STK984-090A-E

Short-circuit Protection Circuit

The Short-circuit Protection Circuit monitors the drain voltage of the high side MOSFET to detect short circuits. This circuit detects a short circuit when a short circuit current flows for longer than tspoff (typically 3μ s). The outputs are switched to the OFF state and the DIAG1 signal is switched HIGH. The IPM is then latched in the short-circuit protection state. This state can be released by setting the RESET input LOW and then HIGH again.

Figure 11: Timing Diagram Short-circuit Condition

Over-current Protection Circuit

The Over-current Protection Circuit monitors the drain voltage of the low-side MOSFETs to detect over currents. This circuit detects a short circuit when a short circuit current flows for longer than tocoff (typically 4.3μ s). When a short circuit is detected, the outputs are switched off and the short circuit condition is flagged by switching on DIAG1. The over-current protection state is held for time t_{INT} (typically 1ms) then released. It is not latched like the short-circuit current protection mode.

Figure 12: Timing Diagram for Over-current Protection

STK984-090A-E

Undervoltage Lockout Protection Circuit

The Undervoltage Lockout Protection Circuit monitors voltages supplied to VB1 pin to detect low voltages. When the voltage on VB1 falls below the undervoltage lockout falling threshold, the outputs will be turned off. The undervoltage lockout circuit has a hysteresis. If the voltage on VB1 rises above the undervoltage lockout rising threshold, the module will return to normal operating mode.

Figure 13: Timing Diagram Low Voltage Protection

Overvoltage Protection Circuit

The Overvoltage Protection Circuit monitors the voltage on VB1. If the voltage on VB1 exceeds the overvoltage protection threshold, the outputs will be switched off. The Overvoltage Protection Circuit has hysteresis. The IPM will return to normal operation when the voltage on VB1 falls below the over-voltage protection falling threshold voltage.

STK984-090A-E

Over-temperature Protection Circuit

The Over-temperature Protection Circuit monitors the circuit substrate temperature to detect excessive temperatures. When the case temperature rises above the temperature shutdown rising threshold, the outputs are switched off and the over temperature condition is flagged on output DIAG2. There is hysteresis in the over-temperature protection circuit. When the case temperature falls below the temperature shutdown falling threshold, the circuit returns to normal operation and the over-temperature condition is no longer flagged on the DIAG2 output.

I EASE PRE

Mounting Instructions

Item	Recommended Conditions
Pitch	56.0 ± 0.2 mm (Please refer to Package Outline Diagram)
Screw	Diameter : M3 Screw head types: pan head, truss head, binding head
Washer	Plane washer dimensions (Figure 16) D = 7mm, d = 3.2 mm and t = 0.5 mm JIS B 1256
Heat sink	Material: Aluminum or Copper Warpage (the surface that contacts IPM) : -50 to 100 μm Screw holes for the heat sink must be countersunk. No contamination on the heat sink surface that contacts IPM.
Torque	Temporary tightening : 20 to 30 % of final tightening on first screw Temporary tightening : 20 to 30 % of final tightening on second screw Final tightening : 0.6 to 0.9Nm on first screw Final tightening : 0.6 to 0.9Nm on second screw
Thermal Interface	Silicone grease is recommended. Thickness : 100 to 200 µm Uniformly apply silicon grease to whole back. Thermal foils are only recommended after careful evaluation. Thickness, stiffness and compressibility parameters have a strong influence on performance.

Figure 16: Module Mounting details: components; washer drawing; need for even spreading of thermal grease

Reliability Specification

Deletive burneldit	CE0/ 1000/ unless	ath a mula a a maaifiad
Relative numion	V 00%+20% UNIESS	omenwise specifieo

	Parameter	Test Conditions	Evaluation Time	Evaluation Method	Test Time
Mechan	Free-Fall	High = 75cm, drop on a woodblock Woodblock : maple 30×30×3cm Conform to JIS C 7021 A-8	Drop Time = 3 times	Electrical Characteristics	N = 5
ical Strength	Vibration Fatigue	Vibration Frequently f = 10HZ to 55HZ Logarithmic Sweep Total Amplitude = 1.5+0.2mm	X, Y, Z Each direction 2hr	Electrical Characteristics Visual Inspection	N = 11
Environmental Test	Thermal Shock (Vapor Tank)	Ta = –40°C↔125°C (30min. each) Elapsed time after the test =2hr	1000 Cycles	Electrical Characteristics Visual Inspection Solder Junction	N = 11
	Pressure Cooker	Ta = 121°C, RH=100%, 2 air pressure	48hr	Electrical Characteristics	N = 11
	High-Temperature Storage	Ta = 125°C Elapsed time after the test = 3hr Conform to JIS C 7201 B-10	1000hr	Electrical Characteristics	N = 11
Life Tes	Low-Temperature Storage	Ta = -40°C Elapsed time after the test=3hr Conform to JIS C 7021 B-12	1000hr	Electrical Characteristics	N = 11
t	High Temperature High Humidity Bias	Ta = 85°C±2°C, RH = 85%±5% VB1, VB2 = 70% of Maximum Rating	1000hr	Electrical Characteristics	N = 11
	PLE	Table 7: Reliability Specifi	cation		

Test Circuits

■ VDS(sat) measurement (Pulse Measurement)

Pir

n	No							13.5V -		1,21	M	-	P	
	Measured Phase	U	V	W	UN	VN	WN			2,19				
	М	21	21	21	13	15	17	5.0V_				6	5 6	\mathbb{K}^{10}
	N	13	15	17	19	19	19			m		C	2 6) Pulse
	m	4	5	6	7	8	9						VDSsat	<i>_</i>
								-	L	10				
										11	N			

Figure 17 VDS Measurement Circuit

. .

Figure 18 ICC Measurement Circuit

ICC Measurement

ISD Measurement

Pin No

Measured	Sh T	ort-Ciro hresho	cuit Id	Overcurrent Threshold			
Phase	U	V	W	UN	VN	WN	
М	19	19	19	13	15	17	
N	13	15	17	21	21	21	
m	4	5	6	7	8	9	
	9	FA	R.F.	PR			

Figure 19 ISD Measurement Circuit

Measurement of rise, fall and delay times

Measured Phase	U	V	W	UN	VN	WN
М	19	19	19	13	15	17
N	13	15	17	21	21	21
m	4	5	6	7	8	9

Figure 20 Switch Time Measurement Circuit

PACKAGE DIMENSIONS

unit : mm

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly o