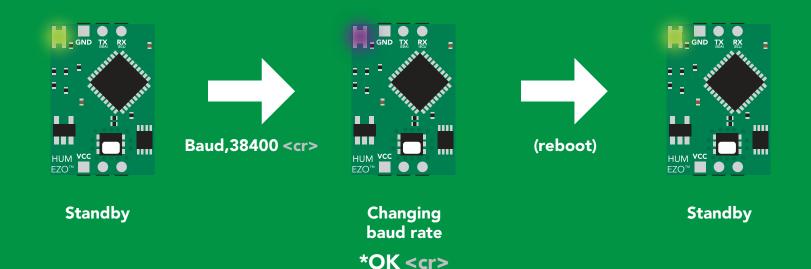
Command syntax

Slaa

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power</cr>					
Example		Respons	⊖		
Sleep <cr></cr>		*OK <cr> *SL <cr></cr></cr>			
Any command		*WA <cr></cr>	wakes up device		
5V	MAX 2.6 mA	SLEEP 0.5 mA			
3.3V	2.2 mA	0.4 mA			




Change baud rate

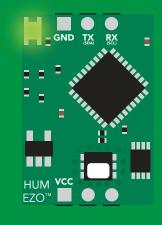
Command syntax

Baud,n <cr> change baud rate

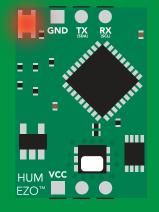
Example	Response
Baud,38400 <cr></cr>	*OK <cr></cr>
Baud,? <cr></cr>	?Baud,38400 <cr> *OK <cr></cr></cr>

Atlas**Scientific**

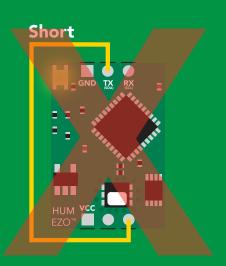
Protocol lock


Command syntax

Locks device to UART mode.

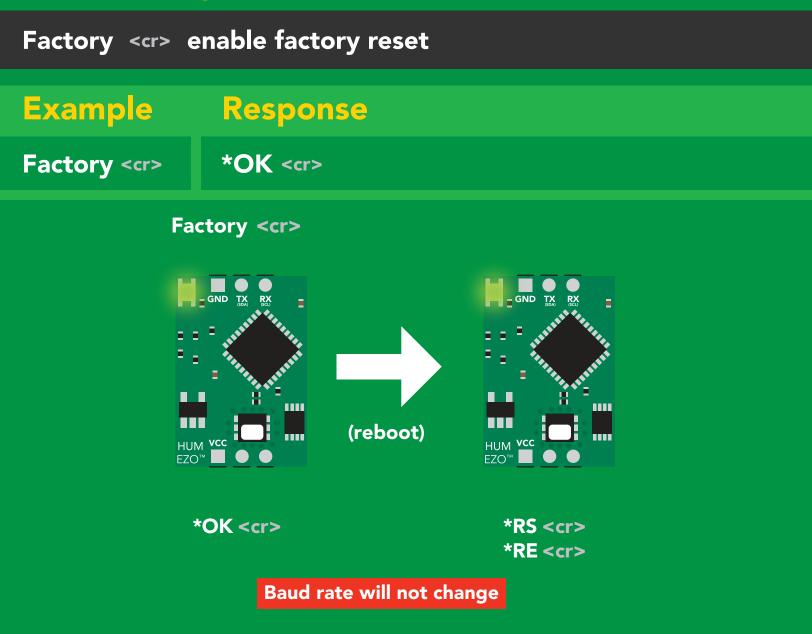

Plock,1 <cr> Plock,0 <cr> Plock,? <cr></cr></cr></cr>	disable Plock <mark>default</mark>
Example	Response
Plock,1 <cr></cr>	*OK <cr></cr>
Plock,0 <cr></cr>	*OK <cr></cr>
Plock,? <cr></cr>	?Plock,1 <cr> or ?Plock,0 <cr></cr></cr>

Plock,1


I2C,100

*OK <cr>

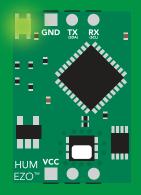
cannot change to I²C *ER <cr>



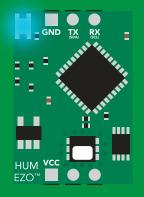
cannot change to I²C

Factory reset

Command syntax



Change to I²C mode

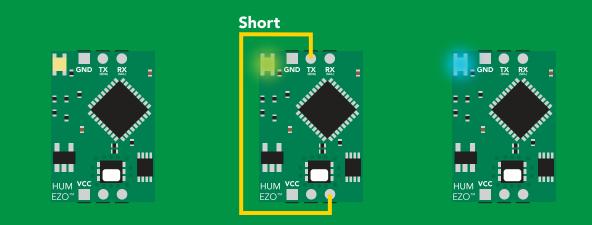

Default I°C address 111 (0x6F)Default I°C address 111 (0x6F)I2C,n <<cr> cr>crcrcrColspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Default I°C address 111 (0x6F)I2C,n <<cr>crColspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"<td colspan="2"</t

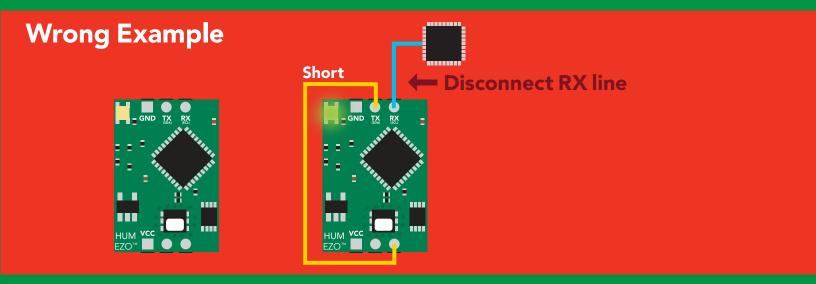
I2C,100

(reboot)

Green *OK <cr>

Blue now in I²C mode




Manual switching to I²C

- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 111 (0x6F)

Example

1²C mode

The I²C protocol is **considerably more complex** than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

To set your EZO[™] device into I²C mode click here

Settings that are retained if power is cut

Calibration Change I²C address Hardware switch to UART mode LED control Protocol lock Software switch to UART mode

Settings that are **NOT** retained if power is cut

Sleep mode

I²C mode

l²C address (0x01 – 0x7F) 111 (0x6F) default

Vcc 3.3V – 5.5V

Clock speed 100 – 400 kHz

VCC

0V

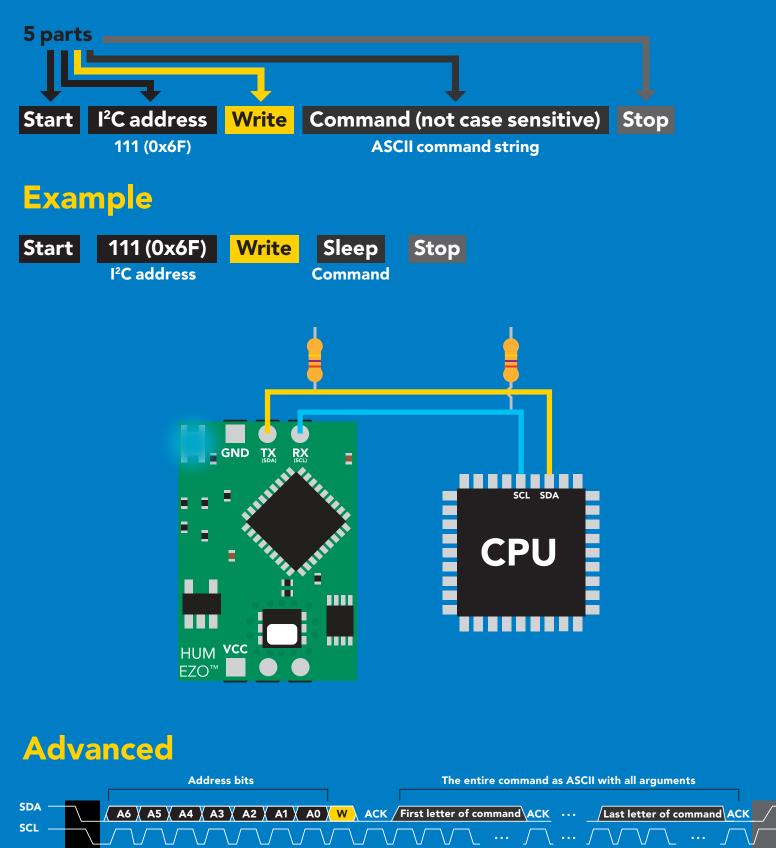
4.7k resistor VCC vcc may be needed SDA 🔿 SDA 🗸 SCL ← SCL GND TX SCL SDA CPU HUM VCC EZO

Data format

Reading

Humidity Air Temperature Dew point

 With the second state of the second state o

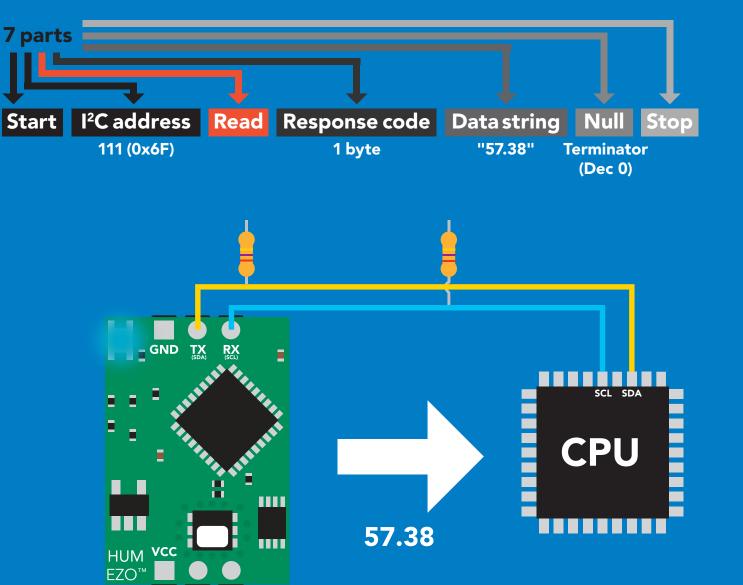

Encoding

ASCII (CSV string if temp/ dew point enabled) Data typeflDecimal places2Smallest string4Largest string2

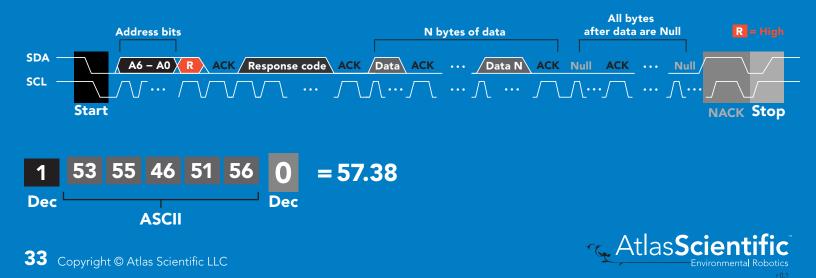
floating point 2 4 characters 24 characters

Sending commands to device

Stop

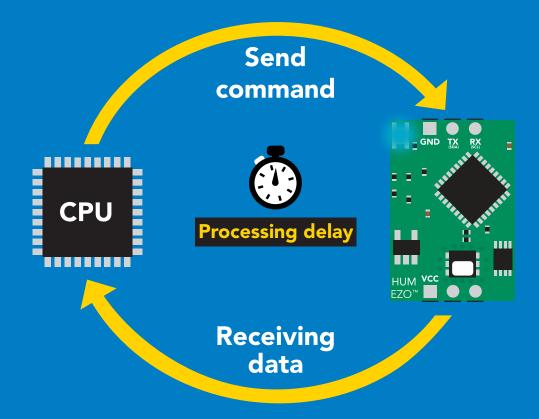

W = low

🔨 Atlas**Scienti**



Start

Requesting data from device


Advanced

Response codes & processing delay

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

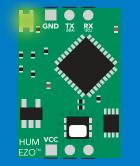
Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start; I2C_address; I2C_write(EZO_command); I2C_stop;

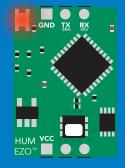
delay(300);

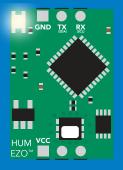
I2C_start; I2C_address; Char[] = I2C_read; I2C_stop; If there is no processing delay or the processing delay is too short, the response code will always be 254.


Response codes Single byte, not string

- 255 no data to send
- 254 still processing, not ready
- 2 syntax error
- 1 successful request

Indicator LED control





Purple Changing I²C address

Red Command not understood

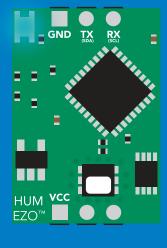
White Find

1²C mode command quick reference

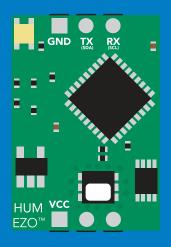
All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 48
Factory	enable factory reset	pg. 47
Find	finds device with blinking white LED	pg. 38
i	device information	pg. 42
I2C	change I ² C address	pg. 46
L	enable/disable LED	pg. 37
Name	set/show name of device	pg. 41
0	enable/disable parameters	pg. 40
Plock	enable/disable protocol lock	pg. 45
R	returns a single reading	pg. 39
Sleep	enter sleep mode/low power	pg. 44
Status	retrieve status information	pg. 43

LED control


Command syntax

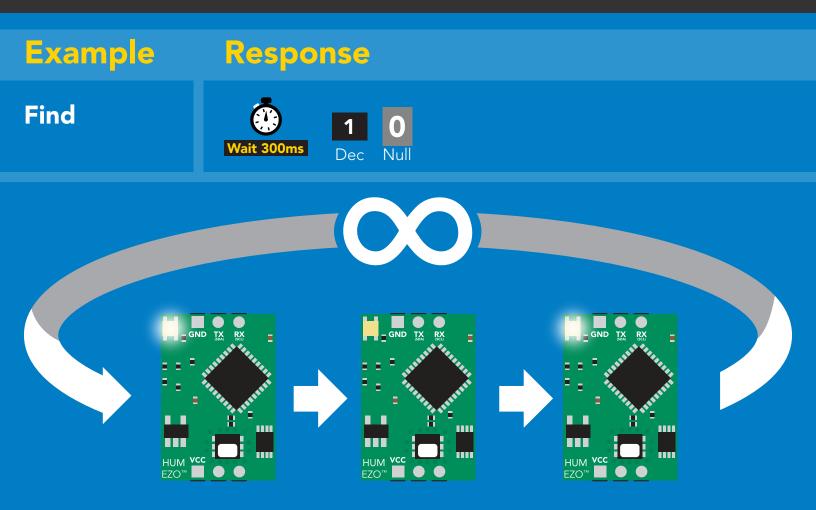
L,1 LED on default


- L,0 LED off
- L,? LED state on/off?

300ms 💮 processing delay

L,1

L,0

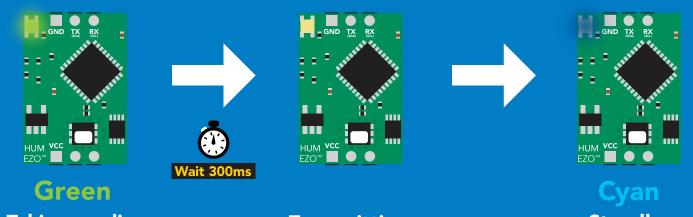


Find

Command syntax

Find LED rapidly blinks white, used to help find device

Taking reading


Command syntax

300ms 🕐 processing delay

R return 1 reading

Example Response

Taking reading

Transmitting

Standby

Enable/disable parameters from output string

Command syntax

O, [parameter],[1,0] O,?	enable or disable output parameter enabled parameter?		
Example	Response		
О,НИМ,1 / О,НИМ,0	Wait 300ms Image: Dec Null Image: Dec Null enable / disable humidity		
O,T,1 / O,T,0	Wait 300ms Image: Dec Image: Dec Image: Dec Image: Dec		
O,Dew,1 / O,Dew,0	Wait 300ms Image: Dec line Image: Open content line Image: Open content line		
O,?	Image: Wait 300ms1?,O,HUM,T,Dew0if all enabledDecASCIINull		
Devementere			
ParametersHumHumidityTAir temperature in °C	* If you disable all possible data types your readings will display "no output".		

Dew point

Followed by 1 or 0

enabled

disabled

Dew

1

0

Naming device

Command syntax

300ms 💮 processing delay

Do not use spaces in the name

-	ame n = $1 \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{7} \frac{1}{8} \frac{1}{9} \frac{1}{10} \frac{1}{11} \frac{1}{12} \frac{1}{13} \frac{1}{14} \frac{1}{15} \frac{1}{16}$ s name Up to 16 ASCII characters v name V name
Example	Response
Name,	Image: Wait 300msImage: NullImage: Open cleared Null
Name,zzt	Wait 300ms Dec
Name,?	Image: Name,zztImage: Name,zztImage: Name,zztWait 300msDecASCIINull
	1 0 1 ?Name,zzt 0

Device information

Command syntax

300ms 💮 processing delay

i device information

Example Response i

Response breakdown

Reading device status

300ms 🕐 processing delay **Command syntax** voltage at Vcc pin and reason for last restart Status Example Response **Status** ?Status,P,5.038 0 ASCII Dec **Response breakdown** ?Status, 5.038 Ρ, Voltage at Vcc Reason for restart **Restart codes** powered off Ρ software reset S В brown out watchdog W U unknown

Sleep mode/low power

Command syntax

Sleep enter sleep mode/low power Send any character or command to awaken device.						
Exam	ple	Respons	e			
Sleep		no response		Do not read status byte after issuing sleep command.		
Any cor	nmand	wakes up o	device			
	MAX	SLEEP				
5V	2.6 mA	0.5 mA				
3.3V	2.2 mA	0.4 mA				
				GND TX RX = = + + + + + + + + + + + + + + + + + +		

Sleep

Atlas Scientific

ним

EZO™

vcc

Sleep

HUM VCC

EZO"

iii

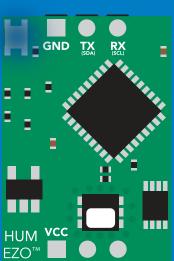
Standby

Protocol lock

I²C address change

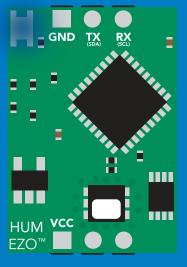
Command syntax

I2C,n sets I²C address and reboots into I²C mode



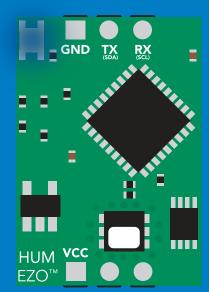
n = any number 1 – 127

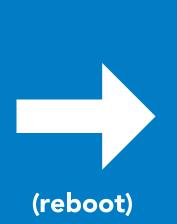
Warning!

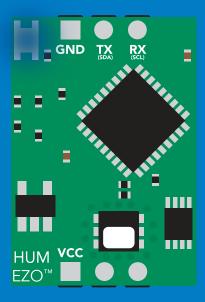

Changing the I²C address will prevent communication between the circuit and the CPU until the CPU is updated with the new I²C address.

Default I²C address is 111 (0x6F).

I2C,101




Factory reset


Command syntax					
		Factory reset will not take the device out of I ² C mode.			
Factory enab	ole factory re	set	I ² C address will not change		
Example	Response	•			
Factory	device rebo	oot			
Clears custom calibratio	on l				

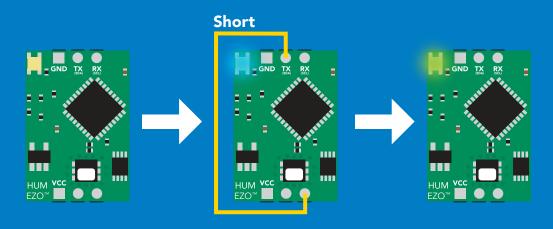
LED on Response codes enabled

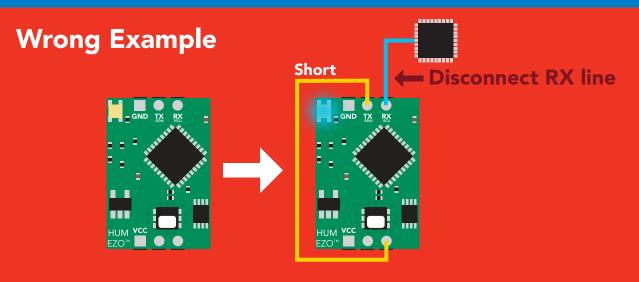
Factory

Change to UART mode

Command syntax

Baud,n switch from I ² C to UART				
Example	Respon	92(
Baud,9600	reboot in UART mode			
n =				
GND IX RX 	Baud,9600	Changing to	(reboot)	


UART mode



Manual switching to UART

- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Example

Datasheet change log

Datasheet V 1.1

Added Air Temperature chart on pg 6.

Datasheet V 1.0

New datasheet

Firmware updates

V1.0 – Initial release (November, 2021)

Warranty

Atlas Scientific[™] Warranties the EZO-HUM[™] Embedded Humidity Circuit to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO-HUM[™] Embedded Humidity Circuit (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO-HUM[™] Embedded Humidity Circuit is connected into a bread board, or shield. If the EZO-HUM[™] Embedded Humidity Circuit is being debugged in a bread board, the bread board must be devoid of other components. If the EZO-HUM[™] Embedded Humidity Circuit is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO-HUM[™] Embedded Humidity Circuit data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO-HUM[™] Embedded Humidity Circuit warranty:

- Soldering any part to the EZO-HUM[™] Embedded Humidity Circuit.
- Running any code, that does not exclusively drive the EZO-HUM[™] Embedded Humidity Circuit and output its data in a serial string.
- Embedding the EZO-HUM[™] Embedded Humidity Circuit into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific[™] does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO-HUM[™] Embedded Humidity Circuit, against the thousands of possible variables that may cause the EZO-HUM[™] Embedded Humidity Circuit to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific[™] devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific[™] devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific[™] devices can be soldered into place, however you do so at your own risk.

Atlas Scientific[™] is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO-HUM[™] Embedded Humidity Circuit continued operation. This is because that would be equivalent to Atlas Scientific[™] taking responsibility over the correct operation of your entire device.

