

General description

The epc611 chip is a general-purpose, monolithic, fully integrated photoelectric CMOS device for optical distance measurements and object detection. Its working principle is based on 3D TOF measurement.

The system-on-chip (SOC) contains:

- A full data acquisition path including the modulation driver for LEDs or Laser Diodes, the photo-receiver with an 8x8 pixel TOF CCD array, the signal conditioning, the A/D converter and the basic signal processing.
- An on-chip controller managing data acquisition and data communication.
- An SPI interface for the command and data communication.
- A supply-voltage power management unit.

Various modes allow the chip to operate as a very fast one-pixel range-finder chip, as fast one-pixel range-finder chip with low distance noise, as 8x8 TOF imager chip, etc. By adding a microprocessor and few external components, a fully functional TOF range-finder or a TOF camera can be built. It measures the object distance per pixel individually and simultaneously.

The working principle is based on the elapsed time-of-flight (TOF) of a photon (modulated light) emitted by the illumination and reflected back by the object to the photosensitive receiver. The receiver measures the phase-shift between the emitted and received signal which is proportional to the distance.

The very high photo-sensitivity allows operating range of several tens of meters and accuracy down to a centimeter depending on the lens, the illumination power and the modulation frequency.

Features

- Operating range up to 30 m
- Resolution in the millimeter range
- On-chip high power LED or Laser Diode driver
- Easy-to-use operation in combination with a microprocessor
- Fast frame rates:
 - □ 4-pixel-sum range-finder UFS mode: up to 8'000 fps
 - $\hfill\square$ 64-pixel-sum range-finder ULN mode: 4'000 fps
 - $\hfill\square$ 64-pixel imager TIM mode: up to 3'000 fps
- Output data: 12..18 bit resolution, depending on operating mode
- HDR (High-Dynamic-Range) range-finder mode
- Excellent ambient-light suppression up to 100 kLux.
- Internal or external modulation control
- Low power consumption
- Fast SPI interface for command and data transfer
- Fully SMD compatible flip-chip CSP24 package with very small footprint

Applications

- Altimeter for drones
- Scanner for SLAM data acquisition in mobile robots
- People and object counting
- Door opening, machine controlling and safeguarding
- Volumetric mapping of objects
- Automatic vehicle guidance
- Low cost seating position detection in cars
- Gesture control (man-machine-interface)

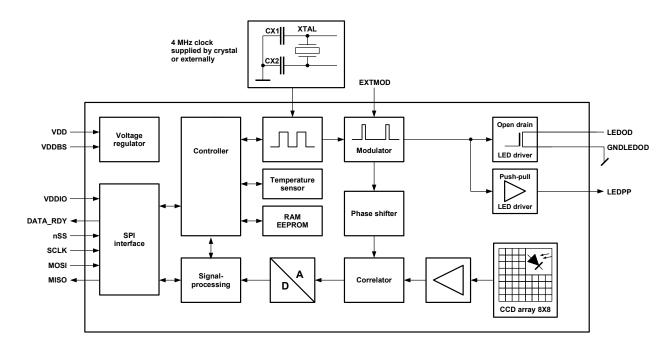


Figure 1: epc611 block diagram

Functional block diagram

Table of Contents

1.	Electrical, optical and timing characteristics	4	4
	1.1. Operating conditions and electrical characteristics		
	1.2. Absolute maximum ratings		
	 1.3. Timing parameters 1.4. Optical characteristics 		
	1.5. Sensitivity		
	1.6. Ambient-light suppression (ABS)		
	1.7. Other optical parameters		
	1.8. Temperature sensor characteristics		
2	1.9. Distance measurement temperature drift		
Ζ.	Pin-out		
	2.1. Pin mapping		
	2.3. Power domain separation and ESD protection		
3.	Packaging and layout information		
	3.1. Mechanical dimensions		
	3.2. Parasitic light sensitivity (PLS)	1	1
	3.3. Pin 1 marking		
	 3.4. PCB design and SMD manufacturing process considerations 3.5. Design precautions 		
	Packaging information		
5.	Ordering information		
~	5.1. Chip version identification		
6.	Hardware implementation		
	6.1. Block diagram		
	6.3. Application diagram part list		
	6.4. Hardware implementation notes		
	6.5. Clock sources		
	6.5.1. System clock supply		
	6.5.2. External modulation EXTMOD 6.6. Illumination (LED) driver		
	6.6.1. LEDOD pin		
	6.6.2. LEDPP pin		
	6.7. DLL (Delay line)		
	6.8. Pixel-field		
	6.8.1. Pixel architecture 6.8.2. Pixel-field organization and readout		
	6.8.3. Pixel saturation detection		
	6.8.4. ADC conversion over- and underflow		
7.	Imaging	. 20	0
	7.1. epc611 functional overview		
	7.2. Time-of-flight modes (TOF)		
	7.2.1. TIM mode: 8x8 pixel 3D Tof IMager 7.2.2. ULN mode: Ultra Low Noise range-finder (sum of 8x8 pixels)		
	7.2.3. UFS mode: Ultra Fast and Sensitive range-finder (sum of 2x2 binned pixels)		
	7.2.4. UHD mode: Ultra High Dynamic range-finder, low noise (8 different int. times, each sum of 8 pixels)		
	7.3. Grayscale imager modes		
	7.3.1. GIM mode: 8x8 pixel Grayscale IMager		
	 7.3.2. GBI mode: 4x4 pixel Grayscale Binned pixel Imager 7.3.3. Alternative grayscale modes 		
	7.4. Imaging timing and frame rates		
	7.4.1. Single measurement control		
	7.4.2. Continuous measurement control (auto-run)		
	7.5. Integration time setting		
	7.5.1. Single integration time per frame 7.5.2. Multiple integration time per frame		
	7.6. Distance measurement (3D TOF)		
	7.7. Distance calculation algorithm		
	7.8. Unambiguity range versus time base setting		
	7.9. Quality of the measurement		
	 7.10. Grayscale imaging / ambient-light measurement 7.11. Calibration and compensation of TOF cameras 		
	7.12. Noise reduction and signal filtering		

8.	Temperature sensor	48
	8.1. Initialization	
	8.2. Read-out during runtime	
	8.3. Calculating temperature in °C	
9.	Application information	50
	9.1. Example sequence from start-up to frame acquisition	50
	9.2. 3D TOF distance measurement flow	50
	9.3. Rolling DCS frames	
	9.4. Enhanced rolling DCS frame mode	52
10	0. Parameter and configuration memory	53
	10.1. Sequencer program	53
	10.2. Data memory map	
	10.2.1. Control page	
	10.2.2. RAM page	54
	10.2.3. EEPROM page	54
11	I. SPI interface	54
	11.1. SPI timing	54
	11.2. SPI frame format	55
	11.3. SPI commands	56
	11.4. SPI response	
	11.5. SPI pixel data readout and DATA_RDY	57
12	2. Register map	58
	12.1. SPI Page 0	58
	12.2. SPI Page 1	58
	12.3. SPI Page 2	59
	12.4. SPI Page 3	60
	12.5. SPI Page 4	60
	12.6. SPI Page 5	62
	12.7. SPI Page 6	
	12.8. SPI Page 7	
13	3. Control command examples	63
	13.1. Reading part version	
	13.2. Reading IC version	63
	13.3. Reading WAFER ID and CHIP ID	
	13.4. Writing to EEPROM	64
	13.5. Reading from EEPROM	
	13.6. Latest version of the sequencer program	
14	4. Addendum	66
	14.1. Terms, definitions and abbreviations	66
	14.2. Related documents	66
15	5. IMPORTANT NOTICE	67

1. Electrical, optical and timing characteristics

All characteristics are at typical operational ratings, T_A = +25°C, modulation frequency 10MHz, unless otherwise stated.

1.1. Operating conditions and electrical characteristics

Parameter	Description	Conditions/Comments	Vsc	Min.	Тур.	Max.	Units
V _{DD}	Main supply voltage	Ripple ¹ < ±100 mV	V _{DD}	8.0	8.5	9.0	V
V _{DDIO}	IO supply voltage	Ripple ¹ < ±50 mV	V _{DDIO}	2.43	3.3	5.5	V
V _{DDBS}	Bias supply voltage	Ripple ¹ < ±50 mV	V _{DDBS}	-11.5	-11	-10.5	V
IVDD-Average	Average main supply current	@ nominal voltage			18		mA
IVDDIO-Average	Average IO supply current	@ 3.3 V			100		μA
IVDDBS	Bias supply current ²				0.1	2.0	mA
$V_{\text{ON_LEDOD}}$	LEDOD on-voltage forward voltage (refer to section 6.6.1)	@ I _{LEDOD-ON} = 100 mA @ I _{LEDOD-ON} = 200 mA			0.1 0.2		V V
IOFF_LEDOD	LEDOD leakage current	@ LEDOD off-voltage				10	μA
VIH_VDDIO	Digital high level input voltage	Excluding XTALIN	V _{DDIO}	0.7xV _{DDIO}			V
V _{IL_VDDIO}	Digital low level input voltage	Excluding XTALIN				0.3xV _{DDIO}	V
V _{IH_XTALIN}	Digital high level input voltage	XTALIN	+1.8V	1.35			V
V _{IL_XTALIN}	Digital low level input voltage	XTALIN				0.2	V
	Digital high level input current	V _{IH} max.				10.0	μA
	Digital low level input current	V _{IL} min.		-10			μA
$C_{\text{In_VDDIO}}$	Digital input capacitance					3	pF
V _{OH_VDDIO}	Digital high level output voltage		V _{DDIO}	0.8 x V _{DDIO}			V
V _{OL_VDDIO}	Digital low level output voltage					0.2 x V _{DDIO}	V
	Digital high level output current	Push-pull pin LEDPP only				50	mA
I _{OL_VDDIO}	Digital low level output current			-50			mA
$C_{\text{Out_VDDIO}}$	Digital output load capacitance					20	pF
P _{Avarage}	Power dissipation (average)				155		mW
R _{Th}	Thermal resistance	on PCB with underfill			65		°K/W
T _{OP}	Operating temperature			-40		105	°C

Notes:

1

Min. and Max. voltage values include noise and ripple voltages.

² Value 0.1 mA is for a camera with lens and a bright illuminated white target. Goes up for strong illumination (approx. 550 µW/mm², no lens) up to typ. 2 mA.

Table 1: Operating conditions

1.2. Absolute maximum ratings

Parameter	Conditions
Main supply voltage V _{DD}	-0.5 +9.5 V
IO supply voltage V _{DDIO}	-0.5 +5.5 V
Bias supply voltage V _{DDBS}	-12.0 +0.5 V
Voltage to any pin in the same V_{sc} supply class. Refer to Figure 4 and 9.	V_{sc} min - 0.3 V \ldots V_{\text{sc}} max + 0.3 V
LED sink current I_{ON_LED} (modulated peak current, refer to Figure 17 and section 6.6.1) ¹	400 mA @T _J 85°C 25 mA @T _J 125°C linear reduction between 85 and 125°C
LED off-voltage V _{OFF_LED} (open-drain output)	7.5 V
ESD rating	JEDEC HBM class 1C (1kV to < 2kV)
Junction temperature (T _j)	-40°C to +125°C
Relative humidity	0 95%, non-condensing

Table 2: Absolute maximum rating

Notes:

¹ The overall ON/OFF time of the LED during the measurement cycle shall not exceed a 28% duty-cycle. Refer to t_{INT} and t_{FRAME} of Figure 40 and 41. The duty-cycle of the modulation signal itself is always 1:1 resp. 50%.

1.3. Timing parameters

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
t _{STARTUP}	Start-up time or RESET	After applying external supplies		340	1'000	μs
t _{RESET}	RESET			340		μs
$t_{\text{EEPROM}_{Write}}$	Write EEPROM	Waiting time per byte			25	ms
t _{DLL}	DLL delay for 1 step	Approx. 30 cm distance shift per step. Refer for details to register P3[0x13] and Figure 18, for exact value to register P6[0x1A].		2.1		ns
f _{XTAL}	Clock frequency	Crystal (or ceramic resonator)		4		MHz
df _{xtal}	Clock frequency deviation	Any deviation is added as a linear distance error			±100	ppm
f _{JITTER}	Clock frequency phase jitter	Peak-to-peak, cycle to cycle			50	ps
f _{LED}	LED modulation frequency		0.625		20	MHz
f _{EXTMOD}	Ext. modulation clock	Refer to Chapter 6.5.2			80	MHz
$t_{LED_rise/fall}$	Required rise/fall time of the illumination LED/LD				12	ns
f _{SCLK}	SPI clock frequency				16	MHz
t _H / t∟	SCLK HIGH / LOW period		15			ns

Table 3: Timing parameters

1.4. Optical characteristics

Typ. operational ratings, $T_A = +25^{\circ}$ C, unless otherwise stated.

Parameter	Description	Conditions/Comments	Min.	Тур.	Max.	Units
A _{PIXEL}	Pixel photosensitive area	100% fill factor		20x20		μm
A _{SENSOR}	Pixel-field area	8x8 pixel		0.16x0.16		mm

Table 4: Optical characteristics

1.5. Sensitivity

@ integration time 100 µs

Parameter	Description		Min.	Тур.	Max.	Units
	Modulation frequency 12MHz	640nm	0.75	0.9	1.05	
TOF sensitivity $S_{\mbox{\tiny TOF}}$	Amplitude 1,400 LSB	850nm	0.50	0.6	0.70	nW/mm ² LSB
		940nm	0.65	0.8	0.95	
	Sensitivity fix pattern noise, @ 1,400 LSB			40	100	LSB
TOF _{DIST} FPN	Distance fix pattern noise, @ 1,400 LSB			18	50	mm
I _{Dark}	Dark current (drift during readout)			5	20	LSB/ms
	Normal operation		0.19	0.25	0.31	nW/mm ²
Grayscale sensitivity	Temperature sensing mode		0.48	0.62	0.76	LSB
H _v	Optical sensitivity			150k		LSB Lux/sec
GS _{STD}	Grayscale standard deviation			25	100	LSB

Table 5: Sensitivity

1.6. Ambient-light suppression (ABS)

An important function of the 3D TOF pixel is the ambient-light suppression. It removes DC or low frequency modulated light caused by sunlight, room illumination, etc. from the modulated light generated by the camera illumination. The amount of collected ambient light is proportional to the integration time. The longer the integration time, the more unwanted light will be collected. It's a good practice to keep the integration time for TOF imaging below 1ms. In addition, optical bandpass filters to block the unwanted light spectrum is mandatory.

Parameter	Ambient light suppression	Integration time	Wavelengt h	Min.	Тур.	Max.	Units
E _e	Irradiance, DC light	100 µs	640nm	0.30			mW/mm ²
			850nm	0.20			
			940nm	0.25			

Parameter	Ambient light suppression	Integration time	Center wavelength	Bandwidth	Min.	Тур.	Max.	Units
E	Luminance equivalent, sunlight	500µs	640nm	±27.5nm	85			kLux
			850nm	±32.5nm	70			
			940nm	±30nm	190			

Note:

Table 6: Ambient light suppression

The default and suggested chip configuration is set to achieve highest possible frame rate and using additional ambient-light correction according the Application note AN10 Calibration and compensation: Register P4[0x10], bit 3 = 0 and P5[0x0B] = 0x00. A 20% more efficient ambient-light suppression is possible, if the following registers are modified:

P4[0x10], bit 3 = 1 P5[0x0B] = 0x01

It turns the LED modulation before each integration for additional $40\mu s$ @ 20MHz modulation frequency on. This modulation is independent of the effective integration time. The on-time depends on the modulation frequency by $t_{oN} = 40\mu s * 20$ MHz / modulation frequency.

1.7. Other optical parameters

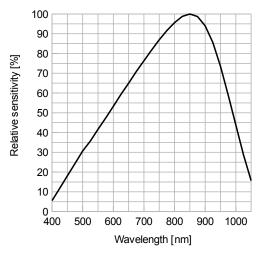


Figure 2: Relative spectral sensitivity $(S_{\boldsymbol{\lambda}})$ vs. wavelength

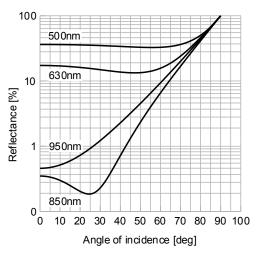


Figure 3: Reflectance vs. illumination angle (AOI)

1.8. Temperature sensor characteristics

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
T _{TEMP}	Measurement range		-40		+105	°C
P _{TEMP}	Sensor resolution			14		bit
k	Temperature sensor gain			0.134		K/LSB
Lin	Linearity	Over temperature range		5		%
T _{CAL}	Calibration temperature		26.5	27.0	27.5	°C

Table 7: Temperature sensor characteristics

Note: Refer also to Chapter 8

1.9. Distance measurement temperature drift

@10MHz modulation frequency

Parameter	Description	Min.	Тур.	Max.	Units
TC _{PIX}	Pixel		11.3		mm/K
TC _{OD}	LED/LD driver		2.7		mm/K
TC _{DLLn}	DLL stage, per stage		0.65		mm/K

Table 8: Optical characteristics

Note: Values vary from imager to imager. Refer for details to Figure 19 and application note AN10 Calibration and Compensation, chapter temperature compensation.

2. Pin-out

2.1. Pin mapping

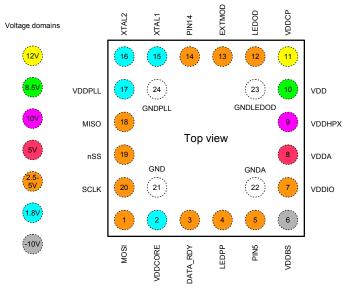


Figure 4: Pin mapping (top view, solder balls are bottom-side, pixel-field is top-side)

Pin No.	Pin name	Supply class V _{sc}	Pin type	Rst level	Description
/O pins					
19	nSS	V _{DDIO}	DI	V _{он}	SPI slave selection
20	SCLK	V _{DDIO}	DI	V _{OL}	SPI slave clock
1	MOSI	V _{DDIO}	DI	V _{OL}	SPI slave data input
18	MISO	V _{DDIO}	DO	V _{OL}	SPI slave data output
3	DATA_RDY	V _{DDIO}	DIO	V _{OL}	Data ready notifier, no pull-up or pull-down resistor on this pin
4	LEDPP ¹	V _{DDIO}	DIO	V _{OL}	LED push/pull output
13	EXTMOD	V _{DDIO}	DIO	Vol	Modulator/demodulator external clock input
Analog pi	ins				
15	XTAL1	V _{DDPLL}	AI		Oscillator clock input for crystal, resonator or digital clock
16	XTAL2	V _{DDPLL}	AO		Oscillator output to crystal or resonator
12	LEDOD ¹	V _{DDLEDOD}	AOD		LED open-drain output
14	PIN14	V _{DDIO}	AI		Connect this pin to GND
5	PIN5	V _{DDA}	AOI		Test pad (suggested), no connection
Supply pi	ns				
10	VDD	V _{DD}	PWR		Main supply voltage +8.5V
6	VDDBS	V _{DDBS}	PWR		Bias supply voltage -10V
7	VDDIO	V _{DDIO}	PWR		Digital IO supply voltage
11	VDDCP	V _{DDCP}	PWR		Internally generated analog supply voltage +12V
9	VDDHPX	V _{DDPXH}	PWR		Internally generated analog supply voltage +10V
8	VDDA	V _{DDA}	PWR		Internally generated analog supply voltage +5V
2	VDDCORE	V _{DDC}	PWR		Internally generated digital supply voltage +1.8V
17	VDDPLL	V _{DDPLL}	PWR		Internally generated digital supply voltage +1.8V
22	GNDA	V _{SSA}	GND		Analog ground
23	GNDLEDOD	V _{SSLEDOD}	GND		LED driver ground
		V _{SSIO}	GND		Digital ground
21	GND	V SSIO			

2.2 Din liet

Notes:

¹ LEDPP and LEDOD should not be used at the same time to drive LEDs on the PCB because they exhibit different phase delays.

"Pin type" in Table 9 defines the following:

- DI: Digital input
- DO: Digital output
- DIO: Digital input/output (bidirectional)
- Al: Analog input
- AO: Analog output
- AOD: Analog output, open-drain
- PWR: Supply

"Rst. Level' in Table 9 defines the level of the IO pins during/after reset.

2.3. Power domain separation and ESD protection

The epc611 chip has 9 different power domains and 4 ground references internally, which are interconnected with ESD protection diodes. All pins are also equipped with ESD protection diodes. The diodes have a breakthrough voltage of 0.3V. The designer has to take care that none of these diodes become conductive either at power-up, power-down or during normal operation.

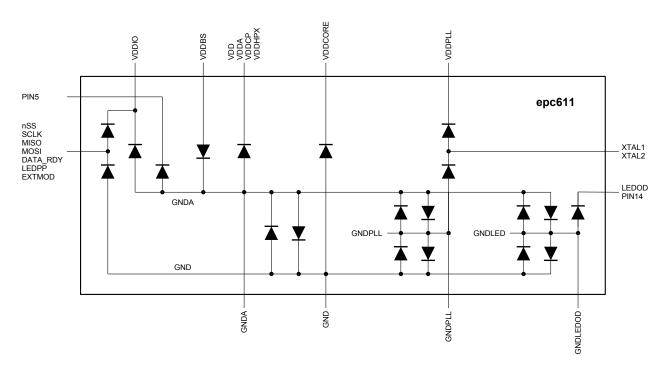


Figure 5: I/O pins and ESD protection diagram

3. Packaging and layout information

3.1. Mechanical dimensions

The packaging technology is chip scale packaging (CSP).

The center of the effective pixel-field (8x8) is positioned relative to the center of CSP pin 1. This point corresponds to the intersection of the middle of columns and the middle of rows when mapped to the pixel-field coordinate system on the die (see Figure 6 and 7).

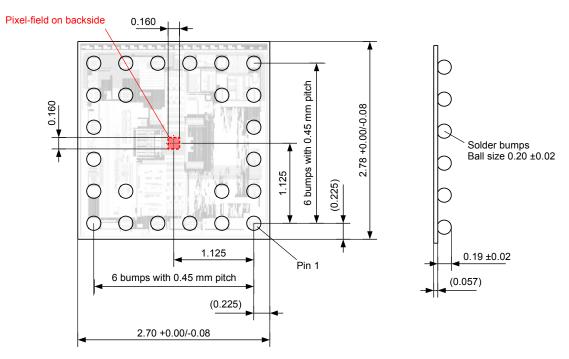


Figure 6: Mechanical dimensions

Notes:

- ⊕ ⊖
- All dimensions in mm
- Not specified tolerances: ±0.001 mm
- Dimensions in brackets: Informal only
- Top side is illumination side

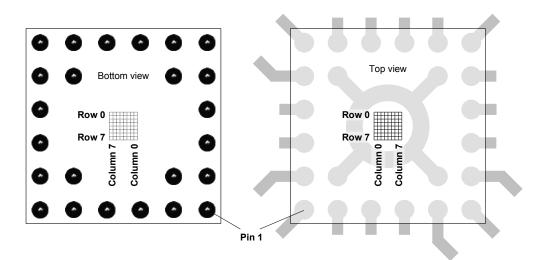
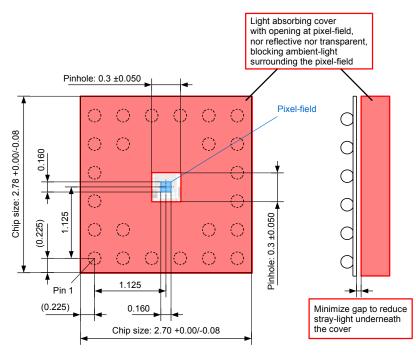


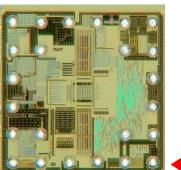
Figure 7: Orientation of the pixel-field (pixel order) Note: Readout is different. Refer to 20.

3.2. Parasitic light sensitivity (PLS)

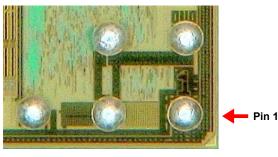
CMOS circuits are sensitive to light. That is why they can be used for photo-sensing, imaging, etc. However, if strong light is radiating the chip beside the pixel field, analog and digital circuits can be affected in its function by such parasitic light. It is called parasitic light sensi-tivity (PLS). A known effect is a shift of the measured distance under strong ambient light.

Imager lenses have always a larger field of view than the pixel-field area (refer to Figure 21). In order to prevent the chip being illuminated by strong ambient light, an opaque aperture should be placed onto the photo-sensitive side of the imager as shown in Figure 8. The cover shall have an opening of 300 μ m. With regard to the 160 x160 μ m pixel-field size, this shield can be assembled with a tolerance of ±50 μ m in x and y axis. Such a cover can be made by a thin sheet metal stencil like an SMD solder paste printing stencil or by silk screen printing of black color.




Figure 8: Opaque cover for protection against unwanted ambient-light

Notes:


- •
- All dimensions in mm
- Not specified tolerances: ±0.001 mm
- Dimensions in brackets: Informal only
- Top side is photosensitive side

3.3. Pin 1 marking

The following images show the epc611 chip from the bottom side with a view of the solder balls. Please note the location of pin 1. Please note the location of pin 1. It's highly recommended to check the pin 1 orientation with a vision system during the SMT assembly process.

epc611 chip from the solder ball side

Bottom right corner from the solder ball side

Figure 9: Pin 1 marking

Location of the pixel-field area

The pixel-field area is neither marked on the front nor on the backside of the IC. As a visible reference, a metal ring of the IC can be used. It is visible from the solder ball side. From the front side (photosensitive side) it can also be seen with a camera, which is sensitive in the near infrared wavelength domain (950 ... 1'150 nm).

3.4. PCB design and SMD manufacturing process considerations

As the epc611 chip comes in a very small 24 pin chip scale package with only 50 µm thickness, special care must be taken when making the PCB layout. In addition, careful handling during the assembly process must be ensured in order to avoid mechanical damage during the assembly process. Because the silicon chip is small and lightweight compared to the solder balls, it is highly recommended that all tracks to the chip come straight from the side. A symmetrical design is highly recommended to achieve high production yields. The pads and the tracks should also have exactly the same width, at least 1mm from the pad. They should be covered by a solder-resistant mask in order to avoid drain of the solder tin alloy onto the track.

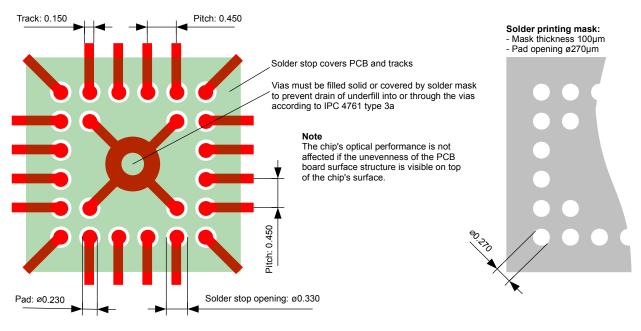


Figure 10: Layout recommendations (dimensions in mm)

Underfill of the components reduces stress on the solder pads caused by temperature cycling, mechanical bending, etc. Furthermore, thermal and mechanical fatigue is reduced and longterm reliability increased. Underfill material and underfill selection is application specific. It should follow JEDEC-STD JEP150: Stress-Test-Driven Qualification of and Failure Mechanisms Associated with Assembled Solid State Surface-Mount Components. Please also, refer to the application note AN08 CSP Assembly Process-Rules, which can be downloaded from the ESPROS Website at www.espros.com, section Downloads. Following these recommendations will help to achieve high manufacturing yield.

IMPORTANT: It is strongly recommended to implement these design rules as accurate as possible into a specific PCB layout.

3.5. Design precautions

The sensitivity of the sensor area is very high in order to achieve a long operating range. As a result, the epc611 device is very sensitive to EMI. Special care should be taken to keep the chip away from the signal tracks and other sources which may induce unwanted signals. To keep the noise floor low in the sensitive receiver path of the chip, a low impedance connection to the supply ground is needed. Figure 10 suggests a recommended grounding of the chip (if a ground plane is not feasible): Feed all grounds into a central via-hole with a drill diameter e.g. 0.5 ... 0.6 mm

4. Packaging information

Tape and reel information

The devices are packaged into embossed tapes for automatic placement systems. The tape is wound on 178 mm (7 inch) or 330 mm (13 inch) reels and individually packaged for shipment. General tape-and-reel specification data are available in a separate datasheet and indicate the tape size for various package types. Further tape-and-reel specifications can be found in the Electronic Industries Association EIA-Standard 481-1, 481-2, 481-3.

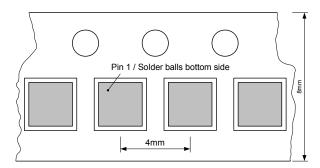


Figure 11: Tape dimensions (in mm)

ESPROS does not guarantee that there are no empty cavities in the tape. The pick-and-place machine should check for the presence of a chip during picking.

Pin 1 is marked on the bottom side of the chip, refer to Chapter 3.3.

5. Ordering information

Part number	Part name	Package	RoHS compliance
P100 378	epc611-CSP24	CSP24	Yes

Table 10: Ordering information

5.1. Chip version identification

■ Reading the extension -XXX of the part name on the packaging labels or delivery papers: epc611-CSP24-XXX.

Reading register P7[0x1B]. Refer to Chapter 12.8.

More detailed information regarding chip version as well as the latest sequencer code can be found in Chapter 13.6.

6. Hardware implementation

6.1. Block diagram

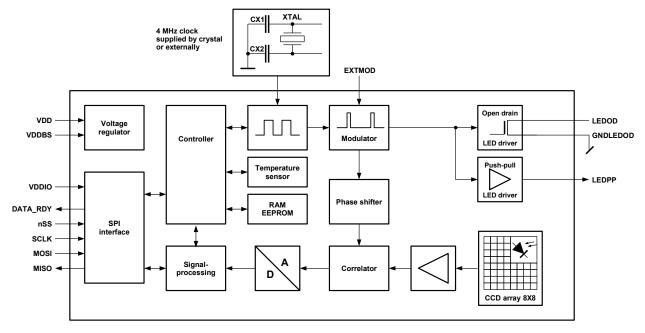


Figure 12: epc611 block diagram

Figure 12 shows the relationship between the functional blocks and the signal flow. Based on clock and mode setup, the modulation signal is generated and output over the LED driver to the external illumination (LED, VCSEL or laser diode LD). The illumination can be driven either directly by an open-drain MOS transistor (LEDOD) or digitally by the LEDPP output alternatively.

The pixel-field converts the returning IR light from the object to electrons. They are transferred depending on the phase information of the demodulation signal into two storage gates within each pixel (MGA and MGB). The AD conversion translates the phase information into a digital signal. After formatting, this is transmitted by the Serial Peripheral Interface (SPI) for external distance calculation.

All communication and/or data exchange with the epc611 occurs via the SPI interface.

The EEPROM holds default configuration and calibration data. The configuration is copied into the RAM registers during power up.

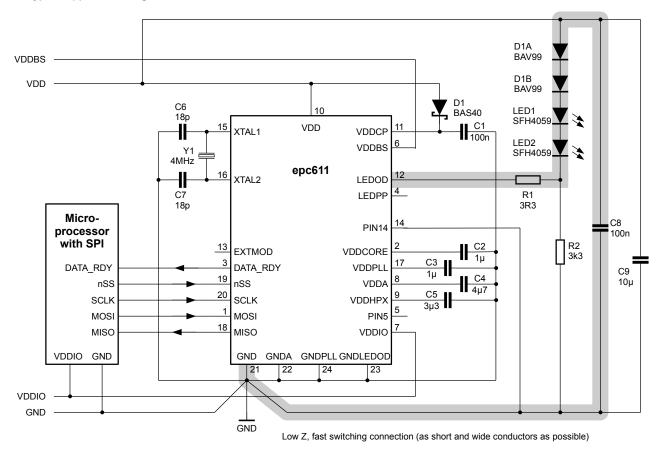


Figure 13: Typical application diagram

Part No.	Description	Pin No.		Value		Tolerance	Supply class V _{sc}	Comments
			Min.	Тур.	Max.			
C1	VDDCP	11 - 22	18 nF	100 nF	100 nF	±20 %	+12 V	Ceramic X7R
C2	VDDCORE	2 - 21	1 µF	1 µF	3.3 µF	±20 %	+1.8 V	Ceramic X7R
C3	VDDPLL	17 - 24	1 µF	1 µF	3.3 µF	±20 %	+1.8 V	Ceramic X7R
C4	VDDA	8 - 22	3.3 µF	4.7 μF	4.7 µF	±20 %	+5 V	Ceramic X7R
C5	VDDHPX	9 - 22	3.3 µF	3.3 µF	4.7 µF	±20 %	+10 V	Ceramic X7R
C6	XTAL1	15 - 21		See note 1			+1.8 V	Ceramic NP0
C7	XTAL1	16 - 21		See note 1			+1.8 V	Ceramic NP0
D1	VDD and VDDCP	10 - 11						Schottky diode
X1	XTAL	15 - 16		4 MHz		±100 ppm	+1.8 V	Quartz / Resonator

6.3. Application diagram part list

Table 11: Values of the components related to epc611 chip (13)

Notes:

¹ Refer to the datasheet of the crystal or resonator manufacturer, e.g. 18 pF

² Pin PIN5: Do not make any electrical connection except on a test pad (suggested)

6.4. Hardware implementation notes

- 1. epc611 is supplied with two positive (V_{DDIO} and V_{DD}) and one negative (V_{DDBS}) DC voltages. Further voltages are generated on-chip.
- 2. Internally generated supplies shall be decoupled by corresponding external capacitors. Decoupling capacitors must be placed next to each supply pair in order to minimise noise and instantaneous voltage drops. Do not use these voltages to supply any other circuitry.
- 3. $V_{\mbox{\tiny DD}}$ is the main supply. It needs to be stable and well regulated.
- V_{DDIO} supplies the SPI interface digital I/Os. It must match the microprocessor's I/O voltage levels e.g. to 3.3 V. The supply range is according the specifications in Table 1.
- V_{DDBS} voltage biases the pixel-field such as the reverse-bias of a photodiode. The use of a stable supply source with a low ripple is required. There is no circuit dependent current consumption, except the photo-generated current (refer to Table 1, note 3).

- 6. All GND pins must have a good, powerful common connection with a minimum of noise.
- 7. The D1 Schottky diode is vital to ensure the correct power-up of the device.
- Digital IO pins run up to 16 MHz and the high speed digital IO pin EXTMOD up to 80 MHz. The IO supply wires and layers need to be carefully designed and isolated so as to not introduce any noise onto the digital IO pins.
- 9. The nSS, SCLK, MOSI, and MISO signals refer to the SPI slave interface. Refer to Chapter 11.
- 10. DATA_RDY indicates valid image data. IMPORTANT: It is not permitted to have any pull-up or pull-down resistor on this pin including pins of the application's CPU. The pin configuration of the application's CPU must always be set to input and never to output.
- 11. EXTMOD is an option to inject an external modulation clock.
- 12. Pin PIN5: It is not permitted to have any electrical connection except on a test pad (suggested).
- 13. It is recommended to have "not connected pins" (PINxx) available on test pads. This helps in several ways e.g. checking for correct orientation of the chip or for short-cuts after assembly.
- 14. Pins not listed here or explained later have to be connected according to Figure 13.

6.5. Clock sources

6.5.1. System clock supply

- 1. XTAL1 and XTAL2 are the input/output pins of the internal oscillator. They can be used either with a 4.0 MHz crystal or resonator. The capacitor values C6 and C7 should follow the recommendation in the datasheet of the crystal or resonator (refer to Figure 13).
- Instead of a crystal, an external 4 MHz clock source can be connected to XTAL1. XTAL2 output pin left unconnected. The input clock signal level must match V_{DDPLL} supply level (see Table 1). If the external clock source voltage domain is above 1.8V, a resistor divider adapts it e.g. in Figure 14 and Table 12.
- 3. **IMPORTANT:** Precision and stability of the optical performance depends directly on this signal. Therefore, the external clock source must provide a clean, jitter-free and stable clock with fast rise and fall times.

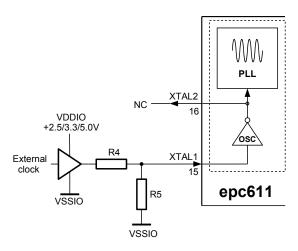


Figure 14: Resistor divider to adjust clock levels to V_DDPLL

Resistor	Clock	signal amplitu	de V _{CLK}
	2.5 V	3.3 V	5.0 V
R4	1.0 kOhm	1.0 kOhm	2.0 kOhm
R5	2.2 kOhm	1.2 kOhm	1.2 kOhm

Table 12: Resistor divider table

6.5.2. External modulation EXTMOD

The modulation clock can be supplied from an external clock source via the EXTMOD input, see Figure 15.

The external EXTMOD clock is used for example in concepts for reliable multi camera applications. It allows the use of other modulation patterns e.g. frequency-division multiple access (FDMA) or frequency hopping. These concepts are explained in detail in various relevant documents. The user is free to apply any digital waveform up to 80 MHz during frame acquisition as EXTMOD signal. The user is also free to use modulations such as pseudo-random edge jitter, dithering, etc.

The signal from the EXTMOD pin is used as input for register P4[0x05] if bit 6 in register P4[0x00] is set to 1, instead of the clock generated internally.

Refer for the effective LED modulation signal to register P4[0x05].

The unambiguity range and the integration time are in this case based on the EXTMOD:

Integration time = integration length multiplier * (Integration length + 1) *(1/ f_{mod_clk})

For more details refer to register P4[0x05], Chapter 7.5 and 7.8.

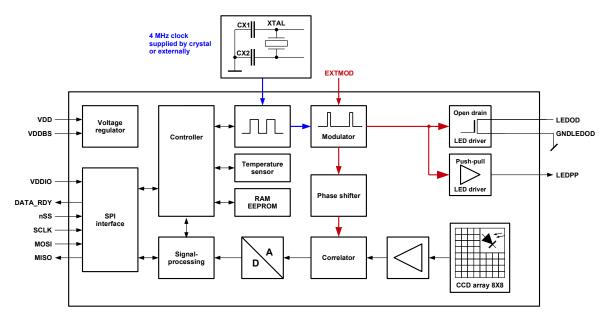


Figure 15: The EXTMOD signal flow (marked red)

6.6. Illumination (LED) driver

The chip can either directly drive laserdiodes (LD e.g. VCSELs) and LEDs (LEDOD pin) or supply the modulation signal at I/O level on LEDPP pin for driving external, more powerful illumination sources. The modulation signal is 50% duty-cycle square-wave modulated and toggles up to 20 MHz.

The register P4[0x10] allows various settings e.g. polarity (inverts both LEDOD and LEDPP pins), depending on the external LED circuit used.

IMPORTANT:

- There are certain non-modulating DC modes which keep LED driver output turned on. Users must take care to avoid any damage by not exceeding operating conditions and max. limits of components.
- LEDOD is a power driving pin. Take care of the additional on-chip heat dissipation depending on the switching current, the integration time and the frame rate. It heats up the chip additionally and causes an additional temperature drift.
- Phase stability of the illumination may suffer from temperature, aging, etc. of the components. This can result in a distance error. A corresponding compensation by the user's software is suggested.

6.6.1. LEDOD pin

LEDOD is an open-drain nMOS FET driver output. This allows direct drive of illumination sources e.g. LD or LED. When the LED driver is active (ON), the LED current flows through the resistor R1 into the LEDOD pin, through the on-chip driver and comes out of the chip on the VSSLED ground pin (13).

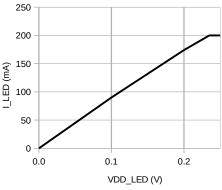


Figure 16: Typ. LEDOD output characteristics Refer for maximum values to 1 and 2

The LEDOD pin toggles up to 20 MHz, or according to the modulation clock, with a current maximum of 200 mA limited by the R1 resistor. This signal creates a lot of ground noise. Therefore, the VSSLED pin is decoupled from the other analog grounds internally. It must be shorted with the other analog ground pins using a low-ohmic connection the shortest distance possible on the PCB. This way, there will be minimal voltage differences in the ground planes of the board. The LED supply line must be isolated properly from any analog supply on the PCB to minimize noise coupling from the LED drivers.

The number of LEDs depends on the level of the LED supply voltage and the turned-on forward voltage drop of the LEDs. The maximum voltage to the LEDOD pin is limited by the resistor R2 during LED off state.

6.6.2. LEDPP pin

The LEDPP pin is the alternative push-pull driver providing symmetric rise/fall times to drive external illumination drivers. It works from the +2.5/+5.0V V_{DDIO} supply and swings in the same voltage range as the IO pins. Do not use SPI communication during integration time. LEDPP pin solely should toggle during integration time. As a result, the LEDPP signal is not affected by the switching noise of other signal lines. LEDPP = LOW (approx. 0V) corresponds to LEDOD = OFF (max. output voltage).

LEDOD and LEDPP pins must not be used at the same time for driving the external illumination. They exhibit different phase delays and this can result in incorrect distance measurements.

6.7. DLL (Delay line)

The modulation signal can intentionally be delayed in order to add a phase-shift between the modulation of the light source and the demodulation of the backscattered light, refer to 18.

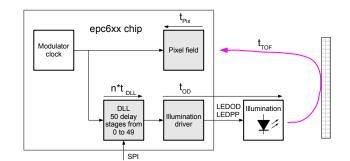


Figure 17: Block diagram of the DLL function

The purpose in doing this can be to ensure, the phase-shift between the modulated and the demodulated signal has a certain value in a specific distance range. For example, the highest distance accuracy with lowest distance noise can be achieved when the phase angle of demodulation is 45°. This is the case when all four DCS amplitudes have the same or a similar value. The worst situation is if one DCS pair is at its maximal amplitude whereas the other DCS pair is around zero (refer to 17).

The DLL can be enabled in register P5[0x0E] whereas the delay of the LED modulation can be set in steps t_{DLL} by register P3[0x13] (approx. 2ns/step). The exact step t_{DLL} can be calculated with the value and the formula listed in register P6[0x1A]. This value varies from chip to chip and is also temperature dependent. The user must characterize the overall temperature drift of the complete camera to match the compensation.

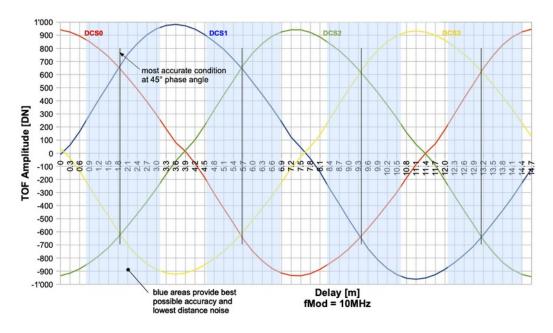


Figure 18: DCS amplitudes for the 4 DCSx (measurement data)

Example for 10 MHz modulation frequency:

If we want to optimize the accuracy of our TOF camera in the short range domain, e.g. 0m to 1m, the situation shown in 18 is not ideal at all. The modulation frequency of the data shown in 18 is 10 MHz whereas 50 DLL steps of approx. 2 ns are equivalent to 15 m distance. Shown in the diagram, the worst condition is in the first three DLL steps, which is equal to 0 ... 0.9 m. From then on, the distance accuracy improves until DLL step 12. In other words, the distance accuracy from distance 0.9 ... 3.0 m is very good, but not from 0 ... 0.9 m. In order to be within an accurate distance measurement regime, the DLL should be shifted by 3 steps which means that the LED is delayed by 6ns.

6.8. Pixel-field

6.8.1. Pixel architecture

The pixels are placed in groups of 2x2 pixels (UE, UO, LE, LO), referred to hereafter as "pixel group". They are binned depending on the operating mode. The pixel performs two basic operations: Measurement (integration) and readout (A/D conversion).

This pixel group architecture allows the epc611 to operate the pixel-field in different modes and in combinations thereof, according the following chapters.

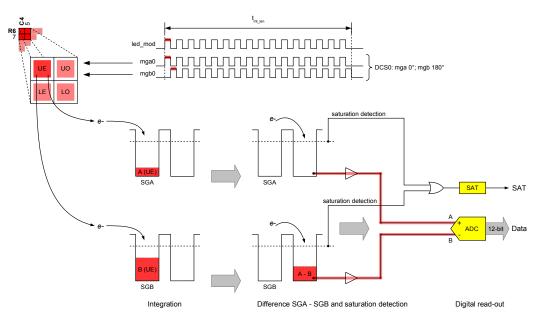
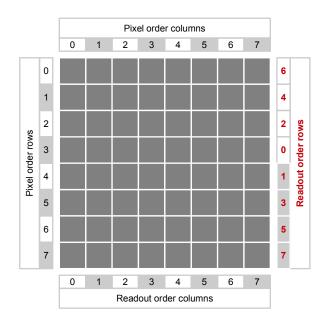


Figure 19: The 2x2 pixel group and simplified function overview


Each pixel has its own pair of storage gates, SGA and SGB. During integration, they accumulate the charges (e-) created by the modulated light reflected from the object (see 24). They are controlled by the mga and mgb demodulation signals. When the integration is finished, the stored charges of SGA and SGB are read out as the difference A - B (ambient-light suppression) and converted into a single 12 bit digital value and 1 bit saturation flag. The output value can be either positive or negative, depending on the demodulated phase and the offset of the signal chain.

6.8.2. Pixel-field organization and readout

The basic pixel-field of the epc611 is 8x8 pixels (20).

Parameter	Pixel	Units	
	Basic pixel	Binned pixel	
Pixel size	20 x 20	40 x 40	μm
Pixel-field organization	8 x 8	4 x 4	Pixel
Sensitivity	1x	approx. 4x	
Resolution	12	12	bit

Table 13: Pixel-field organization

Figure 20: Basic pixel-field

Alternatively, enhanced range-finder features use horizontally and vertically analog binned 2x2 pixel groups, so-called "binned pixels". Refer to 13 and for example 29. More details are listed in the descriptions of the different specific operating modes.

In general, the data readout of the pixel-field is vertically split in the middle into two equal parts, top and bottom. Refer to the right y-axis description in red in 20. This is due to the row readout which always converts two rows at same time, one from upper half and one from bottom half of the pixel-field, starting at the centre. The readout order for the columns is from left to right.

6.8.3. Pixel saturation detection

The pixels collect continuously modulated and non-modulated ambient-light during the integration period. Depending on these light intensities, sometimes the pixels collect more charge (over-exposure) than they can accommodate in their storage gates (refer to 19). In such a case, the 12 bit sample data is not valid and cannot be used for distance calculation. Therefore, each pixel generates a "saturation flag" together with the sample data. It is set if one or more (in case of binned or summed pixels) are saturated. Binned pixels cannot collect more charge than a basic single pixel. The saturation flag is embedded and transmitted in the SPI data, depending on the operating mode. Refer for details to the specific mode description and Chapter 7.9.

6.8.4. ADC conversion over- and underflow

If pixels are strongly illuminated, they can reach the top or bottom end of the AD converter. This will be indicated by the flags "ADC over- or underflow". Pixels, summed up on-chip, set this flag if one (or more) of the summing pixels reaches one of these limits. The flag is embedded and transmitted in the SPI data depending on the operating mode. Refer for details to the specific mode description and Chapter 7.9.

7. Imaging

7.1. epc611 functional overview

The epc611 design offers the possibility to adapt the properties of the chip to the user's target application. Instead of operating the chip as an TOF imager with 8x8 pixel, the configuration of the pixel-field can be changed to optimized, case specific, range-finder applications e.g. lowest noise, fastest speed, highest distance dynamic, no motion-blur, a mixture of these, etc. An overview is shown in 14 and 15 whereas more detailed information is available in the chapter of each specific operation mode.

Name	Description	Additional features
ТІМ	8x8 pixel 3D TOF Imager	
ULN	Ultra low noise range-finder	Digital sum of 8x8 pixels
UFS	Ultra fast and sensitive range-finder	Digital sum of 2x2 binned pixels
UHD	Ultra high dynamic (HDR) range-finder	Low noise, 8 different int. times, each digital sum of 8 pixels
GIM	8x8 pixel grayscale imager	
GBI	4x4 pixel grayscale binned pixel imager	Binned pixels

Table 14: Basic mode overview

Name	Frame rate ²	Sensitivity	ensitivity Signal output (Reference TIM mode)				Dynamic range
	1 DCS rolling	per pixel size	Noise reduction	max. signal	Da	ata format	Max. increase
TIM		/ 20 µm			12 bit	± 2'047 LSB	
ULN	~ 1.1x	/ 20 µm	8x	64x	18 bit	± 131'071 LSB	
UFS	ultra fast: \sim 3.2x ¹	4x / 40 µm	2x	4x	14 bit	± 8'191 LSB	
UHD	~ 1.1x	/ 20 µm	2.8x	8x	15 bit	± 16'383 LSB	ultra HDR: ≤ 8x

Table 15: Basic features TOF modes (reference: TIM mode)

Notes:

¹ UFS mode uses a reduced photosensitive area 80x80 µm instead of 160x160 µm. This allows having 4x more illumination on the chip surface by using same optical emitting power with an adequately adapted receiving lens system.

² Find more details in Chapter 7.4.

Notes on distance resolution and noise:

4 DCS mode:

The distance resolution is the unambiguity distance divided by 8 times the current TOF amplitude (educated guess). The distance noise depends on the current TOF amplitude and decreases with increasing TOF amplitude. Refer to the graph of the corresponding operation mode e.g. 28.

■ 2 DCS mode:

Decreases distance resolution by factor 2 compared to 4 DCS mode. Increases distance noise by factor 1.4 compared to 4 DCS mode.

Data reduction:

Distance data - Take care, data reduction of data formats during distance calculation and compensation can/will increase distance noise. Recommendation: Do data reduction only at last stage of the distance calculation and compensation.

Values used in the manual for specification, unless otherwise stated: DCS data: normalized to 12 bit, signed integer

TOF amplitude data: normalized to 11 bit, unsigned integer.

7.2. Time-of-flight modes (TOF)

The epc611 can be used in two basic time-of-flight application modes:

- Imager mode : Multipoint measurement by using the 8x8 pixel 3D TOF imager mode (TIM).
- Range-finder mode: Single point measurement. It is applicable for all the other modes.

IMPORTANT ADVICE FOR RANGE-FINDER MODES:

1. Homogeneous illumination of the pixel-field

The field of view of the entire 8x8 pixel pixel-field must be equal to or smaller than the target. Conversely, the size of the 8x8 pixel pixel-field must be smaller than the spot-size image of the object on the chip.

Rule: The pixels collect all the photons in their FOV independent of target's distances and reflectivities. The distance will be calculated based on the collected photons (DCSx values of the pixels). The result, sum over the involved pixels, is equally to the vectorial addition of their vectors.

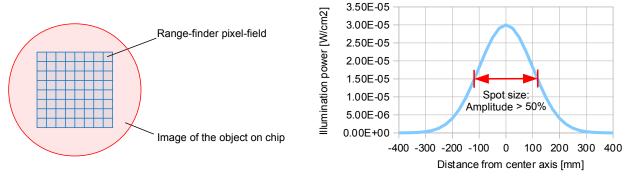
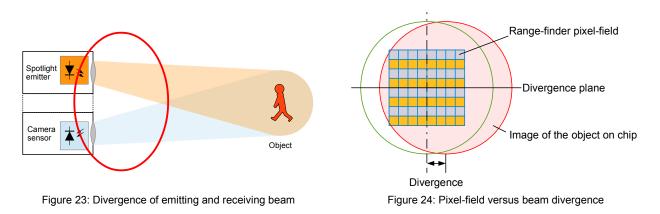
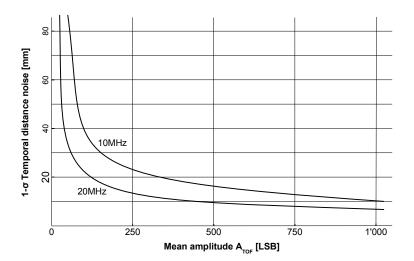
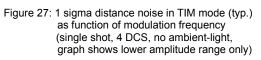



Figure 21: Homogeneous illumination

Figure 22: Intensity of spot size (principle graph)


 Orientation of the pixel-field versus the divergence of the emitting and receiving beam The plane formed by the emitting and receiving diverging beam axis must be parallel to the row axis. It reduces the influences of the intensity variations over distance, caused by divergence. The effect is usually visible due to fact that the spot on the object is not perfectly illuminated evenly.



7.2.1. TIM mode: 8x8 pixel 3D Tof IMager

					I	lmag	e aco	quisi	tion										Dat	a rea	dou	t			
					_	el orde				_	Acquisi pixel c								lout or						out per
Γ		0	0	1	2	3	4	5	6	7		DCSx			6	0	1	2	3	4	5	6	7		DCSx
		1									t _{INT}	DCSx			4									t _{INT}	DCSx
		2									t _{INT}	DCSx			4									t _{INT}	DCSx
	rows	2									t _{INT}	DCSx		er rows	2									t _{INT}	DCSx
	Pixel order rows	4									t _{INT}	DCSx		Readout order rows	1									t _{INT}	DCSx
	Pixel	5									t _{INT}	DCSx		Reado	3									t _{INT}	DCSx
		6									t _{INT}	DCSx			5									t _{INT}	DCSx
		7									t _{INT}	DCSx			7									t _{INT}	DCSx
			Integra Uses ir and int	ntegra egrati	ation tir ion len	me mul igth P5	[Óx02],	P5[0x0	03]		acquisiti	on			_	=iaur	e 26	Pixe	el-field	d ora:	aniza	ition	data r	eadout	
	of r		els / pi					_	64 pcs / 20 x 20 µm				Nc	of		ls / p									
			itive a						160 x 160 μm							tion					64 pcs / 20 x 20 μm no				
Sen	sitiv	vity	incre	ase				-	no, basic sensitivity				Nc	ise r	edu	ction				r	10				
nteg	gra	tion	times	s pe	r fran	ne		1x	t _{int}				Οι	Itput	data	a forr	nat			1	2 bit	: ± 2	047 L	.SB	
)yn	am	ic d	listand	ce ra	ange	incre	ase	no					SF	l tra	nsm	issio	n pe	r fran	ne	e	64 pix	kels i	n 96 v	vords	
DCS	S pe	er fr	ame					1x	DCS	x						e rate 50 με		time		ι	ıp to	966	TOF i	mages	/ sec.

Table 16: Operating mode specification

Operating mode selection: Depends on the number of DCS frames per SHUTTER stimulation:

	Register	P1[0x02]	P1[0x05]	P4[0x12]	P4[0x15]
Mode	DCS / SHUTTER	DCS selection 1 st frame	DCS selection 2 nd frame	Modulation selection	Readout mode
4 DCS	DCS 0, 1, 2, 3	0x34	0x3D	0x30	
2 DCS	DCS 0, 1	0x34	0x3D	0x10	
	DCS 2, 3	0x32	0x33	0000	
1 DCS rolling	DCS 0	0x34			0x23
	DCS 1	0x31	Not used	0x00	
	DCS 2	0x32	not used	0x00	
	DCS 3	0x33	-		

Table 17: Register settings for the operating mode selection

Integration time setting: Follow Chapter 7.5.1, Single integration time per frame.

Data readout: 12 bit/pixel, 64 pixel/frame with 96 SPI accesses

It starts in the centre of the vertical axis and uses a 2 pixel packed data format (pixel pair). It follows Table 18 and 19. The application must rearrange the pixels according the pixel-field orientation. The readout sequence is: 3 SPI readouts / pixel pair, 4 pair readouts / row, 8 row readouts / frame = 96 SPI readouts in total.

	No sum readout: A pair of even and odd column pixels are packed into 3 SPI data bytes. Read 3x register P2[0x0C] per pixel pair																			
1st SPI data byte: MSByte 2nd SPI data byte 3rd SPI data byte: LSE								SByt	e											
D23	D23 D22 D21 D20 D19 D18 D17 D16					D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D7 D6 D5 D4 D3 D2 D1 D0				D0
	PIXEL_EVEN[11:4]						PIXEL_EVEN[3:0] PIXEL_ODD[3:0]							PIX	EL_O	DD[1	1:4]			

Table 18: Pixel data SPI readout: Pixel pair read; refer to 26

	1 st pair read / row	2 nd pair read / row	3 rd pair read / row	4 th pair read / row
1 st row read	Pixels row 3 / column 0 & 1	Pixels row 3 / column 2 & 3	Pixels row 3 / column 4 & 5	Pixels row 3 / column 6 & 7
2 nd row read	Pixels row 4 / column 0 & 1	Pixels row 4 / column 2 & 3	Pixels row 4 / column 4 & 5	Pixels row 4 / column 6 & 7
3 rd row read	Pixels row 2 / column 0 & 1	Pixels row 2 / column 2 & 3	Pixels row 2 / column 4 & 5	Pixels row 2 / column 6 & 7
4 th row read	Pixels row 5 / column 0 & 1	Pixels row 5 / column 2 & 3	Pixels row 5 / column 4 & 5	Pixels row 5 / column 6 & 7
7 th row read	Pixels row 0 / column 0 & 1	Pixels row 0 / column 2 & 3	Pixels row 0 / column 4 & 5	Pixels row 0 / column 6 & 7
8 th row read	Pixels row 7 / column 0 & 1	Pixels row 7 / column 2 & 3	Pixels row 7 / column 4 & 5	Pixels row 7 / column 6 & 7

Table 19: Pixel-field SPI double-row readout order; refer to Figure 26,

based on pixel-field coordinates Figure 25

Validity parameter	Embedded data ¹	Data bit
Pixel saturation	0x 07 FF	Read register P2[0x0D] and P2[0x0E] ²
ADC overflow	0x 07 FE	Read register P2[0x10] and P2[0x11] ²
ADC underflow	0x 08 00	Read register P2[0x12] and P2[0x13] ²
Valid pixel data	0x 08 01 < < 0x 07 FD	[11:0]

Table 20: Data validity table

Note 1: Default is embedded data format. Can be switched off by bit 6 of the register P4[0x15]. Note 2: More details can be found in the corresponding register description.

ction Command MOSI		MOSI	MISO	Page	Reg	Value	Comment
		11001		1 age	i teg	Fund	
Power up	NOP	0x 00 00	0x				After startup
	- repeat until IDLE:						
	NOP	0x 00 00	0x 00 00				IDLE; ready for communication
	- load sequencer program						
Adjust default settings 1	Page select	0x 81 00	0x 00 00	1			Page 1
(all chip versions)	Adjust 1	0x 5A 00	0x 81 00	1	0x1A	0x00	
	Page select	0x 85 00	0x 5A 00	5			Page 5
	Adjust 2	0x 4B 00	0x 85 00	5	0x0B	0x00	
	NOP	0x 00 00	0x 4B 00				optional
Adjust default settings 2	Page select	0x 84 00	0x 00 00	4			Page 4
(only for WAFER ID <13)	Adjust 3	0x 48 1F	0x 84 00	4	0x08	0x1F	
	Page select	0x 85 00	0x 48 1F	5			Page 5
	Adjust 4	0x 4E 01	0x 85 00	5	0x0E	0x01	
	Page select	0x 86 00	0x 4E 01	6			Page 6
	Adjust 5	0x51 62	0x 86 00	6	0x11	0x62	
	NOP	0x 00 00	0x51 62				optional
Set mode	Page select	0x 84 00	0x 00 00	4			Page 4
	Set modulation selection	0x 52 30	0x 84 00	4	0x12	0x30	
	Set TIM mode	0x 55 23	0x 52 30	4	0x15	0x23	Set 4 DCS 8x8 pixel Tof Imager Mode
	NOP	0x 00 00	0x 55 23				optional
			-				
Set modulation frequency	Page select	0x 84 00	0x 00 00	4			optional, because page 4 is already selected
	Set mod. freq. to 10MHz	0x 45 01	0x 84 00	4	0x05	0x01	Is also integration time base
	NOP	0x 00 00	0x 45 01				optional
	•						
Set integration time	Page select	0x 85 00	0x 00 00	5			Page 5
	Set int. time 1.6384ms	0x 40 00	0x 85 00	5	0x00	0x00	Integration time multiplier, high byte
		0x 41 01	0x 40 00	5	0x01	0x01	Integration time multiplier, low byte (lowest number = 1)
		0x 42 FF	0x 41 01	5	0x02	0xFF	Integration length, high byte
		0x 43 FF	0x 42 FF	5	0x03	0xFF	Integration length, low byte
	NOP	0x 00 00	0x 43 FF				optional
Start measurement	Page select	0x 82 00	0x 00 00	2			Page 2
	Set TRIGGER	0x 58 01	0x 82 00	2	0x18	0x01	Starts measurement
	NOP	0x 00 00	0x 58 01				optional
Read frame DCSx	- repeat for DCS0 DCS3:						
Read row	- repeat for 4 double-rows per f		0.00.00				
	Page select	0x 82 00	0x 00 00	2			optional, because page 2 is already selected
	Read STATUS - repeat until DATA RDY:	0x 35 00	0x 82 00	2	0x15		
							Wait for end of exposure. Refer to imaging timing
	Read STATUS NOP	0x 35 00	0x 35 00	2	0x15		
	NOP	0x 00 00	0x 35 98				Data ready – or alternatively DATA_RDY pin
	READ data 1	0x 2C 00	0x 00 00	2	0x0C		24 bytes available for readout = readout of a double-row Readout double-row, uses embedded data format
	READ data 1 READ data 2	0x 2C 00 0x 2C 00	0x 00 00 0x 2C	2	0x0C 0x0C		Readout double-row, uses embedded data format MSByte0 (Row 3, pixel 0)
	READ data 2 READ data 3	0x 2C 00 0x 2C 00	0x 2C 0x 2C	2	0x0C		LSNibble0 LSNibble1
	READ data 3	0x 2C 00	0x 2C 0x 2C	2	0x0C		MSByte1 (Row 3, pixel 1)
	READ data 4 READ data 5	0x 2C 00 0x 2C 00	0x 2C 0x 2C	2	0x0C		MSByte1 (Row 3, pixel 1) MSByte2 (Row 3, pixel 2)
				<u> </u>	0,00		1100 yoz (110w 0, pixel z)
			 0x 2C	2	0x0C		 MSByte13 (Row 4, pixel 5)
	READ data 22	0x 2C 00		-			
	READ data 22	0x 2C 00		2	0000		MSByte14 (Row 4, pixel 6)
	READ data 23	0x 2C 00	0x 2C	2	0x0C		MSByte14 (Row 4, pixel 6)
	READ data 23 READ data 24	0x 2C 00 0x 2C 00	0x 2C 0x 2C	2 2	0x0C 0x0C		LSNibble14 LSNibble15
	READ data 23	0x 2C 00	0x 2C				
Next row	READ data 23 READ data 24 NOP	0x 2C 00 0x 2C 00 0x 00 00	0x 2C 0x 2C 0x 2C				LSNibble14 LSNibble15
Next row	READ data 23 READ data 24	0x 2C 00 0x 2C 00 0x 00 00	0x 2C 0x 2C 0x 2C				LSNibble14 LSNibble15
	READ data 23 READ data 24 NOP - repeat 3x "Read row" for next	0x 2C 00 0x 2C 00 0x 00 00 3 double-row	0x 2C 0x 2C 0x 2C				LSNibble14 LSNibble15
Next row Next DC Sx	READ data 23 READ data 24 NOP	0x 2C 00 0x 2C 00 0x 00 00 3 double-row	0x 2C 0x 2C 0x 2C				LSNibble14 LSNibble15
	READ data 23 READ data 24 NOP - repeat 3x "Read row" for next	0x 2C 00 0x 2C 00 0x 00 00 3 double-row	0x 2C 0x 2C 0x 2C				LSNibble14 LSNibble15

Table 21: Basic example of TIM mode

7.2.2. ULN mode: Ultra Low Noise range-finder (sum of 8x8 pixels)

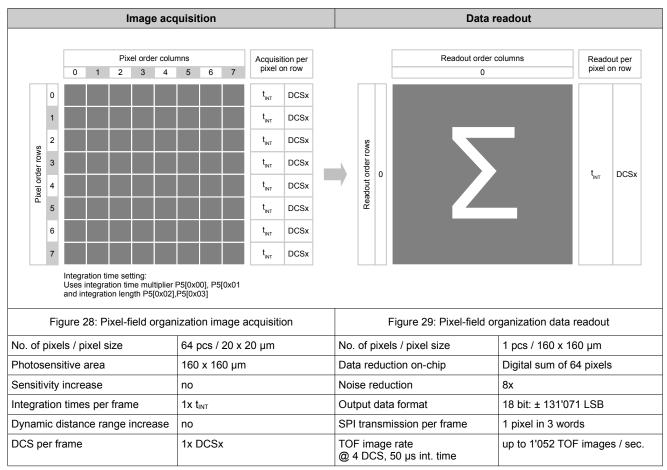
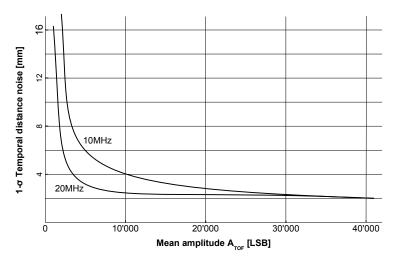
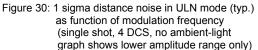




Table 22: Operating mode specification

Operating mode selection: Depends on the number of DCS frames per SHUTTER stimulation:

	Register	P1[0x02]	P1[0x05]	P4[0x12]	P4[0x15]
Mode	DCS / SHUTTER	DCS selection 1 st frame	DCS selection 2 nd frame	Modulation selection	Readout mode
4 DCS	DCS 0, 1, 2, 3	0x34	0x3D	0x30	
2 DCS	DCS 0, 1	0x34	0x3D	0x10	
	DCS 2, 3	0x32	0x33	0000	
1 DCS rolling	DCS 0	0x34			0x27
	DCS 1	0x31	Not used	0x00	
	DCS 2	0x32	not used	0x00	
	DCS 3	0x33			

Table 23: Operating mode selection

Integration time setting: Follow Chapter 7.5.1, Single integration time per frame.

Data readout: 1 pixel / frame with 3 SPI accesses

The data readout is 18 bit/pixel and only 1 pixel per frame. It follows 24.

			adout er P2[(per p	ixel																	
	1 st SPI data byte: MSByte 2 nd SPI data byte 3 rd SPI data byte: LSByte																						
D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	SUM_DATA[17:0] 0 0 0 UF OF SA																						

Table 24: Pixel data SPI readout: 1 pixel only; refer to Figure 29

Validity parameter	Embedded data ¹	Data bit
Pixel saturation	0x 01 FF FF	SA
ADC overflow	0x 01 FF FE	OF
ADC underflow	0x 02 00 00	UF
Pixel data	0x 02 00 01 < < 0x 01 0F FD	[23:6]

Table 25: Data validity table

Note 1: Default is embedded data format. Can be switched off by bit 6 of the register P4[0x15].

Action	Command	MOSI	MISO	Page	Reg	Value	Comment
Action	Command	MOSI	MISO	Faye	Reg	value	Comment
Power up	NOP	0x 00 00	0x				After startup
	- repeat until IDLE:						
	NOP	0x 00 00	0x 00 00				IDLE; ready for communication
	- load sequencer program						
Adjust default settings 1	Page select	0x 81 00	0x 00 00	1			Page 1
(all chip versions)	Adjust 1	0x 5A 00	0x 81 00	1	0x1A	0x00	
	Page select	0x 85 00	0x 5A 00	5			Page 5
	Adjust 2	0x 4B 00	0x 85 00	5	0x0B	0x00	
	NOP	0x 00 00	0x 4B 00				optional
Adjust default settings 2	Page select	0x 84 00	0x 00 00	4			Page 4
(only for WAFER ID <13)	Adjust 3	0x 48 1F	0x 84 00	4	0x08	0x1F	
	Page select	0x 85 00	0x 48 1F	5			Page 5
	Adjust 4	0x 4E 01	0x 85 00	5	0x0E	0x01	
	Page select	0x 86 00	0x 4E 01	6			Page 6
	Adjust 5	0x51 62	0x 86 00	6	0x11	0x62	
	NOP	0x 00 00	0x51 62				optional
Set mode	Page select	0x 84 00	0x 00 00	4			Page 4
	Set modulation selection	0x 52 30	0x 84 00	4	0x12	0x30	
	Set ULN mode	0x 55 27	0x 52 30	4	0x15	0x27	Set 4 DCS Ultra Low-Noise mode
	NOP	0x 00 00	0x 55 27				optional
Cat modulation fraguancy	Daga aslast	0 × 94.00	0 × 00.00	4			optional because nore (is already calented
Set modulation frequency	Page select	0x 84 00	0x 00 00 0x 84 00	4	0x05	0.01	optional, because page 4 is already selected
	Set mod. freq. to 10MHz NOP	0x 45 01 0x 00 00	0x 84 00 0x 45 01	4	0,005	0x01	Is also integration time base optional
	NOF	00.00.00	02 45 01				opuonai
Set integration time	Page select	0x 85 00	0x 00 00	5			Page 5
oct integration time	Set int. time 1.6384ms	0x 40 00	0x 85 00	5	0x00	0x00	Integration time multiplier, high byte
		0x 40 00	0x 40 00	5	0x00	0x01	Integration time multiplier, low byte (lowest number = 1)
		0x 42 FF	0x 41 01	5	0x02	0xFF	Integration length, high byte
		0x 43 FF	0x 42 FF	5	0x03	0xFF	Integration length, low byte
	NOP	0x 00 00	0x 43 FF			-	optional
	-						
Start measurement	Page select	0x 82 00	0x 00 00	2			Page 2
	Set TRIGGER	0x 58 01	0x 82 00	2	0x18	0x01	Starts measurement
	NOP	0x 00 00	0x 58 01				optional
Read frame DCSx	- repeat for DCS0 DCS3:						
Read row	- read 1 pixel per frame:						
	Page select	0x 82 00	0x 00 00	2			optional, because page 2 is already selected
	Read STATUS	0x 35 00	0x 82 00	2	0x15		
	- repeat until DATA_RDY:						Wait for end of exposure. Refer to imaging timing
	Read STATUS	0x 35 00	0x 35 00	2	0x15		
	NOP	0x 00 00	0x 35 83				Data ready – or altematively DATA_RDY pin
	READ data 1	0x 34 00	0x 00 00	2	0x14		Readout 1 pixel, uses embedded data format
	READ data 2	0x 34 00	0x 34	2	0x14		MSByte0
	READ data 3	0x 34 00	0x 34	2	0x14		2 nd Byte0
	NOP	0x 00 00	0x 34				LSByte0
Next DCSx	- repeat 3x "Read frame DCSx"	for next 3 fra	mes				
End measurement							

Table 26: Basic example of ULN mode

7.2.3. UFS mode: Ultra Fast and Sensitive range-finder (sum of 2x2 binned pixels)

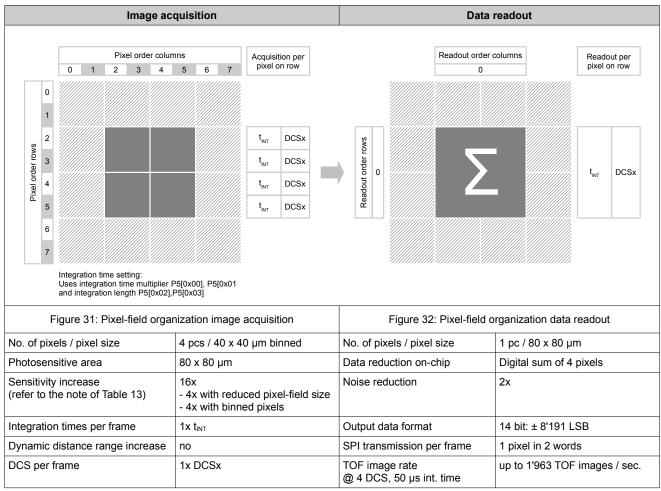
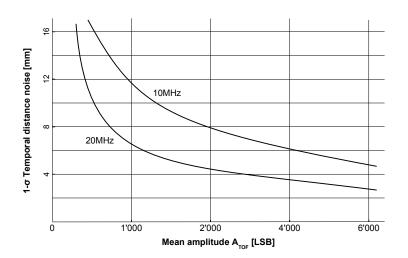
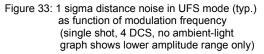




Table 27: Operating mode specification

Operating mode selection: Depends on the number of DCS frames per SHUTTER stimulation:

	Register	P1[0x02]	P1[0x05]	P4[0x12]	P4[0x15]
Mode	DCS / SHUTTER	DCS selection 1 st frame	DCS selection 2 nd frame	Modulation selection	Readout mode
4 DCS	DCS 0, 1, 2, 3	0x34	0x3D	0x30	
2 DCS	DCS 0, 1	0x34	0x3D	0x10	
	DCS 2, 3	0x32	0x33	0000	
1 DCS rolling	DCS 0	0x34			0x2B
	DCS 1	0x31	Not used	0x00	
	DCS 2	0x32	Not used	0x00	
	DCS 3	0x33			

Table 28: Operating mode selection

Integration time setting: Follow Chapter 7.5.1, Single integration time per frame.

Data readout: 1 pixel / frame with 2 SPI accesses

The data readout is 14 bit/pixel and only 1 pixel per frame. It follows Table 24.

	sum rea x registe		4] per p	ixel											
		1 st S	SPI data I	oyte: MS	Byte					2 nd \$	SPI data	byte: LS	Byte		
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				·		SUM_DA	TA[13:0]							OU	SA

Table 29: Pixel data SPI readout: 1 pixel only; refer to 32

Validity parameter	Embedded data ¹	Data bit
Pixel saturation	0x 1F FF	SA
ADC overflow	0x 1F FE	OU
ADC underflow	0x 20 00	OU
Pixel data	0x 20 01 < < 0x 1F FD	[15:2]

Table 30: Data validity table

Note 1: Default is embedded data format. Can be switched off by bit 6 of the register P4[0x15].

Action	Command	MOSI	MISO	Page	Reg	Value	Comment
				-	-		
Power up	NOP	0x 00 00	0x				After startup
	- repeat until IDLE:	-					
	NOP	0x 00 00	0x 00 00				IDLE; ready for communication
	- load sequencer program						
Adjust default settings 1	Page select	0x 81 00	0x 00 00	1			Page 1
(all chip versions)	Adjust 1	0x 5A 00	0x 81 00	1	0x1A	0x00	
	Page select	0x 85 00	0x 5A 00	5			Page 5
	Adjust 2	0x 4B 00	0x 85 00	5	0x0B	0x00	
	NOP	0x 00 00	0x 4B 00				optional
Adjust default settings 2	Page select	0x 84 00	0x 00 00	4			Page 4
(only for WAFER ID <13)	Adjust 3	0x 48 1F	0x 84 00	4	0x08	0x1F	
	Page select	0x 85 00	0x 48 1F	5			Page 5
	Adjust 4	0x 4E 01	0x 85 00	5	0x0E	0x01	
	Page select	0x 86 00	0x 4E 01	6			Page 6
	Adjust 5	0x51 62	0x 86 00	6	0x11	0x62	
	NOP	0x 00 00	0x51 62				optional
Set mode	Page select	0x 84 00	0x 00 00	4			Page 4
	Set modulation selection	0x 52 30	0x 84 00	4	0x12	0x30	
	Set UFS mode	0x 55 2B	0x 52 30	4	0x15	0x2B	Set 4 DCS Ultra Fast & Sensitive mode
	NOP	0x 00 00	0x 55 2B				optional
	-	-					
Set modulation frequency	Page select	0x 84 00	0x 00 00	4			optional, because page 4 is already selected
	Set mod. freq. to 10MHz	0x 45 01	0x 84 00	4	0x05	0x01	Is also integration time base
	NOP	0x 00 00	0x 45 01				optional
	-	-	•				
Set integration time	Page select	0x 85 00	0x 00 00	5			Page 5
	Set int. time 1.6384ms	0x 40 00	0x 85 00	5	0x00	0x00	Integration time multiplier, high byte
		0x 41 01	0x 40 00	5	0x01	0x01	Integration time multiplier, low byte (lowest number = 1)
		0x 42 FF	0x 41 01	5	0x02	0xFF	Integration length, high byte
		0x 43 FF	0x 42 FF	5	0x03	0xFF	Integration length, low byte
	NOP	0x 00 00	0x 43 FF				optional
Start measurement	Page select	0x 82 00	0x 00 00	2			Page 2
	Set TRIGGER	0x 58 01	0x 82 00	2	0x18	0x01	Starts measurement
	NOP	0x 00 00	0x 58 01				optional
Read frame DCSx	- repeat for DCS0 DCS3:						
Read row	- read 1 pixel per frame:	1					
	Page select	0x 82 00	0x 00 00	2			optional, because page 2 is already selected
	Read STATUS	0x 35 00	0x 82 00	2	0x15		
	- repeat until DATA_RDY:	1	1				Wait for end of exposure. Refer to imaging timing
	Read STATUS	0x 35 00	0x 35 00	2	0x15		
	NOP	0x 00 00	0x 35 82	_			Data ready – or alternatively DATA_RDY pin
	READ data 1	0x 34 00	0x 00 00	2	0x14		Readout 1 pixel, uses embedded data format
	READ data 2	0x 34 00	0x 34	2	0x0C		MSByte0
	NOP	0x 00 00	0x 34				LSByte0
Next DCSx	- repeat 3x "Read frame DCSx"	for next 3 fran	nes				
End measurement							

Table 31: Basic example of UFS mode

					l	mage	e aco	quisit	tion							Data r	readout		
					Pixe	el orde	er colu	mns			Acquisit					Readout order	columns	Reado	
			0	1	2	3	4	5	6	7	pixel o	n row				0		pixel o	n row
		0									t	DCSx			6	Σ		t _{int_row0}	DCSx
		1									t _{INT_ROW1}	DCSx			4	Σ		t _{int_row1}	DCSx
		2									t _{INT_ROW2}	DCSx		SWC	2	Σ		t _{int_row2}	DCSx
	Pixel order rows	3									t _{int_rows}	DCSx		Readout order rows	0	Σ		t _{int_rows}	DCSx
	ixel or	4									t _{INT_ROW4}	DCSx		adout o	1	Σ		t	DCSx
	₽.	5									t _{INT_ROW5}	DCSx		Re	3	Σ		t _{int_rows}	DCSx
		6									t _{int_row6}	DCSx			5	Σ		t _{INT_ROW6}	DCSx
		7									t _{int_row7}	DCSx			7	Σ		t _{INT_ROW7}	DCSx
			Uses	ntegra	me set ition tin on lenç	ne mul													
		Fig	gure	34: F	'ixel-f	ield c	orgar	nizatio	on im	age a	acquisitio	on			F	Figure 35: Pixel-field o	rganization data	readout	
No.	of p	oixe	ls / p	ixel s	size			64	pcs /	20 x	20 µm		No.	of p	oixel	s / pixel size	8 pcs / 160 x 20) µm	
Phot	tos	ens	itive	area				160) x 16	60 µm	า		Data	a re	duc	tion on-chip	Digital sum of 8	8 pixels	
Sen	ensitivity increase no						Nois	se r	eduo	ction	2.8x								
Integ	tegration times per frame 8x t _{INT}						Out	put	data	a format	15 bit: ± 16'383	LSB							
Dyna	am	ic d	istan	ce ra	inge i	incre	ase	8x f	or ra	nge i	n dB		SPI transmission per frame 8 pixel in 16 w			8 pixel in 16 wo	words		
DCS	DCS per frame 1x DCSx				TOF image rate @ 4 DCS, 50 µs int. time up to 518 TOF images/ se			sec.											

7.2.4. UHD mode: Ultra High Dynamic range-finder, low noise (8 different int. times, each sum of 8 pixels)

Table 32: Operating mode specification

Operating mode selection: Depends on the number of DCS frames per SHUTTER stimulation:

	Register	P1[0x02]	P1[0x05]	P4[0x12]	P4[0x15]
Mode	DCS / SHUTTER	DCS selection 1 st frame	DCS selection 2 nd frame	Modulation selection	Readout mode
4 DCS	DCS 0, 1, 2, 3	0x34	0x3D	0x38	
2 DCS	DCS 0, 1	0x34	0x3D	0.40	
	DCS 2, 3	0x32	0x33	0x18	
1 DCS rolling	DCS 0	0x34			0x2F
	DCS 1	0x31	Netwood	000	
	DCS 2	0x32	Not used	0x08	
	DCS 3	0x33			

Table 33: Operating mode selection

Integration time setting: Follow Chapter 7.5.2, Multiple integration time per frame.

Data readout: 8 pixel / frame with 16 SPI accesses

The data readout is 15 bit/pixel. It starts in the centre of the vertical axis, has 1 pixel per row and follows 34 and 35. The application must rearrange the pixels according the pixel-field orientation.

	sum rea x registe		4] per p	ixel											
		ter P2[0x14] per pixel 1 st SPI data byte: MSByte D13 D12 D11 D10 D9								2 nd \$	SPI data	byte: LSI	Byte		
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						SUN	I_DATA[14:0]							SA

Table 34: Pixel data SPI readout

1 st read	2 nd read	3 rd read	4 th read	5 th read	6 th read	7 th read	8 th read
Pixel row 3	Pixel row 4	Pixel row 2	Pixel row 5	Pixel row 1	Pixel row 6	Pixel row 0	Pixel row 7
t _{INT_ROW3}	t _{INT_ROW4}	$t_{\text{INT}_{ROW2}}$	t _{INT_ROW5}	t _{INT_ROW1}	$\mathbf{t}_{INT_{ROW6}}$	$t_{\text{INT}_{ROW6}}$	t _{INT_ROW7}

Table 35: SPI double-row readout order; refer to Figure 35

Validity parameter	Embedded data ¹	Data bit
Pixel saturation	0x 3F FF	SA
ADC overflow	0x 3F FE	n/a
ADC underflow	0x 40 00	n/a
Valid pixel data	0x 40 01 < < 0x 3F FD	[15:1]

Table 36: Data validity table

Note 1: Default is embedded data format. Can be switched off by bit 6 of the register P4[0x15].

Action	Command	MOSI	MISO	Page	Reg	Value	Comment
				-			
Power up	NOP	0x 00 00	0x				After startup
	- repeat until IDLE:						
	NOP	0x 00 00	0x 00 00				IDLE; ready for communication
	- load sequencer program						
Adjust default settings 1	Page select	0x 81 00	0x 00 00	1			Page 1
(all chip versions)	Adjust 1	0x 5A 00	0x 81 00	1	0x1A	0x00	
(Page select	0x 85 00	0x 5A 00	5			Page 5
	Adjust 2	0x 4B 00	0x 85 00	5	0x0B	0x00	
	NOP	0x 00 00	0x 4B 00				optional
Adjust default settings 2	Page select	0x 84 00	0x 00 00	4			Page 4
(only for WAFER ID <13)	Adjust 3	0x 48 1F	0x 84 00	4	0x08	0x1F	
	Page select	0x 85 00	0x 48 1F	5	0.05		Page 5
	Adjust 4 Page select	0x 4E 01 0x 86 00	0x 85 00 0x 4E 01	5 6	0x0E	0x01	Page 6
	Adjust 5	0x 50 00 0x51 62	0x 4E 01 0x 86 00	6	0x11	0x62	raye u
	NOP	0x 00 00	0x51 62	-			optional
Set mode	Page select	0x 84 00	0x 00 00	4			Page 4
	Set modulation selection	0x 52 38	0x 84 00	4	0x12	0x38	
	Set UHD mode	0x 55 2F	0x 52 38	4	0x15	0x2F	Set 4 DCS Ultra High-Dynamic range mode
	NOP	0x 00 00	0x 55 2F				optional
Out and detter	Dava aslast	001.00	000.00				
Set modulation frequency	Page select Set mod. freq. to 10MHz	0x 84 00 0x 45 01	0x 00 00 0x 84 00	4	0x05	0x01	optional, because page 4 is already selected Is also integration time base
	NOP	0x 40 00 0x 00 00	0x 45 01	4	0.03	0.01	optional
		00 00 00	0.4 10 01				
Set integration time	Page select	0x 85 00	0x 00 00	5			Page 5
	Set INTM of max. int. time						Integration time multiplier, high byte.
	e.g. 1.6384ms	0x 40 00	0x 85 00	5	0x00	0x00	Same multiplier for all integration length registers
	Dage coloct	0x 41 01 0x 87 00	0x 40 00	5 7	0x01	0x01	Integration time multiplier, low byte (lowest number = 1)
	Page select Set int_len 16'384/128	0x E0 01	0x 41 01 0x 87 00	7	0x00	0x01	Integration length row0, high byte
		0x E1 FF	0x E0 01	7	0x01	0xFF	Integration length row0, low byte
	Set int_len 16'384/64	0x E2 03	0x E1 FF	7	0x02	0x03	Integration length row1, high byte
		0x E3 FF	0x E2 03	7	0x03	0xFF	Integration length row1, low byte
	Set int_len 16'384/32	0x E4 07	0x E3 FF	7	0x04	0x07	Integration length row2, high byte
		0x E5 FF	0x E4 07	7	0x05	0xFF	Integration length row2, low byte
	Set int_len 16'384/16	0x E6 0F	0x E5 FF	7	0x06	0x0F	Integration length row3, high byte
		0x E7 FF	0x E6 0F	7	0x07	0xFF	Integration length row3, low byte
	Set int_len 16'384/8	0x E8 1F	0x E7 FF	7	0x08	0x1F 0xFF	Integration length row4, high byte
	Set int_len 16'384/4	0x E9 FF 0x EA 3F	0x E8 1F 0x E9 FF	7	0x09 0x0A	0xFF 0x3F	Integration length row4, low byte Integration length row5, high byte
		0x ER FF	0x EA 3F	7	0x0B	0xFF	Integration length rows, low byte
	Set int_len 16'384/2	0x EC 7F	0x EB FF	7	0x0C	0x7F	Integration length row6, high byte
		0x ED FF	0x EC 7F	7	0x0D	0xFF	Integration length row6, low byte
	Set int_len 16'384	0x EE FF	0x ED FF	7	0x0E	0xFF	Integration length row7, high byte
		0x EF FF	0x EE FF	7	0x0F	0xFF	Integration length row7, low byte
	NOP	0x 00 00	0x EF FF	7			
01-1	Deve enter:	0	0		\vdash		Dece 0
Start measurement	Page select Set TRIGGER	0x 82 00 0x 58 01	0x 00 00 0x 82 00	2	0x18	0x01	Page 2 Starts measurement
	NOP	0x 58 01 0x 00 00	0x 82 00 0x 58 01	-	0,10	5,01	optional
	L		1				
Read frame DCSx	- repeat for DCS0 DCS3:						
Read row	- repeat for 4 double-rows per	frame:					
	Page select	0x 82 00	0x 00 00	2			optional, because page 2 is already selected
	Read STATUS	0x 35 00	0x 82 00	2	0x15		
	- repeat until DATA_RDY:	0	0.07.77				Wait for end of exposure. Refer to imaging timing
	Read STATUS NOP	0x 35 00	0x 35 00	2	0x15		
		0x 00 00	0x 35 84				Data ready – or alternatively DATA_RDY pin 4 bytes available for readout = readout of a double-row
	READ data 1	0x 34 00	0x 00 00	2	0x14		Readout double-row, uses embedded data format
	READ data 2	0x 34 00	0x 34	2	0x14		MSByte0 (row 3)
	READ data 3	0x 34 00	0x 34	2	0x14		LSByte0 (row 3)
	READ data 4	0x 34 00	0x 34	2	0x14		MSByte1 (row 4)
	NOP	0x 00 00	0x 34				LSByte1 (row 4)
Next row	- repeat 3x"Read row" for next	3 double-row	/S				
Next DCC:	remed to the state of the	the second the					
Next DCSx	- repeat 3x "Read frame DCSx"	tor next 3 fra	Imes				
End measurement							
LING INCOSULCINCIN							1

Table 37: Basic example of UHD mode

7.3. Grayscale imager modes

7.3.1. GIM mode: 8x8 pixel Grayscale IMager

					l	mag	e acc	quisit	ion											Dat	a rea	adou	t			
		[Pix	el orde	er colur	mns			Acquisi	tion per							Read	lout or	der col	lumns			Reado	out per
			0	1	2	3	4	5	6	7		on row					0	1	2	3	4	5	6	7	pixel o	on row
	(0									t _{INT}	Gray				6									t _{INT}	Gray
		1									t _{int}	Gray				4									t _{INT}	Gray
و		2									t _{int}	Gray			SWC	2									t _{int}	Gray
Mor rob		3									t _{int}	Gray			Readout order rows	0									t _{int}	Gray
ao levi		4									t _{int}	Gray			adout e	1									t _{int}	Gray
		5									t _{INT}	Gray			Re	3									t _{INT}	Gray
	6	6									t _{int}	Gray				5									t _{INT}	Gray
	7	7									t _{INT}	Gray				7									t _{INT}	Gray
		l	Jses ir and int	ntegra egrati	ion leng	ne mul gth P5	Itiplier [0x02],	P5[0x0	03]		acquisiti	on				F	iaure	• 37 [.]	Pixe	-field		aniza	tion	data r	eadout	
		-	s / pi				J	1		-	20 µm			No c	of ni		-									
	-		tive a		5120			· ·		0 µm	•			No. of pixels / pixel size Data reduction on-chip						64 pcs / 20 x 20 μm no						
Sensi	itivi	ty i	ncrea	ase						•	sitivity			Noise								no				
ntegr	ntegration times per frame 1x t _{INT}						Outp	ut d	ata	form	nat			e	12 bit: ± 2'047 LSB, effective 0 +2'047 LSB, sma negative numbers can occur											
Dyna	mic	c di	stand	e ra	inge i	incre	ase							SPI t	rans	smi	ssior	n per	fram	е	e	64 pixels in 96 words				
DCS per frame 1x DCSx							Image rate @ 50 µs int. time up to 3'865 TOF images / sec						s / sec.													

Table 38: Operating mode specification

Operating mode selection: Depends on the number of DCS frames per SHUTTER stimulation:

	Register	P4[0x12]	P4[0x15]
Mode	DCS / SHUTTER	Modulation selection	Readout mode
Grayscale	1 frame	0xC0	0x23

Table 39: Operating mode selection

Integration time setting: Follow Chapter 7.5.1, Single integration time per frame.

Data readout: 64 pixel / frame with 96 SPI accesses

The data readout is 12 bit/pixel. It starts in the centre of the vertical axis and uses a 2 pixel packed data format (pixel pair). It follows Table 40 and 41. The application must rearrange the pixels according the pixel-field orientation.

The readout sequence is: 3 SPI readouts / pixel pair, 4 pair readouts / row, 8 row readouts / frame = 96 SPI readouts in total.

	No sum readout: A pair of even and odd column pixels are packed into 3 SPI data bytes. Read 3x register P2[0x0C] per pixel pair																					
	1 st SPI data byte: MSByte								2 nd SPI data byte						3 rd SPI data byte: LSByte							
D23	D23 D22 D21 D20 D19 D18 D17 D16					D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	PIXEL_EVEN[11:4]					PIXEL_EVEN[3:0] PIXEL_ODD[3				:0]	PIXEL_ODD[11:4]											

Table 40: Pixel data SPI readout: Pixel pair read; refer to Figure 37

	1 st pair read / row	2 nd pair read / row	3 rd pair read / row	4 th pair read / row
1 st row read	Pixels row 3 / column 0 & 1	Pixels row 3 / column 2 & 3	Pixels row 3 / column 4 & 5	Pixels row 3 / column 6 & 7
2 nd row read	Pixels row 4 / column 0 & 1	Pixels row 4 / column 2 & 3	Pixels row 4 / column 4 & 5	Pixels row 4 / column 6 & 7
3 rd row read	Pixels row 2 / column 0 & 1	Pixels row 2 / column 2 & 3	Pixels row 2 / column 4 & 5	Pixels row 2 / column 6 & 7
4 th row read	Pixels row 5 / column 0 & 1	Pixels row 5 / column 2 & 3	Pixels row 5 / column 4 & 5	Pixels row 5 / column 6 & 7
7 th row read	Pixels row 0 / column 0 & 1	Pixels row 0 / column 2 & 3	Pixels row 0 / column 4 & 5	Pixels row 0 / column 6 & 7
8 th row read	Pixels row 7 / column 0 & 1	Pixels row 7 / column 2 & 3	Pixels row 7 / column 4 & 5	Pixels row 7 / column 6 & 7

Table 41: Pixel-field SPI double-row readout order; refer to Figure 37, based on pixel-field coordinates Figure 36

ased	on	pixel	-field	coord	linates	Figure	36

Validity parameter	Embedded data ¹	Data bit
Pixel saturation	0x 07 FF	Read register P2[0x0D] and P2[0x0E] ²
ADC overflow	0x 07 FE	Read register P2[0x10] and P2[0x11] ²
ADC underflow	0x 08 00	Read register P2[0x12] and P2[0x13] ²
Valid pixel data	0x 08 01 < < 0x 07 FD	[11:0]

Table 42: Data validity table

Note 1: Default is embedded data format. Can be switched off by bit 6 of the register P4[0x15]. Note 2: More details can be found in the corresponding register description.

NoP NoP <th>Action</th> <th>Command</th> <th>MOSI</th> <th>MISO</th> <th>Page</th> <th>Reg</th> <th>Value</th> <th>Comment</th>	Action	Command	MOSI	MISO	Page	Reg	Value	Comment
Properation Description Description Description Properation Addition Properation V V V V Properation Addition Properation V V V V Properation Addition Properation V V V V V Properation Addition V <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
No 0 <	Power up	NOP	0x 00 00	0x				After startup
Additional equipational program No No No No Additional equipational program 0x3000 0x		- repeat until:						
Adjust information Page select De B 100 De O 000 Page 4 (a) chy version) Adjust 1 De A 000 0.000 1.0 De A De Page 4 (a) chy version) Adjust 1 De A 000 0.000 1.0 De A De Page 4 (a) chy version) Page 4000 0.000 1.0 De A De O (a) chy version) Page 4000 0.000 1.0 De O De O (a) chy Version) Page 4000 0.000 1.0 De O De O (a) chy Version) Page 4000 0.000 1.0 De O Page 4000 (a) chy Version 2000 0.0400 0.0000 1.0 De O Page 4000 (a) chy Version 2000 0.0400 0.0000 1.0 De O Page 4000 (a) chy Version 2000 0.0400 0.0000 1.0 De O Page 4000 (a) chy Version 2000 0.0400 0.0000 1.0 De O Page 4000 (a) chy Version 2000 0.0400 0.0000 1.0<		NOP	0x 00 00	0x 00 00				IDLE; ready for communication
(d) chy version) Page seted:0, 95, 000, 10, 0010, 01000Page 40, 95, 000, 00, 0000000000Majal 20, 48, 000, 95, 000, 0000000Majal 20, 04, 000, 05, 0000000Majal 30, 04, 100, 04, 0010000Majal 30, 04, 100, 04, 00000000Majal 30, 04, 100, 04, 000000000Majal 30, 04, 100, 04, 0000000000Majal 30, 04, 100, 04, 000		- load sequencer program						
(d) chy version) Page seted:0, 95, 000, 10, 0010, 01000Page 40, 95, 000, 00, 0000000000Majal 20, 48, 000, 95, 000, 0000000Majal 20, 04, 000, 05, 0000000Majal 30, 04, 100, 04, 0010000Majal 30, 04, 100, 04, 00000000Majal 30, 04, 100, 04, 000000000Majal 30, 04, 100, 04, 0000000000Majal 30, 04, 100, 04, 000		L						
Page seed: 0x400 0x400 0x500 0x500 0x5000 0x5000<	Adjust default settings 1	Page select	0x 81 00	0x 00 00	1			Page 1
Adjud Del 4000 Del 500 Del 500 Page 5 Adjud Page rendt Del 64 00 Del 500 Del 500 Page 4 Adjud Del 64 00 Del 500 Del 500 Del 500 Page 5 (m) for NATER (D + 1) Adjud Del 600 Del 500 Del 5	(all chip versions)	Adjust 1	0x 5A 00	0x 81 00	1	0x1A	0x00	
N/P 0x 00 00 0x 46 00 0x		Page select	0x 85 00	0x 5A 00	5			Page 5
Adjust defund arguing for WAFER D <10 Page statest Ox 40 0 Cord 0 Cord 0 Cord 0 Page 4 (only for WAFER D <1)		Adjust 2	0x 4B 00	0x 85 00	5	0x0B	0x00	
(m) Fe WAFER () Agas 3 0x 44 0F 0x 44 0F 0x 40 0F Page select 0x 65 0 0x 64 0F Page 5 Page select 0x 65 0 0x 64 0F 0x 65 0 0x 64 0F 0x 65 0 0x 67 0F Page 6 Page 6 Adjust 4 0x 65 0 0x 64 0F 0x 66 0F 0x 71 0x 62 Page 6 Page 6 <td< td=""><td></td><td>NOP</td><td>0x 00 00</td><td>0x 4B 00</td><td></td><td></td><td></td><td>optional</td></td<>		NOP	0x 00 00	0x 4B 00				optional
(m) Fe WAFER () Agas 3 0x 44 0F 0x 44 0F 0x 40 0F Page select 0x 65 0 0x 64 0F Page 5 Page select 0x 65 0 0x 64 0F 0x 65 0 0x 64 0F 0x 65 0 0x 67 0F Page 6 Page 6 Adjust 4 0x 65 0 0x 64 0F 0x 66 0F 0x 71 0x 62 Page 6 Page 6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Page select: 0.6 8 00 0.4 6 17 6 0.0 Page 5 Adjut 4 0.4 6 10 0.4 6 10 0.6 01 Page 4 Page select: 0.6 6 16 2 0.6 01 0.01 Page 4 NOP 0.6 00 0 0.6 16 2 0 0.01 0 0.01 0 Sel mode 0.6 5 20 0.8 400 0 0.01 0 0.01 0 Sel mode 0.6 5 20 0.8 400 0 0.02 0 54 0 0 0.02 0 Sel mode 0.6 5 20 0.6 40 0.1 000 4 0.1 000 0.02 0 54 0 000 0.02 0 54 0 000 0.02 0 54 0 000 0.02 000 0.02 000 0.02 000 0.02 000 0.02 00000 0.00 0000000000000000 <t< td=""><td>Adjust default settings 2</td><td>Page select</td><td>0x 84 00</td><td>0x 00 00</td><td>4</td><td></td><td></td><td>Page 4</td></t<>	Adjust default settings 2	Page select	0x 84 00	0x 00 00	4			Page 4
Adjust 4 0 + 6 + 00 0 + 6 + 00 0 + 00 0 + Page 6 Page select 0 + 6 + 00 0 + 00 0 + 00 0 + 00 0 + 00 NOP 0 + 00 + 00 0 + 00 0 + 00 0 + 00 0 + 00 0 + 00 Set mode Page select 0 + 00 + 00 0 + 00 0 + 00 0 + 00 0 + 00 Set mode 0 + 00 + 00 0 + 00 0 + 00 0 + 00 0 + 00 0 + 00 Set modulation settion 0 + 00 + 00 0 + 00 0 + 00 0 + 00 0 + 00 0 + 00 Set modulation settion 0 + 00 + 00 0 + 00 <td< td=""><td>(only for WAFER ID <13)</td><td>Adjust 3</td><td>0x 48 1F</td><td>0x 84 00</td><td>4</td><td>0x08</td><td>0x1F</td><td></td></td<>	(only for WAFER ID <13)	Adjust 3	0x 48 1F	0x 84 00	4	0x08	0x1F	
Page select 0x8 500 0x 46 01 6 0 Page 6 Adjut 5 0x6 162 0x 68 00 6 0x11 0x12 NOP 0x 00 00 0x5 162 0x 0x11 0x12 0x10 Set modulation selection 0x 52 00 0x 64 00 4 0x12 0x20 Fab pixel Grayscale Mager mode mode Set modulation selection 0x 52 00 0x 64 00 4 0x12 0x20 Set Mager mode mode Set modulation finguency Page select 0x 64 00 0x 00 00 4 0x02 Set Set pixel Grayscale Mager mode mode Set integration time Page select 0x 64 00 0x 00 00 4 0x02 Set Set pixel Grayscale Mager mode mode NOP 0x 00 00 0x 58 00 5 0x02 optional optional Set integration time mitigation time to the tot tot tot tot tot tot tot tot tot to		Page select	0x 85 00	0x 48 1F	5			Page 5
Agus 5 Op: 10: 00: 00: 00: 00: 00: 00: 00: 00: 00		Adjust 4	0x 4E 01	0x 85 00	5	0x0E	0x01	
NOP 0x 00 00 0x51 62 1 2 optional Set mode Page select 0x 64 00 0x 00 00 4 0.13 0x 00 Set Minose 0x 55 20 0x 84 00 4 0.13 0x 00 0x 56 20 0x 84 00 0x 00 00 0x 55 23 1 1 0x 00 0x 00 0x 55 23 1 1 0x 00 0x 00 00 0x 55 23 1 1 0x 00 0x 00 0x 00		Page select	0x 86 00	0x 4E 01	6			Page 6
Set mode Page select 0x 84 00 0x 0x 80 00 4 0x 12 0x 0x 00 44 0x 12 0x 0x 00 1x 0x 0x 00 1x 0x		Adjust 5	0x51 62	0x 86 00	6	0x11	0x62	
Set modulation selection 0x 52 C0 0x 84 00 4 0x12 0x02 Deck ploted Grayscale Mager mode mode optional Set CMI mode 0x 55 23 0x 55 23 0x 55 23 0x 55 23 0x 25		NOP	0x 00 00	0x51 62				optional
Set modulation selection 0x 52 C0 0x 84 00 4 0x12 0x02 Deck ploted Grayscale Mager mode mode optional Set CMI mode 0x 55 23 0x 55 23 0x 55 23 0x 55 23 0x 25								
Set modulation selection 0x 52 C0 0x 52 0 0x 64 00 0x 55 23 0x 22 0x 55 23 Des the plot of day concervation mode optional Set integration fine base 0x 60 00 0x 60 00 0x 00 00 0x 60 00 4 0x 00 0x 00 00 4 0x 00 00 4 0x 00 0x 00 00 1 1 0 1 1 1 0x 00 0x 00 00 1 1 0x 00 0x 00 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>Set mode</td><td>Page select</td><td>0x 84 00</td><td>0x 00 00</td><td>4</td><td></td><td></td><td>Page 4</td></t<>	Set mode	Page select	0x 84 00	0x 00 00	4			Page 4
Set GMI mode 0x 65 23 0x 65 23 0x 25 20 4 0x 15 0x 23 Det Bag bad Grayscale Mager mode mode NOP 0x 0000 0x 65 23 0			0x 52 C0	0x 84 00	4	0x12	0xC0	
NOP 0x 00 00 0x 65 23 1 N Optional Set modulation frequency Page select 0x 40 00 0x 40 00 4 0x0 0x01 lb also integration time base Sets integration time base Set mod. feq. to 10MHz 0x 45 01 0x 45 01 4 0x0 0x01 lb also integration time base Set integration time base Set mod. feq. to 10MHz 0x 45 00 0x 45 00 5 Page 5 Set integration time base Set integration time 1.6384ms 0x 40 00 5 0x0 0x00 lintegration time multiplier, high byte Set integration time 1.6384ms 0x 40 2FF 0x 40 07 5 0x02 0x0F Integration time multiplier, low byte (lowest number = 1) Interme 0x 42 FF 0x 42 FF 0x 40 FF 1 0x02 0xFF Integration time byte (lowest number = 1) NOP 0x 00 00 0x 42 FF 0x 40 FF 1 0x02 0xFF Integration time, high byte Set TRIGGER 0x 65 01 0x 80 00 2 0x15 1 0x02 0x15 1 Se		Set GMI mode	0x 55 23	0x 52 C0	4	0x15	0x23	Set 8x8 pixel Grayscale Mager mode mode
Sets integration time base Set mod. freq. to 10MHz 0x 48 00 0x 48 00 4 0x05 0x01 is also integration time base Set integration time Page setect 0x 45 00 0x 40 00 0x 45 00 5 0x01 Page 5 Set int. time 1.8384ms 0x 40 00 0x 45 00 5 0x01 0x01 Integration time multiplier, low byte (owest number = 1) 0x 42 FF 0x 41 01 5 0x02 0x7 0x11 Integration time multiplier, low byte (owest number = 1) 0x 42 FF 0x 43 FF 0x 42 FF 0x10 00 0x6 0x02 0xFF Integration length, low byte NOP 0x 00 00 0x 43 FF 0x4 25 FF 0x10 00 0xFF Integration length, low byte NOP 0x 00 00 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 82 00 2 0x16 0x1 Starts measurement NOP 0x 02 00		NOP	0x 00 00	0x 55 23				
Sets integration time base Set mod. freq. to 10MHz 0x 48 00 0x 48 00 4 0x05 0x01 is also integration time base Set integration time Page setect 0x 45 00 0x 40 00 0x 45 00 5 0x01 Page 5 Set int. time 1.8384ms 0x 40 00 0x 45 00 5 0x01 0x01 Integration time multiplier, low byte (owest number = 1) 0x 42 FF 0x 41 01 5 0x02 0x7 0x11 Integration time multiplier, low byte (owest number = 1) 0x 42 FF 0x 43 FF 0x 42 FF 0x10 00 0x6 0x02 0xFF Integration length, low byte NOP 0x 00 00 0x 43 FF 0x4 25 FF 0x10 00 0xFF Integration length, low byte NOP 0x 00 00 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 82 00 2 0x16 0x1 Starts measurement NOP 0x 02 00								
Sets integration time base Set mod. freq. to 10MHz 0x 48 00 0x 48 00 4 0x05 0x01 is also integration time base Set integration time Page setect 0x 45 00 0x 40 00 0x 45 00 5 0x01 Page 5 Set int. time 1.8384ms 0x 40 00 0x 45 00 5 0x01 0x01 Integration time multiplier, low byte (owest number = 1) 0x 42 FF 0x 41 01 5 0x02 0x7 0x11 Integration time multiplier, low byte (owest number = 1) 0x 42 FF 0x 43 FF 0x 42 FF 0x10 00 0x6 0x02 0xFF Integration length, low byte NOP 0x 00 00 0x 43 FF 0x4 25 FF 0x10 00 0xFF Integration length, low byte NOP 0x 00 00 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 82 00 2 0x16 0x1 Starts measurement NOP 0x 02 00	Set modulation frequency	Page select	0x 84 00	0x 00 00	4			optional, because page 4 is already selected
NOP 0x 00 00 0x 45 01 0 Page optional Set integration time Page select 0x 85 00 0x 00 00 5 Page 5 Set int, time 1.6384ms 0x 40 00 0x 85 00 5 0x00 0x00 11 Integration time multiplier, high byte 0x 42 FF 0x 41 01 0x 40 01 5 0x02 0x00 11 Integration time multiplier, high byte 0x 43 FF 0x 43 FF 0x 43 FF 0x 43 FF 10x 43 FF<		-				0x05	0x01	
Set integration time Page select 0x 85 00 0x 00 00 5 0x 00 100 Image and time multiplier, logit byte Set int. time 1.6384ms 0x 40 00 0x 64 000 5 0x 00 0x 001 Integration time multiplier, logit byte 0x 42 FF 0x 41 01 0x 40 00 5 0x 00 0x 01 Integration time multiplier, low byte (lowest number = 1) 0x 42 FF 0x 41 01 5 0x 02 0x FF Integration time multiplier, low byte (lowest number = 1) 0x 42 FF 0x 41 01 5 0x 02 0x FF Integration length, low byte (lowest number = 1) 0x 42 FF 0x 41 01 5 0x 20 0x 00 0x 20 FF Integration length, low byte (lowest number = 1) 0x 42 FF 0x 42 FF 0x 42 FF 0x 42 FF 0x 20 FF Integration length, low byte (lowest number = 1) 0x 42 FF 0x 40 00 0x 40 00 0x 40 00 2 0x18 Start Baseaw selectee Set TRIGGER 0x 80 00 0x 80 00 0x 80 00 2 0x15 Image additin NOP<								
Set Int. time 1.8384ms 0x 40 00 0x 85 00 5 0x00 Integration time multiplier, high byte 0x 41 01 0x 42 00 5 0x1 0x00 0x54 0x56 0x56 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-						
Set Int. time 1.8384ms 0x 40 00 0x 85 00 5 0x00 Integration time multiplier, high byte 0x 41 01 0x 42 00 5 0x1 0x00 0x54 0x56 0x56 <td>Set integration time</td> <td>Page select</td> <td>0x 85 00</td> <td>0x 00 00</td> <td>5</td> <td></td> <td></td> <td>Page 5</td>	Set integration time	Page select	0x 85 00	0x 00 00	5			Page 5
Read now						0x00	0x00	
Image: Start measurement 0x 42 FF 0x 43 FF 0x 42 FF 5 0x00 0x7F Integration length, high byte Start measurement Page select 0x 43 FF 0x 42 FF 5 0x03 0xFF Integration length, high byte Start measurement Page select 0x 82 00 0x 00 00 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 82 00 0x 80 01 0x 82 00 2 0x18 0x01 Starts measurement 0ptional Start IRGGER 0x 82 00 0x 00 00 0x 58 01 0x 82 00 0x01 0ptional Read frame DCSx - repeat for 4 double-rows per frame: - - - - - Read row - repeat for 4 double-rows per frame: - - - - - - Page select 0x 82 00 0x 35 00 0x 35 00 0x 35 00 - - Data ready - or alternatively DATA_RDY pin -repeat until DAT_RDY: - - - 24 bytes available for readout 1 a d								
Image: state								
NOP 0x 00 00 0x 43 FF Image: Constraint of the second								
Start measurement Page select 0x 82 00 0x 00 00 2 Page 2 Start measurement NOP 0x 58 01 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 58 01 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 58 01 0x 82 00 2 0x18 0x11 Starts measurement NOP		NOP			Ű	0,000	0/4 1	
Set TRIGGER 0x 58 01 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 58 01 - </td <td></td> <td></td> <td>0,0000</td> <td>0, 1011</td> <td></td> <td></td> <td></td> <td></td>			0,0000	0, 1011				
Set TRIGGER 0x 58 01 0x 82 00 2 0x18 0x01 Starts measurement NOP 0x 00 00 0x 58 01 - </td <td>Start measurement</td> <td>Page select</td> <td>0x 82 00</td> <td>0x 00 00</td> <td>2</td> <td></td> <td></td> <td>Page 2</td>	Start measurement	Page select	0x 82 00	0x 00 00	2			Page 2
NOP 0x 00 0 0x 58 01 I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						0x18	0x01	-
Read frame DCSx					-	0,110	0,101	
Read row - repeat for 4 double-rows per frame: Image: select 0x 82 00 0x 00 00 2 Image: select 0x 82 00 0x 00 00 2 Image: select 0x 82 00 0x 00 00 2 Image: select 0x 82 00 0x 00 00 2 0x 010 01			00.00.00	00.00.01				
Read row - repeat for 4 double-rows per frame: Image: select 0x 82 00 0x 00 00 2 Image: select 0x 82 00 0x 00 00 2 Image: select 0x 82 00 0x 00 00 2 Image: select 0x 82 00 0x 00 00 2 0x 010 01	Read frame DCSv							
Page select 0x 82 00 0x 00 00 2 optional, because page 2 is already selected Read STATUS 0x 35 00 0x 82 00 2 0x15 -repeat until DATA_RDY: V Wait for end of exposure. Refer to imaging timing Read STATUS 0x 35 00 0x 35 00 2 0x15 NOP 0x 00 00 0x 35 00 2 0x15 NOP 0x 00 00 0x 35 98 2 0x15 - repeat until: V 24 bytes available for readout = readout of a double-row - repeat until: V Readout double-row: Repeat this procedure 4 times per frame READ data 1 0x 2C 00 0x 2C 2 0x0C Readout double-row: Repeat this procedure 4 times per frame READ data 2 0x 2C 00 0x 2C 2 0x0C MSBytel (Row 3, pixel 0) READ data 3 0x 2C 00 0x 2C 2 0x0C MSBytel (Row 3, pixel 1) READ data 4 0x 2C 00 0x 2C 2 0x0C MSBytel 1(Row 4, pixel 5) READ data 23 0x 2C 00 0x 2C	Read liame boox	L						
Page select 0x 82 00 0x 00 00 2 optional, because page 2 is already selected Read STATUS 0x 35 00 0x 82 00 2 0x15 -repeat until DATA_RDY: V Wait for end of exposure. Refer to imaging timing Read STATUS 0x 35 00 0x 35 00 2 0x15 NOP 0x 00 00 0x 35 00 2 0x15 NOP 0x 00 00 0x 35 98 2 0x15 - repeat until: V 24 bytes available for readout = readout of a double-row - repeat until: V Readout double-row: Repeat this procedure 4 times per frame READ data 1 0x 2C 00 0x 2C 2 0x0C Readout double-row: Repeat this procedure 4 times per frame READ data 2 0x 2C 00 0x 2C 2 0x0C MSBytel (Row 3, pixel 0) READ data 3 0x 2C 00 0x 2C 2 0x0C MSBytel (Row 3, pixel 1) READ data 4 0x 2C 00 0x 2C 2 0x0C MSBytel 1(Row 4, pixel 5) READ data 23 0x 2C 00 0x 2C	Road row	repeat for 4 double rows per	frame					
Read STATUS 0x 35 00 0x 82 00 2 0x15 Main - repeat until DATA_RDY: Wait for end of exposure. Refer to imaging timing Read STATUS 0x 35 00 0x 35 00 0x 35 00 2 0x15 NOP 0x 00 00 0x 35 98 Data ready - or alternatively DATA_RDY pin - repeat until: 24 bytes available for readout = readout of a double-row - repeat until: Readout double-row: Repeat this procedure 4 times per frame READ data 1 0x 2C 00 0x 2C 2 0x0C Readout uses embedded data format READ data 2 0x 2C 00 0x 2C 2 0x0C MSBytel (Row 3, pixel 0) READ data 3 0x 2C 00 0x 2C 2 0x0C MSBytel (Row 3, pixel 1) READ data 4 0x 2C 00 0x 2C 2 0x0C MSBytel (Row 3, pixel 2) READ data 23 0x 2C 00 0x 2C	Read IOW			0× 00 00	2			optional because page 2 is already collected
• repeat until DATA_RDY: Image: Constraint of the constraint o						0,45		optional, because page 2 is already selected
Read STATUS 0x 35 00 0x 35 00 2 0x15 Data ready or alternatively DATA_RDY pin NOP 0x 00 00 0x 35 98 Data ready or alternatively DATA_RDY pin - repeat until: - 24 bytes available for readout = readout of a double-row Readout double-row: Repeat this procedure 4 times per frame READ data 1 0x 2C 00 0x 00 00 2 0x0C Readout uses embedded data format READ data 2 0x 2C 00 0x 2C 2 0x0C MSByte0 (Row 3, pixel 0) READ data 3 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 1) READ data 4 0x 2C 00 0x 2C 2 0x0C MSByte2 (Row 3, pixel 1) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte12 (Row 4, pixel 2) READ data 23 0x 2C 00 0x 2C 2 0x0C MSByte13 (Row 4, pixel 5) READ data 24 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 6)<			UX 35 UU	0x 82 00	2	0x15		Wait for and of evenesure Defer to imaging timing
NOP 0x 00 00 0x 35 98 Data ready - or alternatively DATA_RDY pin - repeat until: 24 bytes available for readout = readout of a double-row - repeat until: Readout double-row: Repeat this procedure 4 times per frame READ data 1 0x 2C 00 0x 00 00 2 0x0C Readout uses embedded data format READ data 2 0x 2C 00 0x 2C 2 0x0C MSByte0 (Row 3, pixel 0) READ data 3 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 0) READ data 4 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 1) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 1) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 4, pixel 2) READ data 22 0x 2C 00 0x 2C 2 0x0C MSByte13 (Row 4, pixel 5) READ data 22 0x 2C 00 0x 2C 2 0x0C LSNibble14 LSNibble15			0 05.00	0 05.00		045		wait for end of exposure. Refer to imaging timing
Image: Construction of the construc					2	0x15		
- repeat until: Image: Construction of the sector of t		NOP	0x 00 00	0x 35 98				
READ data 1 0x 2C 00 0x 00 00 2 0x0C Readout uses embedded data format READ data 2 0x 2C 00 0x 2C 2 0x0C MSByte0 (Row 3, pixel 0) READ data 3 0x 2C 00 0x 2C 2 0x0C LSNibble0 LSNibble1 READ data 4 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 0) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 1) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 1) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 2) READ data 22 0x 2C 00 0x 2C 2 0x0C MSByte13 (Row 4, pixel 5) READ data 23 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 6) READ data 24 0x 02 00 0x 2C 2 0x0C LSNibble14 LSNibble15 NOP 0x 00 00		rement until						
READ data 2 0x 2C 00 0x 2C 2 0x0C MSByte0 (Row 3, pixel 0) READ data 3 0x 2C 00 0x 2C 2 0x0C LSNibble0 LSNibble1 READ data 4 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 0) READ data 4 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 1) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte2 (Row 3, pixel 2) READ data 22 0x 2C 00 0x 2C 2 0x0C MSByte13 (Row 4, pixel 5) READ data 23 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 6) READ data 24 0x 2C 00 0x 2C 2 0x0C LSNibble14 LSNibble15 NOP 0x 00 00 0x 2C 4 MSByte15 (Row 4, pixel 7) Next row - repeat 3x "Read row" for next 3 double-rows Image: Mage: M			0× 20 00	02.00.00		0.000		
READ data 3 0x 2C 00 0x 2C 2 0x0C LSNibble0 LSNibble1 READ data 4 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 1) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte2 (Row 3, pixel 2) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte2 (Row 3, pixel 2) READ data 22 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 5) READ data 23 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 6) READ data 24 0x 02 00 0x 2C 2 0x0C LSNibble14 LSNibble15 NOP 0x 00 00 0x 2C 4 MSByte15 (Row 4, pixel 7) Image:							<u> </u>	
READ data 4 0x 2C 00 0x 2C 2 0x0C MSByte1 (Row 3, pixel 1) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte2 (Row 3, pixel 2) READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte2 (Row 3, pixel 2) READ data 22 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 5) READ data 23 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 6) READ data 24 0x 02 00 0x 2C 2 0x0C LSNibble14 LSNibble15 NOP 0x 00 00 0x 2C 4 MSByte15 (Row 4, pixel 7) Image: Start row • repeat 3x "Read row" for next 3 double-rows Image: Start row Image: Start row								
READ data 5 0x 2C 00 0x 2C 2 0x0C MSByte2 (Row 3, pixel 2) READ data 22 0x 2C 00 0x 2C 2 0x0C MSByte13 (Row 4, pixel 5) READ data 23 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 6) READ data 24 0x 2C 00 0x 2C 2 0x0C LSNibble14 LSNibble15 NOP 0x 00 00 0x 2C 2 0x0C MSByte15 (Row 4, pixel 7) Next row • repeat 3x "Read row" for next 3 double-rows Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">MSByte12 (Row 3, pixel 2) • Image: Colspan="4">Image: Colspan="4" Image: Cols								
Image: Next row								
READ data 22 0x 2C 00 0x 2C 2 0x0C MSByte13 (Row 4, pixel 5) READ data 23 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 6) READ data 24 0x 2C 00 0x 2C 2 0x0C LSNibble14 LSNibble15 NOP 0x 00 00 0x 2C 2 0x0C MSByte15 (Row 4, pixel 7) Next row - repeat 3x "Read row" for next 3 double-rows Image: Second Sec					2	0x0C		
READ data 23 0x 2C 00 0x 2C 2 0x0C MSByte14 (Row 4, pixel 6) READ data 24 0x 2C 00 0x 2C 2 0x0C LSNibble14 LSNibble15 NOP 0x 00 00 0x 2C 2 0x0C MSByte15 (Row 4, pixel 7) Next row - repeat 3x "Read row" for next 3 double-rows Image: Constraint of the second seco							L	
READ data 24 0x 2C 00 0x 2C 2 0x0C LSNibble14 LSNibble14 LSNibble17 NOP 0x 00 00 0x 2C 2 0x0C MSByte15 (Row 4, pixel 7) Next row - repeat 3x "Read row" for next 3 double-rows Image: Comparison of the compari								
NOP 0x 00 00 0x 2C MSByte15 (Row 4, pixel 7) Next row - repeat 3x "Read row" for next 3 double-rows Image: Comparison of the comparison								
Next row - repeat 3x "Read row" for next 3 double-rows Image: Comparison of the second secon					2	0x0C		
		NOP	0x 00 00	0x 2C				MSByte15 (Row 4, pixel 7)
End measurement	Next row	- repeat 3x "Read row" for nex	t 3 double-rov	VS				
End measurement								
	End measurement							

Table 43: Basic example of GIM mode

7.3.2. GBI mode: 4x4 pixel Grayscale Binned pixel Imager

					I	lmag	e aco	quisi	tion								Da	ata re	adout	:		
			0	1	Pix 2	el orde	er colu 4	mns 5	6 7		tion per on row				0	F	eadout c		lumns 2	3		out per
Γ		0	0		-	J	-	J		t _{INT}	Gray			\square	0	ú		in.		3		
		1								t _{INT}	Gray			2							t _{int}	Gray
		2								t _{INT}	Gray		sv									
	Pixel order rows	3								t _{int}	Gray		Readout order rows	0							t _{int}	Gray
	kel orde	4								t _{INT}	Gray		dout or									
	Ρ	5								t _{int}	Gray		Rea	1							t _{int}	Gray
		6								t _{int}	Gray			3								Gray
		7								t _{int}	Gray			3							t _{int}	Gray
			and int	ntegra egrati	ition tir on len	ne mul gth P5	[0x02]	,P5[0x0	-					_								
		Fig	jure 3	38: P	vixel-	field	orgar	nizatio	on image	e acquisit	ion			F	igure 3	9: F	'ixel-fie	ld org	aniza	tion data	readout	
۱o.	of p	oixe	ls / pi	xel s	size			16	pcs / 40	x 40 µm	binned	No.	of p	bixel	s / pixel	siz	е		16 pcs	s / 20 x 2	20 µm	
ho	tos	ens	itive a	area				160) x 160 µ	ım		Dat	a re	duc	tion on-	chip			no			
			increa e note		Table	e 13)		4x v	with binr	ed pixels	5	Noi	se r	edu	ction				no			
nte	gra	tion	times	s pei	r fran	ne		1x 1	INT			Out	put	data	a format				effecti		LSB, +2'047 L bers can	,
Dyn	am	ic d	istand	ce ra	nge	incre	ase					SPI	tra	nsm	ission p	er fi	ame		16 pix	els in 24	words	
DCS	S pe	er fr	ame					1x	DCSx			Ima	ige i	rate	@ 50 µ	s in	t. time		up to	6'536 TC)F image	s / sec.

Table 44: Operating mode specification

Operating mode selection: Depends on the number of DCS frames per SHUTTER stimulation:

	Register	P4[0x12]	P4[0x15]
Mode	DCS / SHUTTER	Modulation selection	Readout mode
Grayscale	1 frame	0xC0	0x37

Table 45: Operating mode selection

Integration time setting: Follow Chapter 7.5.1, Single integration time per frame.

Data readout: 16 pixel / frame with 24 SPI accesses

The data readout is 12 bit/pixel. It starts in the centre of the vertical axis and uses a 2 pixel packed data format (pixel pair). It follows Table 46 and 47. The application must rearrange the pixels according the pixel-field orientation.

The readout sequence is: 3 SPI readouts / pixel pair, 2 pair readouts / row, 4 row readouts / frame = 24 SPI readouts in total.

	um re iir of e			ld col	umn	pixels	s are p	backe	d into	3 SP	l data	bytes	s. Rea	d 3x	regist	er P2	[0x0C] per	pixel	pair			
	1	st SPI	data t	oyte: N	∕ISByt	te				2 nd	SPI c	lata b	yte				3	rd SPI	data	byte: I	_SByt	е	
D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		PIX	EL_E	VEN[1	1:4]			PIX	EL_E	VEN[3:0]	PI	KEL_C	DDD[3	8:0]			PIX	EL_C	DD[1	1:4]		

Table 46: Pixel data SPI readout: Pixel pair read; refer to Figure 39

	1 st pair read / row	2 nd pair read / row
1 st row read	Pixels row 2 / column 0 & 2	Pixels row 2 / column 4 & 6
2 nd row read	Pixels row 4 / column 0 & 2	Pixels row 4 / column 4 & 6
3 rd row read	Pixels row 0 / column 0 & 2	Pixels row 0 / column 4 & 6
4 th row read	Pixels row 6 / column 0 & 2	Pixels row 6 / column 4 & 6

 Table 47: Pixel-field SPI double-row readout order; refer to Figure 39, based on even pixel-field coordinates Figure 38

Validity parameter	Embedded data ¹	Data bit
Pixel saturation	0x 07 FF	Read register P2[0x0D] and P2[0x0E] ²
ADC overflow	0x 07 FE	Read register P2[0x10] and P2[0x11] ²
ADC underflow	0x 08 00	Read register P2[0x12] and P2[0x13] ²
Valid pixel data	0x 08 01 < < 0x 07 FD	[11:0]

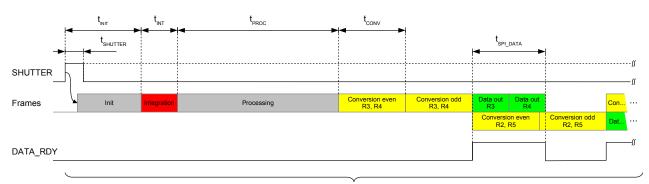
Table 48: Data validity table

Note 1: Default is embedded data format. Can be switched off by bit 6 of the register P4[0x15]. Note 2: More details can be found in the corresponding register description.

Action	Command	MOSI	MISO	Page	Reg	Value	Comment
Power up	NOP	0x 00 00	0x				After startup
	- repeat until:						
	NOP	0x 00 00	0x 00 00				IDLE; ready for communication
	- load sequencer program						
Adjust default settings 1	Page select	0x 81 00	0x 00 00	1			Page 1
(all chip versions)	Adjust 1	0x 5A 00	0x 81 00	1	0x1A	0x00	
	Page select	0x 85 00	0x 5A 00	5			Page 5
	Adjust 2	0x 4B 00	0x 85 00	5	0x0B	0x00	
	NOP	0x 00 00	0x 4B 00				optional
Adjust default settings 2	Page select	0x 84 00	0x 00 00	4			Page 4
(only for WAFER ID <13)	Adjust 3	0x 48 1F	0x 84 00	4	0x08	0x1F	
	Page select	0x 85 00	0x 48 1F	5			Page 5
	Adjust 4	0x 4E 01	0x 85 00	5	0x0E	0x01	
	Page select	0x 86 00	0x 4E 01	6			Page 6
	Adjust 5	0x51 62	0x 86 00	6	0x11	0x62	
	NOP	0x 00 00	0x51 62	<u> </u>			optional
		1.					
Set mode	Page select	0x 84 00	0x 00 00	4			Page 4
	Set modulation selection	0x 52 C0	0x 84 00	4	0x12	0xC0	
	Set GBI mode	0x 55 37	0x 52 C0	4	0x15	0x37	Set 4x4 pixel Grayscale Binned pixel Imager mode
	NOP	0x 00 00	0x 55 37				optional
Set modulation frequency	Page select	0x 84 00	0x 00 00	4			optional, because page 4 is already selected
Sets integration time base	Set mod. freq. to 10MHz	0x 45 01	0x 84 00	4	0x05	0x01	Is also integration time base
	NOP	0x 00 00	0x 45 01				optional
Set integration time	Page select	0x 85 00	0x 00 00	5			Page 5
	Set int. time 1.6384ms	0x 40 00	0x 85 00	5	0x00	0x00	Integration time multiplier, high byte
		0x 41 01	0x 40 00	5	0x01	0x01	Integration time multiplier, low byte (lowest number = 1)
		0x 42 FF	0x 41 01	5	0x02	0xFF	Integration length, high byte
		0x 43 FF	0x 42 FF	5	0x03	0xFF	Integration length, low byte
	NOP	0x 00 00	0x 43 FF				optional
Start measurement	Page select	0x 82 00	0x 00 00	2			Page 2
	Set TRIGGER	0x 58 01	0x 82 00	2	0x18	0x01	Starts measurement
	NOP	0x 00 00	0x 58 01				optional
Read frame DCSx							
Read row	- repeat for 2 double-rows per fi						
	Page select	0x 82 00	0x 00 00	2			optional, because page 2 is already selected
	Read STATUS	0x 35 00	0x 82 00	2	0x15		
	- repeat until DATA_RDY:	1					Wait for end of exposure. Refer to imaging timing
	Read STATUS	0x 35 00	0x 35 00	2	0x15		
	NOP	0x 00 00	0x 358C				Data ready – or alternatively DATA_RDY pin
							12 bytes available for readout = readout of a double-row
	READ data 1	0x 2C 00	0x 00 00	2	0x0C		Readout double-row, uses embedded data format
	READ data 2	0x 2C 00	0x 2C	2	0x0C		MSByte0 (Row 1, pixel 0)
	READ data 3	0x 2C 00	0x 2C	2	0x0C		LSNibble0 LSNibble1
	READ data 4	0x 2C 00	0x 2C	2	0x0C		MSByte1 (Row 1, pixel 1)
	READ data 5	0x 2C 00	0x 2C	2	0x0C		MSByte2 (Row 1, pixel 2)
	READ data 10	0x 2C 00	0x 2C	2	0x0C		MSByte5 (Row 2, pixel 1)
	READ data 11	0x 2C 00	0x 2C	2	0x0C		MSByte6 (Row 2, pixel 2)
	READ data 12	0x 2C 00	0x 2C	2	0x0C		LSNibble6 LSNibble7
							MSByte7 (Row 2, pixel 3)
	NOP	0x 00 00	0x 2C				MOBYLET (ROW 2, PIKEI 3)
	NOP		0x 2C				
Nextrow			0x 2C				
Next row End measurement	NOP		0x 2C				

Table 49: Basic example of GBI mode

7.3.3. Alternative grayscale modes


Beside the before listed two grayscale modes, for enhanced applications, it is possible to switch all listed TOF modes into grayscale functionality with the corresponding output data format:

- 1. Select the required TOF mode, e.g. ULN.
- 2. Read register P4[0x12] and store the value as "TOF settings".
- 3. Afterwards, switch in the DCS mode selection register P4[0x12] the designated bits from TOF to grayscale mode:
 - bit 4 and 5 = 0: Select grayscale
 - bit 6 and 7 = 11: Select grayscale
- 4. The chip runs now in the equivalent grayscale mode, if a SHUTTER applies.
- 5. The grayscale data readout follows the same rules as for the corresponding TOF mode.
- 6. SHUTTER applies only for 1 integration time (1x DCS or grayscale).
- 7. Switch back to TOF mode
 - Reload the register P4[0x12] with the value "TOF settings".

7.4. Imaging timing and frame rates

The 8x8 pixel TIM mode is used as per datasheet unless otherwise stated for simplifying the documentation. The settings used are: SPI clock 16 MHz, single measurement control, basic data readout, including 2x reading DATA_RDY, without reading validity or quality data. The sequence of how images are acquired and read out is shown in Figure 40 and 41.

Note: Depending on the selected mode, data readout by SPI takes place in parallel to the next double-row conversion.

1st DCS frame of the measurement cycle

Figure 40: Frame timing: Start

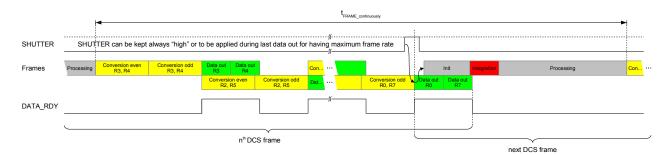


Figure 41: Frame timing: Inter-frame, end-of-frame and start-next-frame

Symbol	Parameter	Тур.	Units
t _{shutter}	SHUTTER is auto-cleared after propagation by SPI		ns
t _{init}	Init: Delay from the rising edge of SHUTTER signal to the 1st LED pulse	18	μs
t _{INT}	Image acquisition (integration time)		
t _{PROC}	Delay from the last LED pulse until the 1 st row conversion	38.75	μs
t _{conv}	Conversion time of a half row (even or odd columns) for a pixel pair (rows from top and bottom half of pixel-field)	15.625	μs
$t_{\text{DATA}_{RDY}}$	Valid data available for readout by SPI e.g for SPI clock 16MHz, 2x 8pixel with 12bit incl. 2x read DATA_RDY	26	μs

Table 50: Frame timing parameters

Ab- brev.	Description	SPI: t _{shutter}	Chip: t _{INIT}	Chip: t _{PROC}	Chip: t _{conv_tot}	SPI: t _{last_data}	S + C: t _{proc_tot}	Read out	Exp.: t _{INT}	Frame: t _{FRAME}	Fra	me rate [f	ps]		Feature	es
		[µs]	[µs]	[µs]	[µs]	[µs]	[µs]	[Bit]	[µs]	[µs]	1 DCS rolling	2 DCS	4 DCS	Bin	Sum	Int. times
TIM	8x8 pixel 3D TOF imager	1.00	18.00	38.75	125.00	26.00	209	12	50	258.8	3'865	1'932	966			1
ULN	Ultra low noise range-finder	1.00	18.00	38.75	125.00	5.00	188	18	50	237.8	4'206	2'103	1'052		64 p	1
UFS	Ultra fast & sens. range-finder	1.00	18.00	38.75	15.63	4.00	77	14	50	127.4	7'851	3'925	1'963	4 p	4 p	1
UHD	Ultra HDR range-finder	1.00	18.00	38.75	125.00	6.00	189	15	50	238.8	4'188	2'094	1'047		8 p	max. 8
GIM	8x8 pixel grayscale imager	1.00	18.00	38.75	125.00	26.00	209	12	50	258.8	3'865					1
GBI	4x4 pixel grayscale imager	1.00	18.00	38.75	31.25	14.00	103	12	50	153.0	6'536			4 p		1

Table 51: Overview of max. frame rates per mode (single measurement control, data readout only, integration time 50µs)

7.4.1. Single measurement control

The selected measurement mode (4x DCS, 2x DCS, grayscale, ...) defines how many frames the chip performs by the stimulation of one SHUTTER (register. P2[0x18], bit 0) in one measurement cycle. The SHUTTER is auto-cleared after propagation. During the measurement cycle, the next frame acquisition starts immediately after last data readout on the SPI interface until all frames are performed.

7.4.2. Continuous measurement control (auto-run)

The epc611 runs in non-stop measurement mode as long as the shutter control register P2[0x18], bit 1 is set or the SHUTTER is applied during the readout of the last row pair of the last frame. The chip starts immediately next measurement cycle if the actual one is terminated (Figure 44). Trigger signals not active during the readout of the last row pair of the last frame are ignored.

7.5. Integration time setting

The integration time is the active frame acquisition period (see Figure 40).

- The integration time, illumination intensity and object reflectivity define the effective distance achievable which the complete camera system can see.
- In applications with moving objects or cameras, this time should be kept very short to reduce motion-blur effects as much as possible.
- Short integration times e.g. < 1 ms also reduce effects of signal distortion such as ambient-light, dark current, etc. and can simplify the compensation.</p>

The integration time setting depends on the operating mode: single or multiple integration times per frame.

7.5.1. Single integration time per frame

The values of the integration length P5[0x02], P5[0x03], integration length multiplier P5[0x00], P5[0x01] and f_{mod_dlk} (register P4[0x05]) define the integration time. Whereas using on-chip modulation clock, f_{mod_dlk} sets the time-base, integration length is the integration time counter and the integration length multiplier defines the number of repetition cycles.

Integration time = integration length multiplier * (Integration length + 1) *(1/ f_{mod_clk})

Boundaries:

- The integration length multiplier should be kept as low as possible. Valid range = 1 ... 1'023d.
- Integration length + 1 should be evenly divisible by 4. Valid range = 7 ... 65'535d.

Table 52 lists some useful integration time settings.

Integration time		ngth multiplier P5[0x01]		on length P5[0x03]
	[DEC]	[HEX]	[DEC]	[HEX]
1.60 µs	1d	0x0001	63d	0x003F
12.8 µs	1d	0x0001	511d	0x01FF
102.4 µs	1d	0x0001	4'095d	0x0FFF
819.20 µs	1d	0x0001	32'767d	0x7FFF
1.6384 ms	1d	0x0001	65'535d	0xFFFF

Table 52: Typical TOF and grayscale integration times for 10MHz on-chip modulation frequency (modulation clock = 40MHz)

7.5.2. Multiple integration time per frame

Operation modes with multiple integration times use the registers integration length rows P7[0x00] ... P7[0x0F] instead of the integration length.

Integration time = integration length multiplier * (integration length row + 1) * $(1/f_{mod_cik})$

Additional boundaries:

- The integration length multiplier is active for all integration length row registers.
- Integration length row + 1 should be evenly divisible by 4. Valid range = 7 ... 65'535d.
- integration length row(X+1), Integration length row(X) integration length row1 e.g integration length row0
- integration length row2, etc. ...
- Each of the 8 integration length row registers must be set according to the definition given in the operating mode being used.

Input data

Parameter	Unit	Value
Time base setting		
LED mod. frequency	MHz	10.0

Amplitude normalized	to 20µm j	pixel
Min. TOF amplitude	LSB	800
Max. TOF amplitude	LSB	2'000
Target for longest inte	gration ti	me
Integration time for - min. TOF amplitude - furthest object - lowest reflectively - preferred < 1'000µs	μs	1'000

Parameter	Unit	Value
Modulation clock	MHz	40.0
Mod. clock period	ns	25.0
Unambiguity range	m	15.0
TOF amplitude ratio	1:	2.5
	dB	8.0
Max. int. time counter	#	40'000

Result of integration times and register parameters

		Final integrat	ntegration time Register values		Registers used in operating mode:				
Multiplier	Counter			Dec	Hex	others	UHD	LNH	RBH
Register address						P5[0x00], P5[0x01]	P5[0x00], P5[0x01]	P5[0x00], P5[0x01]	P5[0x00], P5[0x01]
Repetition counts	1			1	0001	Int. length multiplier	Int. length multiplier	Int. length multiplier	Int. length multiplier
Int. length	Counter	μs	Ratio	Dec	Hex				
Register address						P5[0x02], P5[0x03]	P7[0x00] – P7[0x0F]	P7[0x00] – P7[0x0F]	P7[0x00] – P7[0x0F]
Int. time 1 (max.)	40'000	1'000.0		39'999	9C3F	Integration length	Int_len_row7	Int_len_row7, 6	Int_len_row74
Int. time 2	16'000	40 0.0	2.50	15'999	3E7F		Int_len_row6	Int_len_row5, 4	Int_len_row30
Int. time 3	6'400	160.0	2.50	6'399	18FF		Int_len_row5	Int_len_row3, 2	
Int. time 4	2'560	64.0	2.50	2'559	09FF	1	Int_len_row4	Int_len_row1, 0	
Int. time 5	1'024	25.6	2.50	1'023	03FF		Int_len_row3		
Int. time 6	408	10.2	2.51	407	0197	1	Int_len_row2		
Int. time 7	160	4.0	2.55	159	009F	1	Int_len_row1		
Int. time 8	64	1.6	2.50	63	003F	1	Int_len_row0		

Table 53: Example of integration time settings with on-chip modulation clock

7.6. Distance measurement (3D TOF)

The epc611's default modulation mode is based on the sinusoidal TOF modulation theory, but effectively uses a square-wave modulated signal with a duty-cycle of 50% for the illumination. After reset, all internal register values are default set to operate the chip at 4MHz XTAL/external clock input, multiplied up to 40 MHz at the PLL output, clocks the modulator with 40 MHz modulation clock (mod_clk), modulates LED/LD with 10 MHz and acquires 4 successive DCS frames (0 ... 3) using 51.2 µs integration time.

The distance measurement mode uses the on-chip LED driver and the external IR-LED/LD to provide modulated light on the target. Modulation control signals to the LED driver are provided by a programmable modulator. The modulator generates all signals to modulate the external IR-LED/LD and all demodulation signals to the pixel-field simultaneously. TOF and grayscale mode with all the variants are generated here.

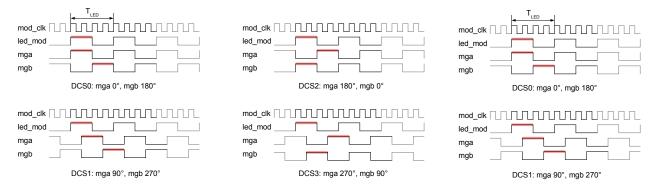


Figure 42: 4 DCSx mod./demod. waveforms

Figure 43: 2 DCSx mod./demod. waveforms

The modulation table registers control the modulation (refer to Table 68). The registers can be updated via SPI interface between frame acquisitions. The application must ensure that the last frame's integration phase is completed before modifying on-the-fly these registers. This time can be detected by the application by waiting for the DATA_RDY signal. This procedure allows to run continuously the maximum frame rate.

With the application of the SHUTTER via SPI, the chip performs the required number of successive DCS acquisitions. Each one of the 4 DCS frame types has a different phase relation between modulation (led_mod) and demodulation (mga, mgb) signals which makes phase-to-distance calculation possible. In the case of DCS0, led_mod is phase-shifted by 0° and 180° with respect to mga and mgb, respectively. In the case of DCS1, led_mod is phase-shifted by 90° and 270°. For DCS2, the phase-shifts are 180° and 0° and for DCS3, the phase-shifts are 270° and 90° (see Figure 42). Note that for DCS2 and DCS3, the demodulation signals mga and mgb are simply swapped with respect to DCS0 and DCS1 respectively.

By programming the "Number of DCS readouts" for 2x DCS (see register P4[0x12]), SHUTTER initiates 2 successive DCS frame acquisitions (see Figure 43). This mode allows distance acquisition by using two DCSs only and thus a doubled frame rate. However, this results at the cost of a lower distance measurement accuracy and a 40% higher distance noise.

7.7. Distance calculation algorithm

The use of the trigonometric atan2 definition for vectors (x, y) in the Cartesian coordinate system $\varphi = atan2(x, y) = atan2(y/x)$ guarantees a continuous distance calculation algorithm in the range of phases between $-\pi \dots +\pi$. The TOF system uses the range from 0°... 360° which corresponds to the distance from 0m up to the unambiguity distance (refer to Figure 44 and Figure 45).

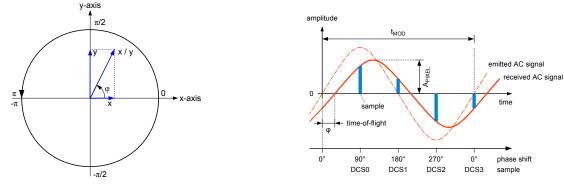
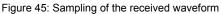



Figure 44: Continuous atan2 representation for the range $-\pi \dots +\pi$

In general, the distance is calculated by using the 4 DCSs, also called π -delay matching, which cancels pixels offsets leading to distance errors:

[1]
$$D_{\text{TOF}}[m] = \frac{c}{2} \cdot \frac{1}{2\pi f_{\text{LED}}} \cdot \left[\pi + \operatorname{atan2} \left(\frac{\text{DCS3} - \text{DCS1}}{\text{DCS2} - \text{DCS0}} \right) \right] + D_{\text{OFFSET}}$$

The measured data is always valid over the 360° phase-shift. Due to the distance offset adjustment D_{OFFSET}, the correction of the distance roll-over effect at zero and unambiguity distance is necessary to ensure all the time correct distance values D:

- if $D_{TOF} > D_{Unambiguity}$: $D = D_{TOF} D_{Unambiguity}$
- if $D_{TOF} < 0$: $D = D_{TOF} + D_{Unambiguity}$
- else: D = D_{TOF}

If greater distance errors can be tolerated but a high frame rate is needed, the distance calculation also works with only 2 DCSs:

$$[2] \quad \mathsf{D}_{\mathsf{TOF}}[\mathsf{m}] = \frac{\mathsf{c}}{2} \cdot \frac{1}{2\pi \mathsf{f}_{\mathsf{LED}}} \cdot \left[\pi + \mathsf{atan2} \left(\frac{-\mathsf{DCS1}}{-\mathsf{DCS0}} \right) \right]$$

The following terms are used in the formulas above:

D _{TOF}	Distance in meters [m]
С	Speed of light (299'792'458 m/s)
f _{LED}	LED/LD modulation frequency e.g. 10 MHz
DCS0 - DCS3	Sampling values [LSB]
φ	Phase-shift caused by the time-of-flight [rad]
D _{OFFSET}	Offset compensation [m]
D _{Unambiguity}	Unambiguity distance [m]

7.8. Unambiguity range versus time base setting

Due to continuous modulation, roll-over can be observed if the distance to the object is longer than the length of one modulation cycle (one period, 2π). This roll-over distance is called the unambiguity range and can be calculated as follows:

 $[3] \quad \mathsf{D}_{\mathsf{Unambiguity}}\left[\mathsf{m}\right] = \frac{\mathsf{c}}{2} \cdot \frac{1}{\mathsf{f}_{\mathsf{LED}}}$

The effective operating range is the maximum distance corresponding to the maximum time-of-flight within one cycle of the modulation being used: It is one period of f_{LED} . Objects inside this area are detected unambiguously.

The unambiguity range defines the repetition distance. Objects outside of the effective operating range can still be detected if they are of very high reflectivity (remission). As a result, strongly reflected signals coming from outside of this range may interfere with the measurement.

The operating range, the unambiguity distance, the time base for the integration time and the resolution of the distance signal are defined by the modulation clock mod_clk. For the epc611, this corresponds to a maximum default operating range of 7.5m @ mod_clk = 80MHz. Depending on the application, it may be necessary to adapt these parameters to other values. It can be done by a change of the modulation clock. Table 54 lists as an example some values of the modulation clocks in function of the operating ranges, the unambiguity distances, of the distance resolutions and of the multipliers of the integration time base.

Unambiguity distance	Integration time		Modulation clock	Modulation clock divider	LED modulation frequency
	multiplied by	resolution ²	f _{MOD}	Register P4[0x05]	f _{LED}
[m]	[#]	[cm]	[MHz]	[#]	[MHz]
7.5	1	0.25	80	0 (0x00)	20
15	2	0.50	40	1 (0x01)	10 ¹
30	4	1.00	20	3 (0x03)	5
60	8	2.00	10	7 (0x07)	2.5
120	16	4.00	5	15 (0x0f)	1.25
240	32	8.00	2.5	31 (0x1f)	0.625

Table 54: Unambiguity range versus on-chip modulation clock

Notes:

¹ Default values

² This example is based on a user's distance scaling for the unambiguity distance (phase angle 2 Pi) corresponding to 3'000 LSB, e.g. @ 10 MHz correspond 3'000 LSB to 15 m unambiguity distance. User should choose the appropriate scaling for his application depending of the operation mode.

³ Using external modulation clock EXTMOD: Follow Chapter 6.5.2.

7.9. Quality of the measurement

The DCS values contain not only the distance information but also the quality and the validity (confidence level) of the received optical signal. The higher the signal amplitude of the received signal, the better and more precise the distance measurement. Each distance measurement of every pixel has its own validity and quality.

The primary quality indicator for the measured distance data is the amplitude of the received modulated light A_{TOF} . The amplitude is in direct relationship to the distance noise (refer to the corresponding graph of the operation mode e.g. Figure 27). The amplitude can be calculated as follows:

[4]
$$A_{TOF} = \frac{\sqrt{(DCS2 - DCS0)^2 + (DCS3 - DCS1)^2}}{2}$$

Amplitude A _{TOF}	Classification	Action
< 1 %	Weak illumination	Objects can be detected but distance measurement is not possible. Increase the integration time for the next measurement.
1 5 %	Useful amplitude for measurement	High distance noise, increase the integration time
5 99 %	Good signal strength	No action necessary
> 99%	Overexposed	Decrease integration time for the next measurement.

Table 55: Signal amplitude versus classification

Note:

The amplitude value is the feedback parameter that is used to set the integration time for the next measurement. Generally, the higher the received signal, the better and more precise the distance measurement. However, it is good practice to control the integration time so that an amplitude value between 10 ... 75% is achieved. Higher values will only slow down the acquisition rate due to longer integration times, but do not significantly improve signal-to-noise ratio.

The quality indicator for the distance noise is the ratio of ambient-light E_{BW} to the peak-to-peak value of modulated light E_{TOF} (AMR). This value may be calculated and used additionally to the above amplitude value if the respective application is subject to intense ambient-light. The peak-to-peak irradiance E_{TOF} of the modulated signal at the surface of a pixel can be calculated using the AC sensitivity S_{TOF} , the integration time $t_{INT-REF-TOF}$ and the peak-to-peak amplitude A_{TOF} of the received modulated signal in the following way:

$$[5] \qquad \mathsf{E}_{\mathsf{TOF}} = \ \mathsf{S}_{\mathsf{TOF}} \cdot \frac{t_{\mathsf{INT-REF-TOF}}}{t_{\mathsf{INT-TOF}}} \cdot \mathsf{A}_{\mathsf{TOF}} \quad e.g. \quad \mathsf{E}_{\mathsf{TOF}} = \ 0.60 \frac{\mathsf{nW}/\mathsf{mm}^2}{\mathsf{LSB}} \cdot \frac{100\,\mu\,s}{250\,\mu\,s} \cdot 1'000 \ \mathsf{LSB} = \ 0.24\,\mu\,\mathsf{W}/\mathsf{mm}^2$$

The formula to calculate the "Ratio of Ambient-light / Modulated light" (AMR) quality indicator is:

$$[6] \qquad AMR[dB] = 20 \cdot log\left(\frac{E_{BW}}{E_{TOF}}\right) \qquad e.g. \qquad AMR[dB] = 20 \cdot log\left(\frac{15.6 \mu W/mm^2}{0.24 \mu W/mm^2}\right) = 36 dB$$

To obtain the E_{BW} please refer to Chapter 7.10 Grayscale imaging / ambient-light measurement. This ratio is one of the influencing factors regarding the distance noise.

AMR value	Classification	Action
< 60 dB	excellent	No action necessary.
< 70 dB	sufficient	If a lower noise level is needed, perform the next measurement with a shorter integration time or with an increased illumination power.
> 70 dB	weak	Perform the next measurement with a shorter integration time or with an increased illumination power.

Table 56: Classification ratio ambient-light to modulated light (AMR) versus distance noise

There are also validity indicators delivered by the chip following a measurement. These will help to detect saturated or non-illuminated pixels as a result of too much/little illumination or too long/short integration time.

Table 57 shows a quality decision matrix as a summary of the validity and quality parameters for the distance measurement.

Step	Indicator	Pixel saturation: too much amblight or too bright illu.	Too bright illumination	No object detected	Too much ambient-light	Object detected
1	SAT flag	Set				
2	DCSx		> +99% or < -99%	all of them -1% +1%		
3	TOF amplitude		> 99%	< 1%		5% 99%
4	AMR: Ratio amb. to mod. light				> 70 dB	< 60 dB
5	Action	Decrease int. time	Decrease int. time	Increase int. time	Decrease int. time	Use distance data

Table 57: Validity (V) and quality (Q) decision matrix (see also 46)

Accurate and reliable distance information can only be provided if the validity and the necessary quality levels of the measured data are given. The generic validity and quality of the data is independent of any correction or compensation algorithms. It is only based on the complete epc611 camera system with chip, lens, illumination and environmental conditions.

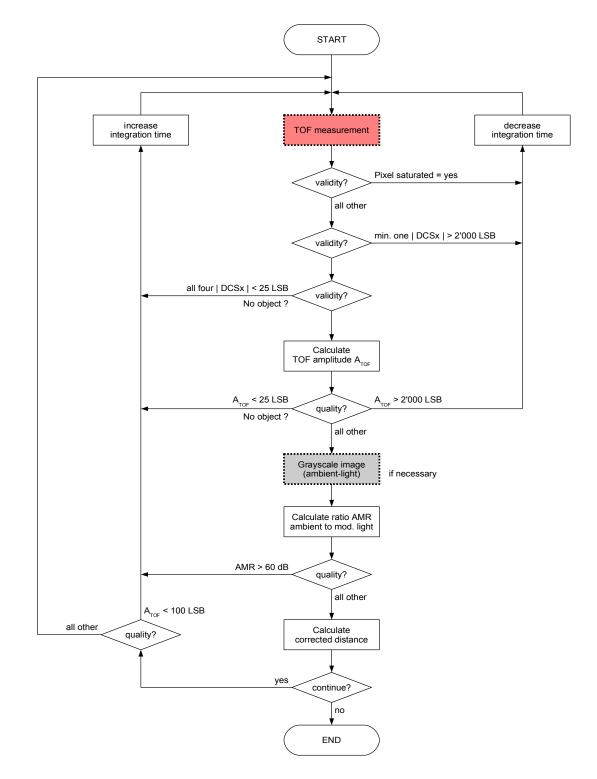


Figure 46: Generic validity and quality flow chart for a single pixel

For possible correction and compensation algorithms, refer to the AN 10 Application Note which is available on the Website www.espros.com.

7.10. Grayscale imaging / ambient-light measurement

The grayscale mode allows the use of the epc611 as a grayscale imager. This mode can be used either without LED/LD illumination for ambient-light measurements or with LED/LD for active illumination of the scenery. The grayscale measurement uses regular DCS measurement but with DCS0 only. It is performed with differential readout using MGA only (refer to Figure 19) which remains on during the entire integration time. Data output format is signed integer 12 bit: ± 2'047 LSB. Effective data range is 0 ... +2'047 LSB. Due to system noise around zero, the readout can show small negative numbers.

The saturation flag status is invalid in this mode.

Due to the fact that distance measurement results can be influenced by ambient-light, the grayscale measurement without illumination can thereof be used as an important quality and correction parameter for the distance measurement.

The irradiance E_{BW} of the grayscale signal at the surface of a pixel can be calculated from the DC sensitivity S_{BW} , the used integration time t_{INT-BW} , the reference integration time t_{INT-BW} and the amplitude of DCS0 of the grayscale signal as follows:

$$[7] \qquad \mathsf{E}_{_{BW}} = \mathsf{S}_{_{BW}} \cdot \frac{\mathsf{t}_{_{INT-REF-BW}}}{\mathsf{t}_{_{INT-BW}}} \cdot \mathsf{DCS0} \qquad \text{ e.g. } \mathsf{E}_{_{BW}} = 0.25 \frac{\mathsf{nW}/\mathsf{mm}^2}{\mathsf{LSB}} \cdot \frac{100\mu\,\mathsf{s}}{1.6\,\mu\,\mathsf{s}} \cdot 1'000\,\mathsf{LSB} = 15.6\,\mu\,\mathsf{W}/\mathsf{mm}^2$$

7.11. Calibration and compensation of TOF cameras

This modern TOF sensor chip offers a fully digital interface to the control circuitry of a TOF camera. First-time users naturally expect straight forward implementation and digital accuracy of the measured signals. However, often tremendous disillusion follows because many physical effects are influencing the final performance of 3D TOF cameras.

3D TOF cameras capture images by utilizing the time-of-flight measurement of photons. Photons are emitted by high frequency modulated LEDs or laserdiodes, which are part of the camera. These are than scattered by objects in the scenery, before and finally, some of the emitted photons are reflected back to the camera and captured in so-called demodulation pixels. This time-of-flight happens in an incredibly short period of time, as it takes place with 300'000 km/s or 30 cm/ns. To achieve a centimeter distance resolution and accuracy, 30 ps time measurement accuracy has to be achieved. This is a very tough requirement, as may be a lot of pixels need to provide such accurate measurement several dozen times per second at the same time. Small and inherent differences in the connection and arrangement of transistors within the TOF chip, temperature differences and changes, as well as irradiance signal strength and, last but not least, ambient-light change lead to measurement errors in the tens of centimeters:

---> Calibration and compensation is essential to reach the goal.

To support users, AN10 "Calibration and Compensation" Application Note can be downloaded from the Website www.espros.com in the section Downloads. This paper describes the error sources in 3D TOF sensor chips, a simple way to implement a calibration procedure and how to compensate them at camera level.

Other documents which can be helpful to achieve a successful chip implementation are listed in Chapter 14.2, Related documents.

7.12. Noise reduction and signal filtering

Regardless of which measurement process applies, distance noise is one of the major challenging factors of 3D TOF imaging. This limits to distinguish the depth of small objects or fine contours. It is called temporal noise and varies from measurement to measurement. Since this noise is a statistical value, its effect can be reduced by filtering.

However, a simple averaging with a FIR filter is not suitable for many applications because of the very long time lag to get a filtered result. Using filtering based on the theory of Rudolf E. Kalman, noise can be reduced significantly without losing system responsivity. Figure 47 shows the resulting effect of such a Kalman filter.

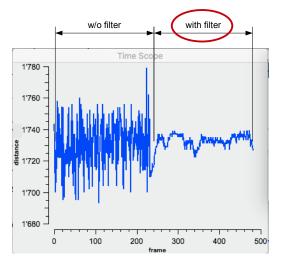


Figure 47: Effect of the static Kalman filter on distance noise (Distance in mm)

Left side: The frames 0 to 240 have been acquired without filtering at all. The distance noise is approx. 12 cmpp (1 sigma = 2.5 cm). Right side: Frames 240 to 500 are processed with the Kalman filter. The distance noise is reduced to approx. 2 cmpp (1 sigma = 0.5 cm). The signal amplitude was quite low in both cases, approx. 250 LSB.

To support users, AN12 "TOF data improvement toolbox" Application Note can be downloaded from the Website www.espros.com in the section Downloads. This paper describes background and implementation of two Kalman filter algorithms in 3D TOF cameras.

8. Temperature sensor

The temperature sensor is located near the pixel-field. It is factory-calibrated at 27°C (offset). The temperature value can be accessed in registers P2[0x0A] and P2[0x0B] after taking the following "temperature/grayscale image" for temperature reading. The procedure described below takes a grayscale image with 2.5 times lower sensitivity compared to the regular grayscale modes described in Chapters 7.3.1, 7.3.2 and 7.10. Most applications need grayscale (or ambient-light) pictures for background-light compensation. By reading the temperature, a grayscale image can be read at the same time.

The temperature register is cleared on the beginning of each frame. To ensure correct values, read the register after applying the necessary double-row read cycles depending on the operation mode according Table 58.

Mode	Min. waiting time	Reading value	Accuracy
	Double-row read cycles per frame	Register P2[0x0A], P2[0x0B]	
UFS	1	Temperature /4	No offset compensation
GBI	2	Temperature /2	Partly offset compensated
all others	4	Temperature (14 bit)	Most accurate

Table 58: Waiting time and data output for the temperature reading versus operating modes

8.1. Initialization

Upon power-up or after a RESET:

define X, Y, M, C, Z, TH, TL, Temp	<pre># Define required variables # Define required variables, only for temperature reading</pre>
X = RD @P6[0x13] Y = RD @P6[0x15]	# Save register 0xD3 # Save register 0xD5
C = RD @P6[0x19] Z = C/4.7-0x12B	<pre># Read sensor factory calibration # Normalized calibration value for temperature formula</pre>

The calibration value (factory setting) is stored in the EEPROM of the chip. If it is accidentally overwritten, it can be reloaded by applying a reset or a power-up.

8.2. Read-out during runtime

- 1. Set the integration time for the grayscale imaging the regular way. Note: The sensitivity is 2.5 times lower than in the regular grayscale mode.
- 2. Acquire a grayscale image, perform the temperature readout and the temperature calculation. The grayscale image will be acquired with the following procedure and stores the temperature value into the registers P2[0x0A] and P2[0x0B].

$M = RD \ (0x12)$	# Save mode register, control no. of DCS
WR $(P6[0x13] = X \text{ OR } 0x60$	# Set bits b5 and b6
WR $(P6[0x15] = Y \text{ AND } 0x0F$	# Clear bits b4 and b5
# Image acquisition	
$WR \ @P4[0x12] = 0xC0$	<pre># Change mode to grayscale</pre>
WR $(P2[0x18] = 0x01$	<pre># Trigger image acquisition</pre>
# After data readout	
$TH = RD \ (P2[0x0A])$	<pre># Read temperature sensor high register</pre>
	<pre># Refer to Table 76, "all others - most accurate"</pre>
TL = RD (P2[0x0B])	<pre># Read temperature sensor low register</pre>
	<pre># Refer to Table 76, "all others - most accurate"</pre>
# Switch back to normal image acquis	ition
WR @P6[0x13] = X	# Restore register 0xD3
WR @P6[0x15] = Y	# Restore register 0xD5
WR @P4[0x12] = M	<pre># Change back to the mode before temperature reading</pre>

8.3. Calculating temperature in °C

Note:

The acquired grayscale image of the temperature/grayscale image can be used. However, the sensitivity during this acquisition was reduced by a factor of 2.5. Thus, if the same sensitivity is needed, the integration time has to be increased by a multiplier of 2.5.

Is the temperature reading used for compensation purposes, it is recommended to apply the following temporal filtering algorithm. This prevents the compensation of additional noise caused by the temperature reading noise (digitalization, quantization errors and system noise).

k = 0.1 y[i-1] = x[0] x[i] = Temp

y[i]=k*x[i]+(1-k)*y[i-1]

Kalman gain
Start condition

Simple Kalman 1 filter

x[i]: Current temperature

y[i]: Current temporal filtered temperature

y[i-1]: Previous temporal filtered temperature

9. Application information

To help users to better understand the chip, this chapter lists basic application examples and explains how to do the configuration. Detailed instruction examples can be found in the chapters of the individual modes.

9.1. Example sequence from start-up to frame acquisition

Notes for first-time epc611 chip operation:

- 1. Chip booting: Apply all the voltages. No special order is mandatory.
- If in doubt: Apply V_{DDBS} with a delay. For SPI communication, V_{DDBS} is not necessary.
- 2. During and after boot-up: Polling on SPI with NOP until chip answers with IDLE (0x00).
- 3. To ensure memory addressing: SPI uses for the addresses SPI page and SPI address. Refer to Chapter 12.
- 4. Perform and read as first-time operation the 8x8 pixel grayscale mode GIM. Refer to Chapter 7.3.1 and 43.

9.2. 3D TOF distance measurement flow

A 3D TOF distance image, e.g. in TIM mode, is done with different steps according to Figure 48. The SPI interface is used for configuration, mode selection and temperature reading (marked blue in the following figures) and reading the frame data (marked red in the following figures). The sequence starts with the initialization of the epc611 registers with the necessary and correct configuration parameters. Next, the TOF measurement with the expected mode (4 DCS or 2 DCS) will be performed. Depending on the application and the ambient conditions (ambient-light, changing temperature conditions), the TOF measurement needs some compensation. For the purpose of more accurate ambient-light compensation, a grayscale measurement without illumination captures the background-light level. Reading of the on-chip temperature sensor (from time to time) helps to compensate thermal influences caused by the LEDs, the optical filters, the epc611 chip, etc. After the rearrangement of the grayscale image to the correct pixel orientation, the final 3D TOF distance image can be calculated with the necessary compensation.

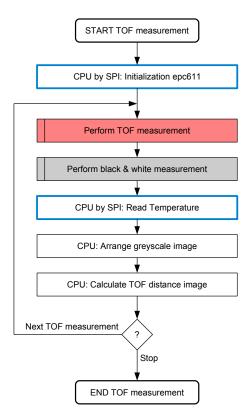


Figure 48: Generic example of the 3D TOF distance measurement flow (example TIM mode)

The process flows for distance measurements and for grayscale images are similar, see Figure 49. The main difference is the mode selection (number of DCS or grayscale) and dependant number of frames, which need to be read out during a process cycle. After mode setting, the cycle will be started by applying the SHUTTER. Once SHUTTER is activated, the epc611 executes the measurement until the end of the sequence autonomous.

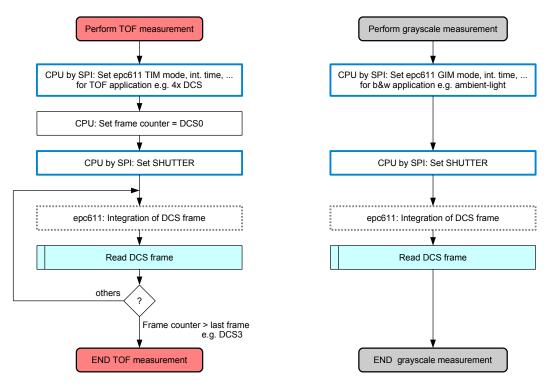


Figure 49: Generic sequences for the distance (TOF) and the grayscale measurement (example TIM mode)

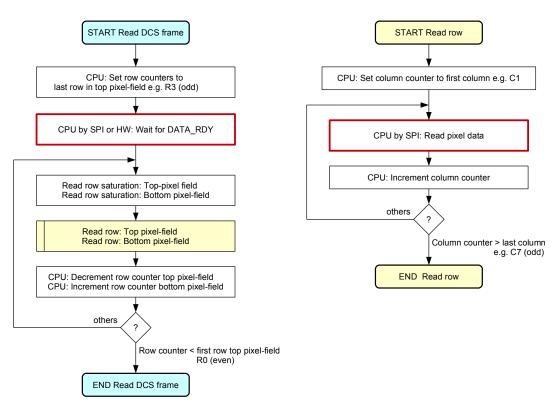


Figure 50: Generic sequences to readout frames and row by row (example TIM mode)

9.3. Rolling DCS frames

In special applications, it is possible to always use the same integration time in continuous distance measurement mode without any grayscale images for ambient-light compensation. Such a set-up allows the distance measurement rate to be enhanced by a factor of 4 by using rolling DCS frames.

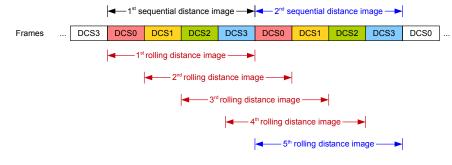


Figure 51: Rolling DCS frames

As shown in Figure 51, with each new DCS frame, the algorithm performs a new distance calculation based on the new and last three DCS frames. Details of the register settings are listed in the individual operation mode descriptions.

9.4. Enhanced rolling DCS frame mode

The epc611 allows individual parameters to be set for each single DCS access. This enables the ability to acquire in time-sequence DCSx frames with different integration times, etc.

The enhanced rolling mode combines all:

The stacking of integration times to enlarge the dynamic range, the acquisition of an ambient-light image for correction and the rolling mode to speed up the frame rate.

The final distance frame acquisition will be in an equidistant time manner, this for 2 or more different integration times.

Select the most reliable distance information out of the acquired integration time distance frames, already compensated each time, and compose the final distance picture.

The example shown here uses two integration times:

50 μs for detecting short range objects and 2 ms for the long range objects.

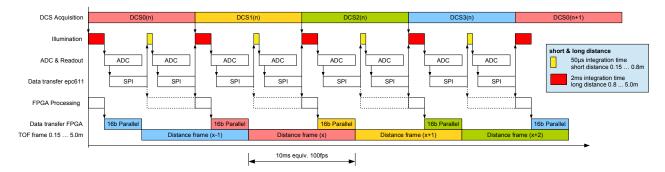


Figure 52: Enhanced rolling mode sequence

Implementation example step by step: Rolling mode using 3 integration times

- 1. Chose single frame mode by setting register P4[0x12] and P1[0x02].
- 2. Perform 4 DCS acquisition following next steps:
- 3. Select DCS0 and acquire 3 DCS0 each with one of the 3 integration times

Integration time t1 > SHUTTER > readout > integration time t2 > SHUTTER > readout > integration time t3 > SHUTTER > readout. 2nd and subsequent acquisitions:

Calculate for each integration time the distance and TOF amplitude image with the last 4 corresponding DCS frames. Select the most reliable distance information out of the acquired integration time distance frames, already compensated each time, and compose the final distance picture.

4. Select DCS1 and acquire 3 DCS1each with one of the 3 integration times Integration time t1 > SHUTTER > readout > integration time t2 > SHUTTER > readout > integration time t3 > SHUTTER > readout 2nd and subsequent acquisitions: Calculate for each integration time the distance and TOF amplitude image with the last 4 corresponding DCS frames. Select the most reliable distance information out of the acquired integration time distance frames, already compensated each time, and compose the final distance picture.

5. ... and so on ...

The appropriate register settings P4[0x12] and P1[0x02] are listed in the corresponding mode chapters.

10. Parameter and configuration memory

10.1. Sequencer program

The sequencer program is the executable code of the chip's state-machine. ESPROS' approach is to always achieve optimal chip performance by offering the user the most suited sequencer program code. After each power-up, this program code shall be downloaded by the application to the chip via the SPI interface. Refer to Chapter 13.6, Latest version of the sequencer program

IMPORTANT:

Always use the latest sequencer program which corresponds to chip type and version. Incorrect sequencer programs will derate chip performance or even worse, lead to malfunction.

10.2. Data memory map

The epc611 control registers (RAM) are used to control all features of the chip. They are organized as 256x8 bit into 0x00 ... 0xFF address locations. The address space 0x80 ... 0xFF is EEPROM backed-up. EEPROM parameters in this section are stored permanently between the power off/on cycles.

All registers can be accessed through the SPI interface by the application CPU, according to Chapter 11, SPI interface and Chapter 12, Register map. Multiple byte registers are stored in the order MSB first, then LSB.

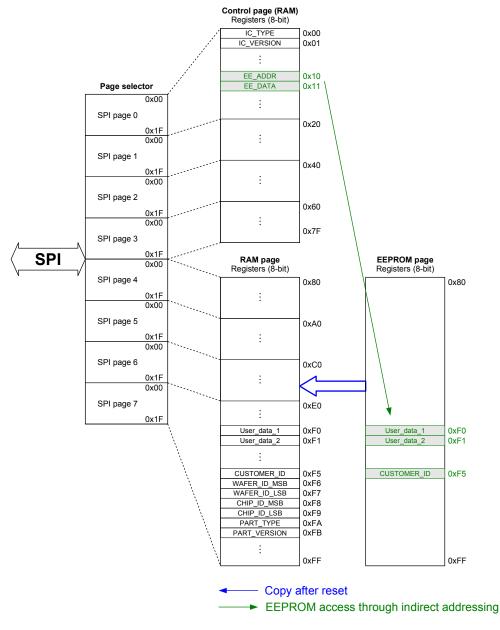


Figure 53: Memory map

10.2.1. Control page

The control page contains R/W accessible registers with default values during startup. The content can be changed via the I²C interface. The changed values are preserved as long as the IC is powered. A reset sets them back to their default values.

10.2.2. RAM page

The RAM page contains R/W accessible registers with EEPROM copied values after startup. The content can be changed via the I²C interface. The changed values are preserved as long as the IC is powered. They are set back to EEPROM values with a reset.

10.2.3. EEPROM page

The embedded 128x8-bit EEPROM stores operation parameters as well as factory-set trimming and calibration values.

11. SPI interface

The external microprocessor (master) communicates with the epc611 chip via the SPI interface. The master sets application-specific chip configurations, triggers the measurements and reads the data. The implemented interface supports single-slave environments only. The SPI lines need to be connected according to Figure 13.

11.1. SPI timing

The 16 bit epc611 SPI works as slave with a transfer rate up to 16 Mbit/s. While data (MOSI) is sent from the microprocessor to the epc611, the result (MISO) of the previous command is sent back according to the SPI protocol in Figure 54.

Designations of the SPI bus signals:

- nSS Slave select and resynchronization
- SCLK Serial clock from master for the data transfer
- MOSI Serial data input slave
- MISO Serial data output slave; no tri-state output; only for single user systems

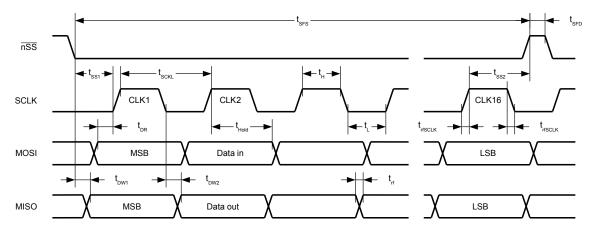


Figure 54: SPI bus timing diagram

Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{SFS}	Slave selection time for 1 complete data frame (word access)	15.2*t _{sclк}			
t _{SFD}	Slave deselection time for the data frame synchronization	10			ns
f _{SCLK}	Clock frequency of SCKL			16	MHz
t _{SS1}	Set-up time for the first rising edge of SCKL after the falling edge of $\overline{\text{nSS}}$	15			ns
t _{SS2}	Set-up time for the rising edge of \overline{nSS} after the rising edge of clock 16	15			ns
t _{SCLK}	Cycle time of SCKL = 1/f _{SCLK}	119			ns
t _H / t _L	HIGH and LOW period of SCKL	15			ns
t _{rfSCLK}	Rise or fall time for the SCKL signal			10	ns
t _{DR}	Input data set-up time of MOSI before the rising edge of SCKL	15			ns
t _{Hold}	Input data hold time of MOSI	15			ns
t _{DW1}	Output data of MISO valid after the falling edge of $\overline{\text{nSS}}$			20	ns
t _{DW2}	Output data of MISO valid after the falling edge of SCKL			20	ns
t _{rf}	Rise or fall time for the MOSI and MISO signals			8.5	ns

Table 59: SPI timing

11.2. SPI frame format

The SPI protocol is based on commands and responses. The application (SPI master) sends commands to the epc611 (SPI slave). The epc611 chip performs the requested operations and provides the response in the following SPI frame. Frames are transmitted sequentially with MSB bit first. The SPI master drives the nSS signal LOW while communicating with the slave.

	Command frame on MOSI,	16 bit MSB aligned	Response frame on MISO, 16 bit MSB aligned		
Section	Symbol	Parameter	Symbol	Parameter	
ID	CID[2:0]	3 bit command ID	RID[2:0]	3 bit response ID	
SPI address ¹	CADDR[4:0]	5 bit address	RADDR[4:0]	5 bit response address	
Data	CDATA[7:0]	8 bit data	RDATA[7:0]	8 bit response data	

Table 60: SPI	command	and	response	format

Note ¹: A memory location is effectively addressed by SPI pages and SPI addresses, according to Figure 53 and Table 64 ff.

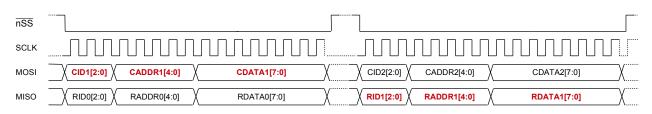


Figure 55: SPI frame format: Command and response thereof (red marked)

The $\overline{\text{nSS}}$ signal needs to be de-asserted and re-asserted between two consecutive SPI frames to allow correct on-chip synchronization and error detection. This inter-frame gap can be as short as defined in Table 59, parameter t_{SFD} . The falling $\overline{\text{nSS}}$ transition to LOW needs to be followed be a rising SCKL edge to HIGH. Refer to Table 59, parameter t_{DR1} . The rising edge of $\overline{\text{nSS}}$ terminates the command and starts the processing of the instruction, e.g. new register value becomes active.

Because the SPI transmits data bidirectionally at the same time, a request will be answered in the following SPI frame. Examples of correct sequences of the command protocols are shown in Figure 56 and Figure 57.

Example 1: READ commands

SPI frame 1	SPI frame 2	SPI frame 3	SPI frame 4	SPI frame 5	
RD1	RD2	RD3	NOP	NOP	
IDLE	RD1_DONE	RD2_DONE	RD3_DONE	IDLE	

Figure 56: Read commands

Note: Use "NOP" to get last result.

Example 2: WRITE with delay and READ

If the epc611 is "BUSY" e.g. WRITE _NOT DONE, any incoming command will be ignored. The application must track the responses and repeat a dropped command (red and blue frame).

SPI frame 1	SPI frame 2	SPI frame 3	SPI frame 4	SPI frame 5	
WR1	RD1 (drop)	RD2	RD1 (repeat)	NOP	
IDLE	WR1_NOT_DONE	WR1_DONE	RD2_DONE	RD1_DONE	

Figure 57: WRITE with delay and READ

Command	CID [2:0]	Address [4:0]	Data [7:0]	Operation	usage						
NOP	000	0 0000	0000 0000	"No operation". Used for polling during waiting for the response from the SPI or for completing the imager operation.							
READ	EAD 001 a aaaa 0000 0000 Reads data from the requested register address a aaaa 5 bit read address								SS		
WRITE	010	а аааа	dddd dddd	Writes data a aaaa dddd dddd							
QUIT	011	0 0000	0000 0000	Stops all on	-going READ or W	/RITE	oper	ation	s and retu	Irns to IDLE state	
PAGE_SELECT	100	0 0 P2 P1 P0	0000 0000		memory page (poi remains until it is o			r also	to Figure	9 53.	
				Page	Memory addr.	P2	P1	P0	Default		
				0	0x00 0x1F	0	0	0	Х		
				1	0x20 0x3F	0	0	1			
				2	0x40 0x5F	0	1	0			
				3	0x60 0x7F	0	1	1			
				4	0x80 0x9F	1	0	0			
				5	0xA0 0xBF	1	0	1			
				6	0xC0 0xDF	1	1	0			
				7	0xE0 0xFF	1	1	1			
				Table 61	: Mapping of the n	nemo	ry pa	ge po	inter bits	P2, P1 and P0	
RESET	110	0 0000	0000 0000	Initiates a software reset. Reloads the values stored in the EEPROM into the volatile memory. After RESET the chip is in IDLE state.							
All other comman	ds not listed	above are reserv	ved.								

Table 62: SPI command list

11.4. SPI response

Response	RID [2:0]	Address [4:0]	Data [7:0]	Response to	Operation / usage
IDLE	000	0 0000	0000 0000	NOP	The SPI is in IDLE state. No operations pending.
READ_DONE	001	a aaaa	dddd dddd	READ	Successful READ. Returns the read data:a aaaa5 bit read addressdddd dddd8 bit read data
WRITE_DONE	010	а аааа	dddd dddd	WRITE	Successful WRITE a aaaa 5 bit write address dddd dddd 8 bit write data
READ_NOT_DONE	011	1 0011	0011 0011	READ	READ in progress. Action: Polling with NOP until device answers READ_DONE.
PAGE_RESPONSE	100	0 0 P2 P1 P0	0000 0000	PAGE_SELECT	Successful PAGE_SELECT. Returns the current page number. P2, P1 and P0: Page pointer bits as defined in Table 60.
WRITE_NOT_DONE	110	0 1100	1100 1100	WRITE	WRITE in progress: Action: Polling with NOP until device answers WRITE_DONE.
SYS_NOT_READY	111	0 1011	1111 1111	any	Response during chip boot-up. Action: Polling with NOP until device answers IDLE.
QUIT_RESPONSE	111	0 0011	1000 1110	QUIT	Successful QUIT. The device is in IDLE state.
ERROR	111	1 0101	1111 1111	any	Error occurred on the SPI bus e.g. command length was not correct. Action: Repeat this command correctly.
SPI_NOT_READY	111	1 1111	1111 1111	any	SPI slave is not ready. Action: Polling with NOP until device answers IDLE.
All other responses no	t listed abov	e are nor used no	or valid.		

Table 63: SPI response list

11.5. SPI pixel data readout and DATA_RDY

The pixel data and validity information for readout are present in the readout registers, which correspond to the selected operating mode. Pixel data which is ready for readout is stored in a buffer for off-loading by the application via SPI commands.

Buffering and readout are done on double-rows, one row of each half of the pixel-field top and bottom, except for readouts with one pixel only. Whenever a double-row is read, the buffers are updated with the data of the next double-row. For this reason, the saturation information of the double-row should be read first, followed by the data read out.

The availability of pixel data is indicated by the DATA_RDY signal (pin). Alternatively, the register P2[0x15] can be polled. It provides the DATA_RDY bit and the number of available data bytes in the buffer. A frame has as many double-row readouts as the half pixel-field has rows. Furthermore, in case of an empty buffer, the DATA_RDY is de-asserted. Refer to Figure 55.

Pixel status: DATA_RDY	
Pixel status: No. of bytes	0x00 V 0x18 / 24d V 0x0D / 13d 0x0C / 12d V 0x01 / 01d 0x00 V 0x18 V
Pin DATA_RDY	
nSS	
MISO	Row3.0[11:4] Row3.7[11:4] Row4.0[11:4] Row4.7[11:4] Row3.2[11:4] Row3.2[11:4]<

Figure 58: DATA_RDY control e.g. 12 bit data readout of a double-row

12. Register map

Notes:

P0[0x01] Array notation. Example is for the register at address 0x01 in SPI page 0. Refer to Figure 53.

** Shadow registers can be updated on-the-fly while a frame acquisition is going on. The new values are used at the start of the next SHUTTER.

Registers not listed are reserved and must not be altered by the user. Otherwise, chip malfunction can occur. However, if a register is accidentally overwritten, a RESET restores the factory settings.

The listed default values are after the download of the latest sequencer program to the chip.

12.1. SPI Page 0

Page addr.	RAM loc.	Туре	Default	Description
P0[0x00]	0x00	R		IC type for device family identification. For chip type refer to register P7[0x1A].
P0[0x01]	0x01	R		IC version for device mask identification. For chip version refer to register P7[0x1B].
P0[0x11]	0x11	R/W		Address register for indirect read/write access to EEPROM: Refer to Figure 53. Use the absolute EEPROM address instead of the mapped page address.
P0[0x12]	0x12	R/W		Data register for indirect read/write access to EEPROM: Refer to Figure 53.

Table 64: Registers SPI Page 0

12.2. SPI Page 1

Page addr.	RAM loc.	Туре	Default	Descrip	otion	
P1[0x02]	0x22	R/W	0x34	DCS se	lection for 1 st frame (refer to the operation mode chapters):	
				Bit	Function	Default
				0	mgx0 modulator (mga0, mgb0):	0
				1	00: DCS 0	0
					01: DCS 1 10: DCS 2	
					11: DCS 3	
				2	mgx1 modulator (mga1, mgb1):	0
				3	00: DCS 0 01: DCS 1	0
					10: DCS 1	
					11: DCS 3	
				47	reserved	0x3
P1[0x04]	0x24	R/W	0x00		tion control 1 st frame (refer to Chapter 6.6): Function	Default
					reserved	0 Delault
				4	0: LED/LD is modulated 1: LED/LD on during integration: Refer to IMPORTANT, Chapter 6.6	0
				5	0: LED/LD is modulated	0
				07	1: LED/LD off during integration	0
				6,7	reserved	0
P1[0x05]	0x25	R/W	0x3D	DCS se	lection for 2 nd frame (refer to the operation mode chapters):	
					Function	Default
					mgx0 modulator (mga0, mgb0):	0
					00: DCS 0 01: DCS 1	0
					10: DCS 2	
					11: DCS 3	
					mgx1 modulator (mga1, mgb1):	0
					00: DCS 0 01: DCS 1	0
					10: DCS 2	
					11: DCS 3	
				47	reserved	0x3
				<u> </u>		I

Table 65: Registers SPI Page 1

Page addr.	RAM loc.	Туре	Default	Descri	ption					
P1[0x07]	0x27	R/W	0x00	Modula	Modulation control 2 nd frame (refer to Chapter 6.6):					
				Bit	Function	Default				
				03	reserved	0				
				4	0: LED/LD is modulated1: LED/LD on during integration: Refer to IMPORTANT, Chapter 6.6	0				
				5	0: LED/LD is modulated 1: LED/LD off during integration	0				
				6,7	reserved	0				
P1[0x1C]	0x3C	R/W	0x26	Modula	tion control in grayscale mode (refer to Chapter 6.6):					
				Bit	Function	Default				
				03	reserved	0x6				
				4	0: LED/LD is modulated 1: LED/LD on during integration: Refer to IMPORTANT, Chapter 6.6	0				
				5	0: LED/LD is modulated 1: LED/LD off during integration	1				
				6,7	reserved	0				

Cont. 65: Registers SPI Page 1

12.3. SPI Page 2

Page addr.	RAM loc.	Туре	Default	Description
P2[0x0A]	0x4A	R	0x00	Temperature sensor:
P2[0x0B]	0x4B	R	0x00	Temperature reading must follow temperature/greyscale image reading referred in Chapter 8.
P2[0x0C]	0x4C	R	0x00	12 bit/pixel data readout mode: PIXEL_EVEN and PIXEL_ODD readout for TIM, GIM and GBI modes. Refer to the corres- ponding operating mode chapters for detailed description. Refer also to register P2[0x0D] P2[0x13]: saturation, ADC over- and underflow flags.
P2[0x0D]	0x4D	R	0x00	 Pixel saturation flags per row of top half of the pixel-field for 12 bit/pixel data readout mode: b7 b0: correspond to pixel-field column 7 0. 0: Pixel is not saturated 1: Pixel is saturated. Pixel data is not reliable. Validity: Saturation flags of any double-row should be read first, followed by the data read out. Whenever a double-row has been read, the buffers are updated with the data of the next double-row.
P2[0x0E]	0x4E	R	0x00	Pixel saturation flags per row of bottom half of the pixel-field for 12 bit/pixel data readout mode: Description, see register P2[0x0D] above.
P2[0x10]	0x50	R	0x00	 ADC overflow flags per row of top half of the pixel-field for 12 bit/pixel data readout mode: b7 b0: correspond to pixel-field column 7 0. 0: no ADC overflow 1: ADC overflow detected. Pixel data is not reliable. Validity: ADC overflow flags of any double-row should be read first, followed by the data read out. Whenever a double-row has been read, the buffers are updated with the data of the next double-row.
P2[0x11]	0x51	R	0x00	ADC overflow flags per row of bottom half of the pixel-field for 12 bit/pixel data readout mode: Description, see register P2[0x10] above.
P2[0x12]	0x52	R	0x00	 ADC underflow flags per row of top half of the pixel-field for 12 bit/pixel data readout mode: b7 b0: correspond to pixel-field column 7 0: 0: no ADC underflow 1: ADC underflow detected. Pixel data is not reliable. Validity: ADC underflow flags of any double-row should be read first, followed by the data read out. Whenever a double-row has been read, the buffers are updated with the data of the next double-row.
P2[0x13]	0x53	R	0x00	ADC underflow flags per row of bottom half of the pixel-field for 12 bit/pixel data readout mode: Description, see register P2[0x12] above.

Table 66: Registers SPI Page 2

Page addr.	RAM loc.	Туре	Default	Descrip	otion					
P2[0x14]	0x54	R	0x00	14 bit: 15 bit: 18 bit: Refer to Notes: 1. Uns e.g.	18 bit pixel data readout register for digital on-chip sum_modes SUM_DATA: UFS mode, UHD mode, ULN mode o the corresponding operating mode chapter for detailed description. signed data applies the same format rules but with corresponding unsigned valu signed 0x 01 FF FF is same as unsigned 0x 03 FF FF. M_DATA is raw format without embedded information if P4[0x15], bit 6 is 1.	ies				
P2[0x15]	0x55	R	0x00	Pixel re	adout status (refer to Figure 58):					
				Bit	Function	Default				
				05	Number of bytes ready/remaining for current double-row readout.	0				
				6	reserved	0				
				7	 Pixel data ready status. Same signal as on pin 3, DATA_RDY: 0: No data for readout 1: Ready for readout register P2[0x0C] or P2[0x14] according to selected operating mode. 	0				
P2[0x18]	0x58	R/W	0x00	SHUTT	ER control:					
1 2[0/10]	0,000				Function	Default				
									SHUTTER release. Refer to chapter 7.4. 0: disable 1: enable. In single shot mode: Starts acquisition and is auto cleared. Note: SHUTTER release is not auto-cleared when multiple frames is enabled.	0
					Multiple frames (auto-run or video mode). Refer to chapter 7.4.2. 0: disable. Single shot mode. 1: enable. Multiple frame mode active if shutter enabled.	0				
				27	reserved	0				

Cont. 66: Registers SPI Page 2

12.4. SPI Page 3

Page addr.	RAM loc.	Туре	Default	Description
P3[0x11]	0x71	R/W	0x00	Number of short DLL steps to delay the LED output by approx. 10ps per step:
P3[0x12]	0x72	R/W	0x00	Valid only if bit 2 in register P5[0x0E] is enabled. Refer also to register P5[0x0E] and Chapter 6.7. Max. value is 799 (0x31F). Note: Delay is sensitive to V_{DD} variations and noise.
P3[0x13]	0x73	R/W	0x00	Number of large DLL steps to delay the LED output by approx. 2ns per step: Valid only if bit 2 in register P5[0x0E] is enabled. Refer also to register P5[0x0E] and Chapter 6.7. Max. value is 49 (0x31). Note: Delay is sensitive to V_{DD} variations and noise.

Table 67: Registers SPI Page 3

12.5. SPI Page 4

Page addr.	RAM loc.	Туре	Default	Descrip	otion				
P4[0x00]	0x80	R/W	0x3F	Clock c	Clock control:				
				Bit	Function	Default			
				05	reserved	0x3F			
				6	Modulation clock source: 0: Internal modulation clock 1: External clock from EXTMOD input	0			
				7	reserved	0			
D4/0-051	005	D 44/	001		Can ala di di dan				
P4[0x05]	0x85	R/W	0x01		tion clock divider:				
				Bit	Function	Default			
				0	Modulation clock divider provides the clock to the LED modulator and pixel-	1			
				1	field demodulator circuits by integer division of the internal PLL clock or EXTMOD:	0			
				2	f _{mod clk} = 80MHz / (modulation clock divider + 1)	0			
				3	Default: 80MHz / (0x01 + 0x01): f _{mod_cl} k = 40MHz	0			
				4	Maximal value of modulation clock divider = $0x1F$: $f_{mod_{clk}} = 2.5MHz$ Note: The LED modulation frequency is 4 times lower than $f_{mod_{clk}}$	0			
				57	reserved	0			
				0					

Table 68: Registers SPI Page 4

Page addr.	RAM loc.	Туре	Default	Description					
P4[0x0B]	0x8B	R/W	0x01	Number of PLL clock periods to delay the demodulation signal (all modulation modes) It can be used to insert a phase-shift between modulation (LED) and demodulation (p clock cycle is 12.5ns @ 80MHz PLL clock. This is equivalent to a distance shift of 1.8 independent of the LED modulation frequency. Note: This phase-shift is temperature i dent. 0: no delay 1: 1 clock 2: 2 clocks 12: 12 clocks (max. value)					
P4[0x10]	0x90	R/W	0xC4		dulation selection (refer to Chapter 6.6):				
[]					Function	Default			
				0 r	eserved	0			
				1 I (nverts output signals LEDOD and LEDPP if drivers are enabled:): non-inverted, e.g. LED = 0, not active: Pin LEDOD non-conductive, LEDPP = GND. 1: inverted, e.g. LED = 0, not active: Pin LEDOD conductive, LEDPP = V_{DDIO}. 	0			
				0	ED output selection:): LED driver is disable. Pin LED is non-conductive. 1: LED driver is enabled.	1			
				3 r	reserved	0			
				C	LED/LD permanently on (torch function, no modulation) if drivers are enabled: 0: off 1: on (Refer to IMPORTANT, Chapter 6.6)	0			
				C	EDPP output selection:): LEDPP driver disabled. Output is in Tri-State with termination resistor to GND. 1: LEDPP driver enabled.	0			
				67 r	reserved	1			
P4[0x12] **	0x92	R/W	0x30	DCS mod	de selection (refer to Chapters 7.2 and 7.3):				
				Bit F	Function	Default			
					Modulation selection per frame:	0			
				' C	00: All rows use same DCSx 01: reserved 10: reserved 11: reserved	0			
					ntegration time selection per frame:	0			
					 00: All rows use integration length P5[0x02], P5[0x03]. 01: reserved 10: Multiple integration times according to the settings in the integration length row registers P7[0x00] P7[0x0F]. 11: reserved 	0			
					Number of DCS readouts:	1			
					00: 1x DCSx or grayscale 01: 2x DCSx: DCS0, DCS1 or DCS2, DCS3 10: reserved 11: 4x DCSx: DCS0, DCS1, DCS2, DCS3	1			
					Nodulation mode selection:	0			
				(C	00: TOF mode 01: reserved 10: reserved 11: Grayscale mode	0			

Cont. 68: Registers SPI Page 4

Page addr.	RAM loc.	Туре	Default	Descri	escription					
P4[0x15] **	0x95	R/W	0x23	Reado	eadout mode (refer to Chapters 7.2 and 7.3):					
				Bit	Function	Default				
				0, 1	reserved	1				
				2	Pixel-field readout mode selection:	0				
				3	Refer to specific operating modes for details.	0				
				4	000: Basic mode 8x8 pixel: TIM, GIM 001: 64 pixel sum: ULN 010: 4 pixel sum center: UFS 011: 8 pixel row sum: UHD 101: Basic mode 4x4 pixel (h+v binning): GBI others: reserved	0				
				5	Readout data-format selection: 0: unsigned integer (0 4'095d) 1: 2's complement signed integer (-2'048 2'047d), default	1				
				6	Embedding of validity information in data word (saturation, ADC overflow, ADC underflow): 0: Embedded in data, default 1: Raw data format	0				
				7	reserved	0				

Cont. 68: Registers SPI Page 4

12.6. SPI Page 5

	•				
Page addr.	RAM loc.	Туре	Default	Description	
P5[0x00] **	0xA0	R/W	0x00	Integration length multiplier (10 bit value):	
P5[0x01] **	0xA1	R/W	0x01	Refer to Chapter 7.5.	
P5[0x02] **	0xA2	R/W	0x00	Integration length (16 bit value):	
P5[0x03] **	0xA3	R/W	0x01	Number of modulation clock periods for the integration time setting, using single integration t mode per frame. Refer to Chapter 7.5.1, Single integration time per frame.	
P5[0x0E]	0xAE	R/W	0x01	DLL control: Refer to register P3[0x13] and Chapter 6.7. 0x01: no delay 0x04: delay manually set by register P3[0x13]	

Table 69: Registers SPI Page 5

12.7. SPI Page 6

	-		
P6[0x19]	0xD9	R/W	 Temperature offset correction: Value according to the formula of Chapter 8 for the calculation by the application SW. Range approx27 +27°C in steps of 0.2°C approx. The reference temperature is +27°C. 0x7F (127) corresponds to 0°C offset. 0xFF: Function is not yet supported. Temperature reading must follow temperature/greyscale image reading referred in Chapter 8.
P6[0x1A]	0xDA	R/W	 DLL step: Refer for details to register P3[0x13] and Figure 18. The exact value is $t_{DLL} = ((register P6[0x1A] -128) * 0.003ns) + 2.1ns (at +27°C, V_{DD}, V_{DDPLL} = 1.8V).$ 0xFF: Function is not yet supported.

Table 70: Registers SPI Page 6

12.8. SPI Page 7

Page addr.	RAM loc.	Туре	Default	Description
P7[0x00] **	0xE0	R/W	0x00	Integration length row0:
P7[0x01] **	0xE1	R/W	0x01	Number of modulation clock periods for the integration time setting of row 0 using multiple integration time mode per frame (UHD). Refer to Chapter 7.5.2, Multiple integration time per frame.
P7[0x02] **	0xE2	R/W	0x00	Integration length row1:
P7[0x03] **	0xE3	R/W	0x01	Description, see register P7[0x00].
P7[0x04] **	0xE4	R/W	0x00	Integration length row2:
P7[0x05] **	0xE5	R/W	0x01	Description, see register P7[0x00].
P7[0x06] **	0xE6	R/W	0x00	Integration length row3:
P7[0x07] **	0xE7	R/W	0x01	Description, see register P7[0x00].
P7[0x08] **	0xE8	R/W	0x00	Integration length row4:
P7[0x09] **	0xE9	R/W	0x01	Description, see register P7[0x00].
P7[0x0A] **	0xEA	R/W	0x00	Integration length row5:
P7[0x0B] **	0xEB	R/W	0x01	Description, see register P7[0x00].
P7[0x0C] **	0xEC	R/W	0x00	Integration length row6:
P7[0x0D] **	0xED	R/W	0x01	Description, see register P7[0x00].
P7[0x0E] **	0xEE	R/W	0x00	Integration length row7:
P7[0x0F] **	0xEF	R/W	0x01	Description, see register P7[0x00].
P7[0x10] **	0xF0	R/W	0x00	User register for user data:
P7[0x11] **	0xF1	R/W	0x00	Refer to Figure 53. Do not write the register during frame acquisition. The number of WRITE cycles into the EEPROM should not exceed 100 WRITE operations.
P7[0x15] **	0xF5	R/W	0x00	Customer ID: Refer to Figure 53. Do not write the register during frame acquisition. The number of WRITE cycles into the EEPROM should not exceed 100 WRITE operations.
P7[0x16]	0xF6	R		Wafer ID
P7[0x17]	0xF7	R		
P7[0x18]	0xF8	R		Chip ID
P7[0x19]	0xF9	R		
P7[0x1A]	0xFA	R	0x06	Chip and part type: For epc611 = 0x06
P7[0x1B]	0xFB	R		Chip and part version (release) e.g. 0x01 for version 001

Table 71: Registers SPI Page 7

13. Control command examples

Note: Each operation mode chapter contains an example of the basic operation and readout of the chip.

13.1. Reading part version

Action	MOSI	MISO	Comment
Select page 7	0x 87 00	0x	
Read part version	0x 3B 00	0x 87 00	
NOP	0x 00 00	0x 3B xx	Response: Part version = 0x xx

Table 72: Reading part version

13.2. Reading IC version

Action	MOSI	MISO	Comment
Select page 0	0x 80 00	0x	
Read IC version	0x 21 00	0x 80 00	
NOP	0x 00 00	0x 21 xx	Response: IC version = 0x xx

Table 73: Reading IC version

13.3. Reading WAFER ID and CHIP ID

Action	MOSI	MISO	Comment
Select page 7	0x 87 00	0x	
Read Wafer ID MSB	0x 36 00	0x 87 00	
Read Wafer ID LSB	0x 37 00	0x 36 xx	Response: Wafer ID MSB = 0x xx
Read Chip ID MSB	0x 38 00	0x 37 xx	Response: Wafer ID LSB = 0x xx
Read Chip ID LSB	0x 39 00	0x 38 xx	Response: Chip ID MSB = 0x xx
NOP	0x 00 00	0x 39 xx	Response: Chip ID LSB = 0x xx

Table 74: Reading WAFER ID and CHIP ID

13.4. Writing to EEPROM

Action	MOSI	MISO	Comment
Select page 0	0x 80 00	0x	
Select EEPROM address 0x F0	0x 51 F0	0x 80 00	Select user register P7[0x10]
Write data to EEPROM	0x 52 xx	0x 51 F0	Data value = xx
NOP	0x 00 00	0x 52 xx	

Table 75: Write to EEPROM

13.5. Reading from EEPROM

Action	MOSI	MISO	Comment
Select page 0	0x 80 00	0x	
Select EEPROM address 0x F0	0x 51 F0	0x 80 00	Select user register P7[0x10]
Read data from EEPROM	0x 32 00	0x 51 F0	
NOP	0x 00 00	0x 73 33	READ_NOT_DONE
Send NOP until	0x 00 00	0x 32 xx	Response: Data = 0x xx

Table 76: Read EEPROM

13.6. Latest version of the sequencer program

For best performance, load the following code sequence after power-up or reset. It is the latest, most optimized sequencer code and will overwrite an older, factory set sequencer code. Operating procedure:

- 1. Start up epc611 chip.
- 2. Wait until the chip is in READY state.
- 3. Load the sequencer program below.
- 4. Set registers accordingly, e.g. for TIM mode Table 21.
- 5. The chip is now ready for operation.

Actual sequencer program (at the time of publishing this datasheet version):

```
# epc611_Seq_Prog-V12
    This program is for following epc611 chip versions: >000.
The following sequence of SPI commands re-programs an
epc611 chip in order to be on most actual functionality.
#
# The syntax of the SPI commands is as follows:
# Writing to SPI bus: SPI w BYTE0 BYTE1
# Whereas:
# - BYTE0: CID[0:2] + Address[4:0]
# - BYTE1: Data[7:0]
SPI w 84 00 # PAGE_SELECT 4
SPI w 51 00 # WRITE 0x11 0x00
SPI w 82 00 # PAGE_SELECT 2
SPI w 47 01 # WRITE 0x07 (SR_Program) 0x01
SPI w 40 00 # WRITE 0x00 (SR_Address) 0x00
SPI w 41 43 # WRITE 0x01 (SR_Data_0) 0x43
SPI w 42 18 # WRITE 0x02 (SR_Data_1) 0x18
SPI w 43 02
SPI w 44 00
SPI w 45 00
SPI w 46 2D
SPI w 47 07
SPI w 40 01
SPI w 41 43
SPI w 42 18
SPI w 43 00
SPI w 45 00
SPI w 44 00
SPI w 45 A8
SPI w 46 2E
SPI w 47 07
SPI w 40 02
SPI w 41 43
SPI w 42 18
SPI w 43 11
SPI w 44 03
SPI w 45 50
SPI w 46 2F
SPI w 47 07
SPI w 48 07
SPI w 49 00
SPI w 47 00
SPI w 84 00 # PAGE_SELECT 4
SPI w 51 01 # WRITE 0x11 0x01
```

Note: Newer versions of the sequencer code than listed above can be found in the latest version of the evaluation kit download package.

14. Addendum

14.1. Terms, definitions and abbreviations

Abbreviation	Term, definition	Explanation
ABS	Automatic Backlight Suppression	
ADC	Analog Digital Converter	
AMR	Ratio of Ambient-light / Modulated light	
CSP	Chip Scale Package	
DCS	Differential Correlation Sample	
DLL	Delay Locked Loop	On-chip delay line of the epc611 chip
fps	Frames per second	
GBI	4x4 pixel Grayscale Binned pixel Imager	
GIM	8x8 pixel Grayscale IMager	
HDR	High Dynamic Range	
IC	Integrated Circuit	
LED/LD	Light Emitting Diode / Laser Diode	
LSB	Least Significant Bit	
MGA	Modulation Gate A	
MGB	Modulation Gate B	
MGX	Modulation Gate A or B	
mga	MGA control signal	
mgb	MGB control signal	
mgx	MGX control signal	
MSB	Most Significant Bit	
OSC	Oscillator	
PLL	Phase Locked Loop	
SGA	Storage Gate A	
SGB	Storage Gate B	
SGX	Storage Gate A or B	
SPI	Serial Peripheral Interface	
TIM	8x8 pixel 3D TOF Imager Mode	
TOF	Time of Flight	
UFS	Ultra Fast and Sensitive range-finder	
UHD	Ultra High Dynamic range range-finder	
XTAL	Crystal	

Table 77: Definitions and abbreviations

14.2. Related documents

- 3D-TOF, A guideline to 3D-TOF sensors that work, Beat De Coi, ISBN 978-3-033-07096-7.
- Application note AN08 Process-Rules CSP Assembly, ESPROS Photonics Corp.
- Application note AN10 Calibration and Compensation, ESPROS Photonics Corp.
- Application note AN11 DME 660 Photobiological Safety Analysis, ESPROS Photonics Corp.
- Application note AN12 TOF data improvement toolbox, ESPROS Photonics Corp.

15. IMPORTANT NOTICE

ESPROS Photonics AG and its subsidiaries (ESPROS) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to ESPROS' terms and conditions of sale supplied at the time of order acknowledgment.

ESPROS warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with ESPROS' standard warranty. Testing and other quality control techniques are used to the extent ESPROS deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

ESPROS assumes no liability for applications, assistance or customer product design. Customers are responsible for their products and applications using ESPROS components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

ESPROS does not warrant or represent that any license, either express or implied, is granted under any ESPROS patent right, copyright, mask work right, or other ESPROS intellectual property right relating to any combination, machine, or process in which ESPROS products or services are used. Information published by ESPROS regarding third-party products or services does not constitute a license from ESPROS to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from ESPROS under the patents or other intellectual property of the third party, or a license from ESPROS under the patents or other intellectual property of ESPROS.

Resale of ESPROS products or services with statements different from or beyond the parameters stated by ESPROS for that product or service voids all express and any implied warranties for the associated ESPROS product or service. ESPROS is not responsible or liable for any such statements.

ESPROS products are not authorized for use in safety-critical applications (such as life support) where a failure of the ESPROS product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of ESPROS products in such safety-critical applications, notwithstanding any application-related information or support that may be provided by ESPROS. Further, Buyers must fully indemnify ESPROS and its representatives against any damages arising out of the use of ESPROS products in such safety-critical applications.

ESPROS products are neither designed nor intended for use in military/aerospace applications or environments unless the ESPROS products are specifically designated by ESPROS as military-grade. Only products designated by ESPROS as military-grade meet military specifications. Buyers acknowledge and agree that any such use of ESPROS products which ESPROS has not designated as military-grade is solely at the buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

ESPROS products are neither designed nor intended for use in automotive applications or environments unless the specific ESPROS products are designated by ESPROS as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, ESPROS will not be responsible for any failure to meet such requirements.