

V 1.4

Released 2/23

EZO-PMP-LTM

Large Embedded Dosing Pump

Flow rate

10ml to 750ml/min

Accuracy

+/- 2%, +/-2ml

Modes of operation

Volume dispensing
Dose over time
Constant flow rate
Dispense at startup

Connector

5 lead data cable

Calibration

Single point

Tubing size

Any 8mm O.D. tubing

Data protocol

UART & I²C

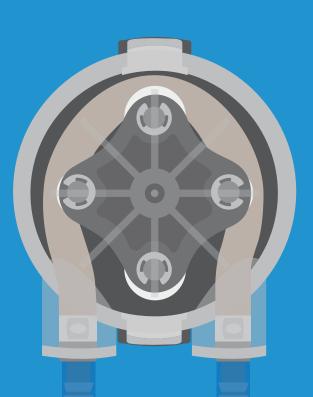
Default I²C address

109 (0x6D)

Operating voltage

3.3V-5V (logic) 24V (motor)

Pump head


10.3 meters (34')

Data format

ASCII

Food safe

Yes

Table of contents

EZO-PMP-L™ dimensions	4
EZO-PMP-L™ tubing	5
Operating principle	6
Operating modes	6

UART

UART mode	13
Receiving data from device	14
Sending commands to device	15
LED color definition	16
UART quick command page	17
LED control	18
Find	19
Continuous mode	20
Single reading mode	21
Continuous dispensing	22
Volume dispensing	23
Dose over time	24
Constant flow rate	25
Dispense at startup	26
Pause dispensing	29
Stop dispensing	30
Invert dispensing direction	31
Total volume dispensed	32
Calibration	33
Enable/disable parameters	34
Pump voltage	35
Naming device	36
Device information	37
Response codes	38
Reading device status	39
Sleep mode/low power	40
Change baud rate	41
Protocol lock	42
Factory reset	43
Change to I ² C mode	44
Manual switching to I ² C	45

Power supplies	8
Dispensing volumes	9
Available data protocols	10
Default state	11

I²C

I ² C mode	47
Sending commands	48
Requesting data	49
Response codes	50
LED color definition	51
I ² C quick command page	52
LED control	53
Find	54
Single report mode	55
Continuous dispensing	56
Volume dispensing	57
Dose over time	58
Constant flow rate	59
Dispense at startup	60
Pause dispensing	63
Stop dispensing	64
Invert dispensing direction	65
Total volume dispensed	66
Calibration .	67
Enable/disable parameters	68
Pump voltage	69
Naming device	70
Device information	71
Reading device status	72
Sleep mode/low power	73
Protocol lock	74
I ² C address change	75
Factory reset	76
Change to UART mode	77
Manual switching to UART	78

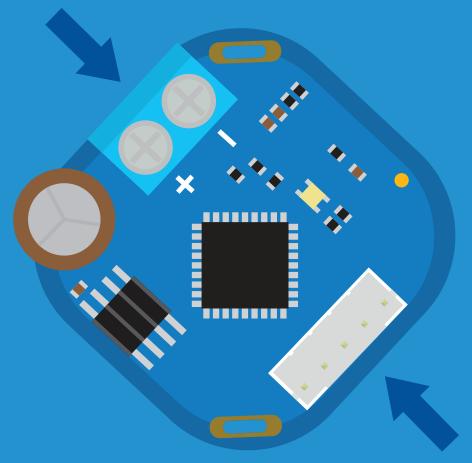
Calibration theory

Datasheet change log

Mounting plate

Warranty

79

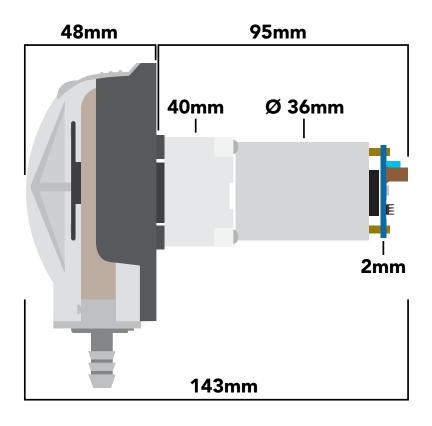

82

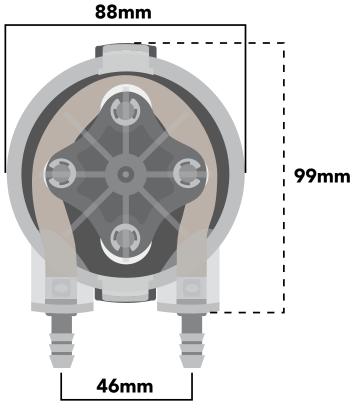
83 84

Attention

The EZO-PMP-L Embedded Dosing Pump requires two power supplies to operate.

24V to drive the motor




Control system (Back side of dosing pump)

3.3V - 5.5V for the control system

EZO-PMP-L[™] dimensions

Weight 405g

	LED	MA	X	STAND	BY	SLEEP
5V	ON	13.7	mA	13.4 m	Δ	0.415 mA
	OFF	13.1	mA	12.8 m/	Д	
3.3V	ON	12.5	mA	12.4 m/	Δ	0.13 mA
	OFF	12.3	mA	12.2 m/	Д	
Motor	24V = -	~700n	nA			
Tubing	g life spa	n	±1.0	00 hrs.		
Ταριτίζ		11	11,0	00 1113.		
Casse	Cassette life span		1,500) hrs.		
Motor	· life spar	า	5,000) hrs.		

Power consumption Absolute max ratings

Parameter	MIN	TYP	MAX
Storage temperature (EZO-PMP-L™)	-65 °C		125 °C
Operational temperature (EZO-PMP-L™)	-40 °C	25 °C	85 °C
VCC	3.3V	5V	5.5V
Motor	17V	24V	26V
Max input/output pressure		1	101.3 kPa

EZO-PMP-L[™] tubing

NSF/ANSI 51 Compliant

Tan tubing

Saint-Gobain™ PharMed™ BPT tubing

Length: 15.24cm Outer diameter: 10mm Inner diameter: 8mm

This tubing is highly chemically resistant and has 30X more resistant to mechanical wear than

silicone tubing.

Food safe

Hose barb fitting

ETFE

Length: 2.1cm

Outer diameter: 10mm Inner diameter: 4.4mm

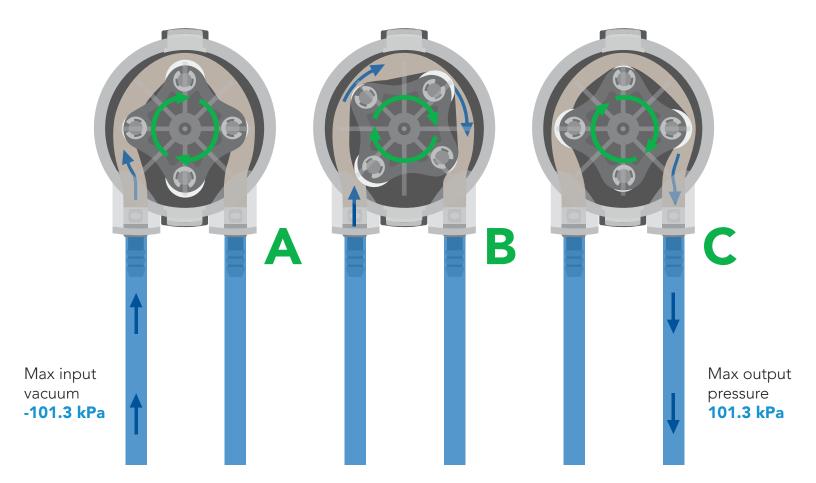
Food safe

Blue tubing

Silicone

Length: 2x 30.48cm Outer diameter: 8mm Inner diameter: 6mm Bend radius: 24mm

Temperature -67°C to 200°C Max pressure: 34 kPa (5 PSI)


Food safe **∀**

Operating principle

- Self-priming
- ✓ Run dry

Operating modes

The EZO-PMP- \mathbf{L}^{TM} can operate in four different modes.

Continuous dispensing

Run the pump continuously 750ml/min ∞ (with supplied tubing)

Volume dispensing

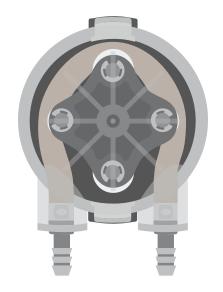
Pump a specific volume (Smallest possible volume is 10 ml)

Volume is always in ml.

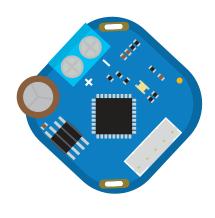
Dose over time

Pump a specific volume over a set time

Constant flow rate

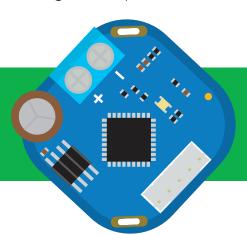

Pump a specific volume per minute


Dispense at startup


- Dispense a specific volume at startup
- Continuous dispensing at startup
- Dose over time at startup

The Atlas Scientific EZO-PMP-L™ consists of three main components.

Cassette


Cassettes can be autoclave sterilized

24 volt motor

Control system

The actual peristaltic pumping is done within the cassette. It has been designed to be easily detached from the motor and disassembled.

The 24 volt motor and control system have been soldered together. Both components are designed to operate as one single unit.

The control system has three main components

Keyed data and power connector 24 volt power input Status indicator LED


Data and power cable pinout

White - RX/SCL
Green - TX/SDA
Black - GND
Red - VCC
Blue - INT

Power supplies

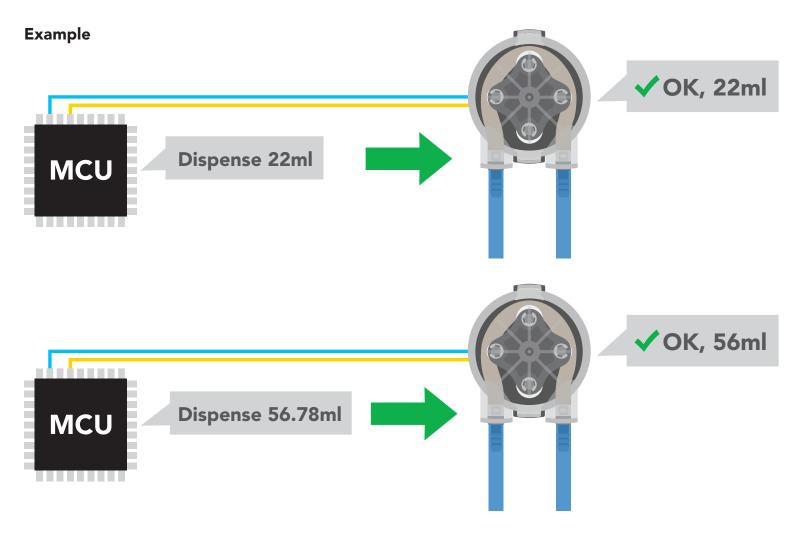
4

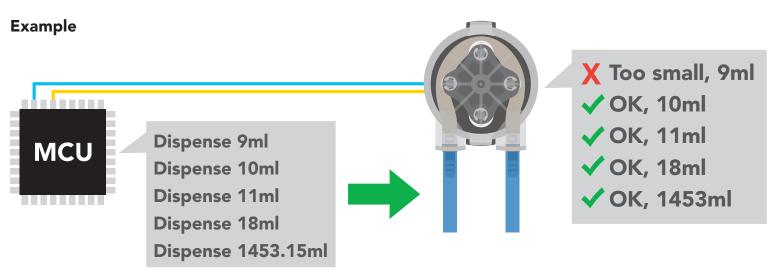
The nature of this inductive motor can cause a high inrush current upon its first spin. Threfore, not all power supplies will work with the EZO-PMP-L™.

Most power supplies have a built in protection against inrush currents and will prevent the motor from spinning. It has become very difficult to determine which power supplies will and won't work for the EZO-PMP- L^{TM} , as the manufacturers do not list whether it can handle inrush currents in the specs.

Atlas Scientific has tested both of these two power supplies, and can verify that they work with the EZO-PMP- L^{TM} .

Mean Well #GE30I24-P1J


Mean Well #EDR-120-24



Dispensing volumes

The EZO-PMP-L[™] can only dispense volumes in whole numbers. The pump will not reject a request to dispense a volume with a decimal place, it will just ignore the decimal.

The minimum volume the EZO-PMP-L[™] can dispense is 10 ml.

Available data protocols

UART Default

1²C

X Unavailable data protocols

SPI

Analog

RS-485

Mod Bus

4-20mA

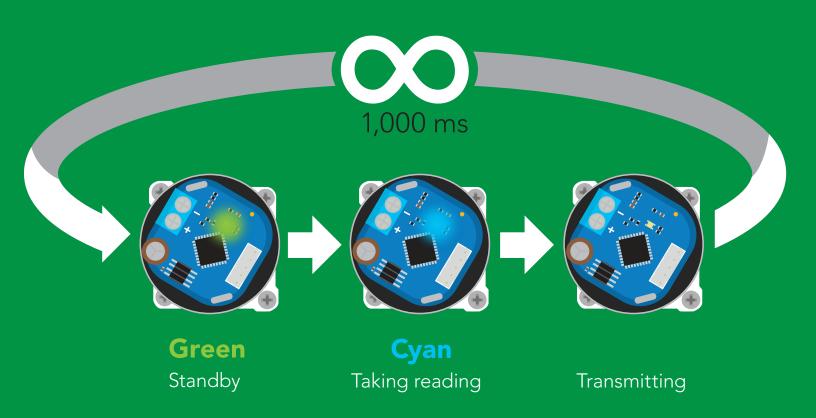
Default state

UART mode

Baud

Readings

Speed


LED

9,600

continuous

1 reading per second

on

UART mode

Settings that are retained if power is cut

Baud rate

Calibration

Continuous mode

Device name

Enable/disable parameters

Enable/disable response codes

Hardware switch to I²C mode

Invert

LED control

Protocol lock

Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Absolute total volume

Find

Sleep mode

Total volume

UART mode

8 data bits 1 stop bit

no parity no flow control

Baud 300

1,200

2,400

9,600 default

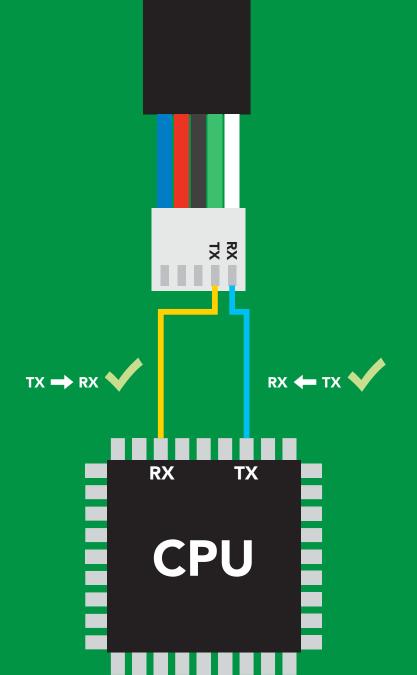
19,200

38,400

57,600

115,200

Data in


Data out

Vcc

3.3V - 5.5V

Data format

Output

volume

Units

ml

Encoding

ASCII

Format

string

Terminator

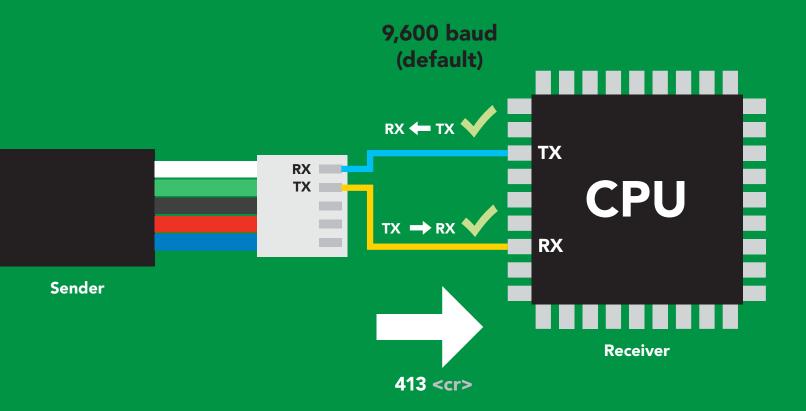
Data type

Decimal places none

Smallest string

Largest string

carriage return

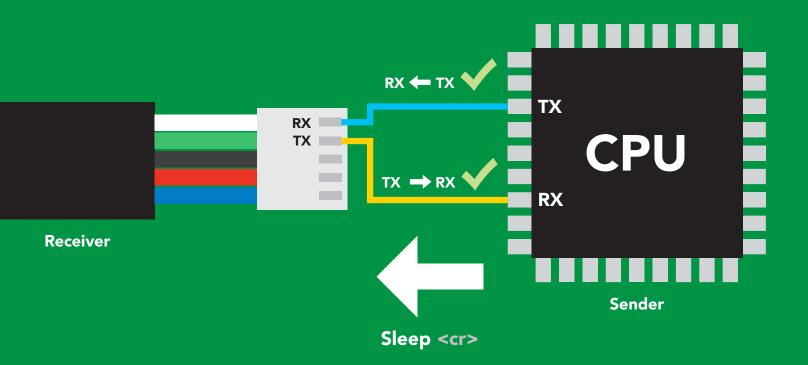

long int

3 characters

39 characters

Receiving data from device

Advanced


ASCII: 4

Hex: 34 31 33

Dec: 52 49 51 13

Sending commands to device

Advanced

ASCII: s 53 6C 65 65 70 83 108 101 101 112 Dec:

LED color definition

Green **UART** standby

Cyan Taking reading

Changing baud rate

Command not understood

White Find

5V

LED ON +2.5 mA

+1 mA

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	Default state
Baud	change baud rate	pg. 41 9,600
С	enable/disable continuous mode	pg. 20 enabled
Cal	performs calibration	pg. 33 n/a
D	dispense modes	pg. 22 – 28 n/a
Factory	enable factory reset	pg. 43 n/a
Find	finds device with blinking white LED	pg. 19 n/a
i	device information	pg. 37 n/a
Invert	invert dispensing direction	pg. 31 n/a
I2C	change to I ² C mode	pg. 44 not set
L	enable/disable LED	pg. 18 enabled
Name	set/show name of device	pg. 36 not set
0	enable/disable parameters	pg. 34 all enabled
Р	pause dispensing	pg. 29 n/a
Plock	enable/disable protocol lock	pg. 42 disabled
Pv	check pump voltage	pg. 35 n/a
R	returns a single reading	pg. 21 n/a
Sleep	enter sleep mode/low power	pg. 40 n/a
Status	retrieve status information	pg. 39 enable
Tv	total volume dispensed	pg. 32 n/a
Х	stop dispensing	pg. 30 n/a
*OK	enable/disable response codes	pg. 38 enable

LED control

Command syntax

L,1 <cr> LED on default

L,0 <cr> LED off

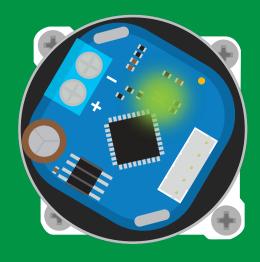
L,? <cr> LED state on/off?

Example

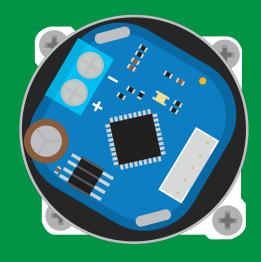
Response

L,1 <cr>

*OK <cr>


L,0 <cr>

*OK <cr>


L,? <cr>

?L,1 <cr> or ?L,0 <cr>>

*OK <cr>>

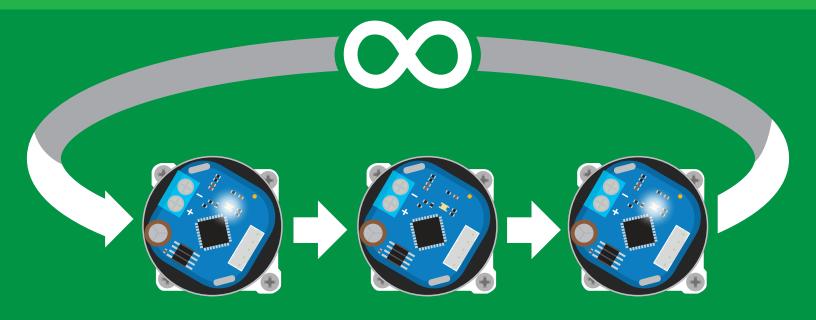
L,1

L,0

Find

Command syntax

This command will disable continuous mode Send any character or command to terminate find.


Find <cr> LED rapidly blinks white, used to help find device

Example

Response

Find <cr>

*OK <cr>

Continuous mode

Command syntax

C,* <cr> continuously reports volume once per second default

C,1 <cr> continuously reports volume only when pumping

C,0 <cr> disable continuous reporting

C,? <cr> continuous reporting mode on/off?

Example

Response

dispense 23ml

C,* <cr>

18 <cr>

23 <cr>

*Done,23 <cr>

23 <cr>

23 <cr>

18 <cr>

23 <cr>

*Done,23 <cr>

*Done,23 <cr>

?C,1 <cr> or ?C,0 <cr> or ?C,* <cr> *OK <cr>

Single reading mode

Command syntax

R <cr> returns a single value showing dispensed volume

Example	Respon	se Se
R <cr></cr>	25 <cr> *OK <cr></cr></cr>	(If issued half way through dispensing 50ml)
	50 <cr> *OK <cr></cr></cr>	(If issued once dispensing has stopped)

Continuous dispensing

Pump on/pump off

Command syntax

After running in continuous mode for 20 days the EZO-PMP-L™ will reset.

- <cr> dispense until the stop command is given
- D,-* <cr> dispense in reverse until the stop command is given
- D,? <cr> dispense status

Example	Respon	se
D,* <cr></cr>	*OK <cr></cr>	pump will continuously run at ~750ml/min (with supplied tubing)
D,-* <cr></cr>	*OK <cr></cr>	pump will continuously run in reverse at ~750ml/min (with supplied tubing)
D,? <cr></cr>	?D,*,1 <cr *OK <cr></cr></cr 	>

Response breakdown

Volume dispensing

Pump a specific volume

Command syntax

where [ml] is any volume in millimeters >= 0.5

D,[ml] <cr> dispense [this specific volume]

D,[-ml] <cr> dispense [in reverse this specific volume]

<cr> dispense status **D**,?

Example

Response

D,15 <cr>

*OK <cr> 15 ml will be dispensed

D,-40 <cr>

*OK <cr> 40 ml will be dispensed in reverse

D,? <cr>

?D,-40,0 <cr>

*OK <cr>

Response breakdown

?D,-40,0

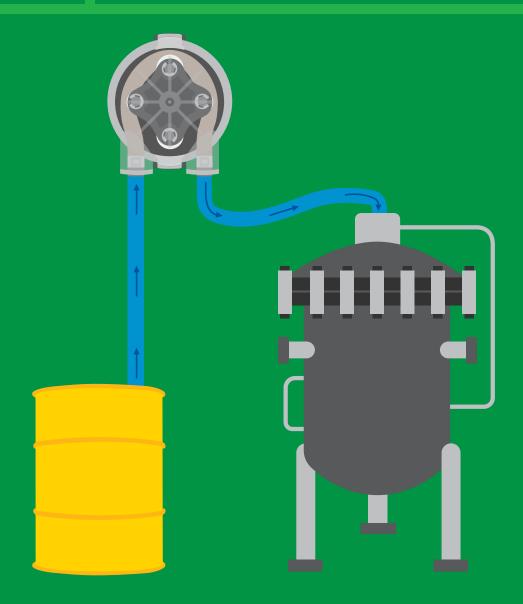
last volume dispensed

pump off

Dose over time

Pump a fixed volume over a fixed time

Command syntax


D,[ml],[min] <cr> Dispense [this volume], [over this many minutes]

Example

Response

D,7000,20 <cr>

*OK <cr> Dispense 7000ml over 20 minutes

Constant flow rate

Maintain a constant flow rate

Command syntax

After running in continuous mode for 20 days the EZO-PMP-L™ will reset.

[ml/min] = a single number (int or float) representing the desired flow rate
[min or *] = the number of minutes to run or (*) indefinitely
A negative value for ml/min = reverse

Example

Response

DC,50,40 <cr>

*OK <cr> Dispense 50ml per minute for 40 minutes

DC,? <cr>

?MAXRATE,385 <cr>

*OK <cr>

The maximum flow rate is determined after calibration.

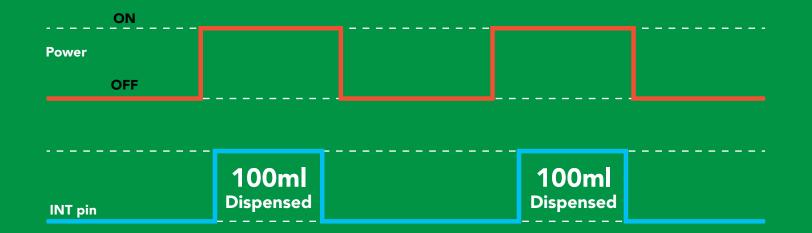
If the flowrate entered is too fast the EZO-PMP-L[™] will send an error.

*TOOFAST <cr>
*ER <cr>
*flow rate = 50ml/min

Dispense at startup

Pump a specific volume at startup and then stop

Use this command to make a simple fixed-volume pump


Command syntax

Dstart,[ml] <cr> dispense [this specific volume] at startup

<cr> disables dispense at startup mode **Dstart,off**

<cr> startup dispense status Dstart,?

Example	Response
Dstart,100 <cr></cr>	*OK <cr></cr>
Dstart,off <cr></cr>	*OK <cr></cr>
Dstart,? <cr></cr>	?Dstart,100 <cr> or ?Dstart,0 <cr> *OK <cr></cr></cr></cr>

Continuous dispensing at startup

Pump on & continuously dispense

Command syntax

After running in continuous mode for 20 days the EZO-PMP-L™ will reset.

dispense at startup until the stop command is given dispense in reverse at startup until the stop command is given **Dstart,? <cr>> startup dispense status**

Example	Response
Dstart,* <cr></cr>	*OK <cr> Pump will startup and continuously run at ~750ml/min (with supplied tubing)</cr>
Dstart,-* <cr></cr>	*OK <cr> Pump will startup and continuously run in reverse at ~750ml/min (with supplied tubing)</cr>
Dstart,? <cr></cr>	?Dstart,* <cr></cr>

Dose Over time at startup

Pump a fixed volume over a fixed time at startup

Command syntax

D,[ml],[min]

Dispense [this volume], [over this many minutes] at startup

Example

Response

Dstart,7000,20 <cr>

*OK <cr> Pump will startup and dispense 7000ml over 20 minutes

Dstart,? <cr>

?Dstart,7000,20.00 <cr>

Pause dispensing

Command syntax

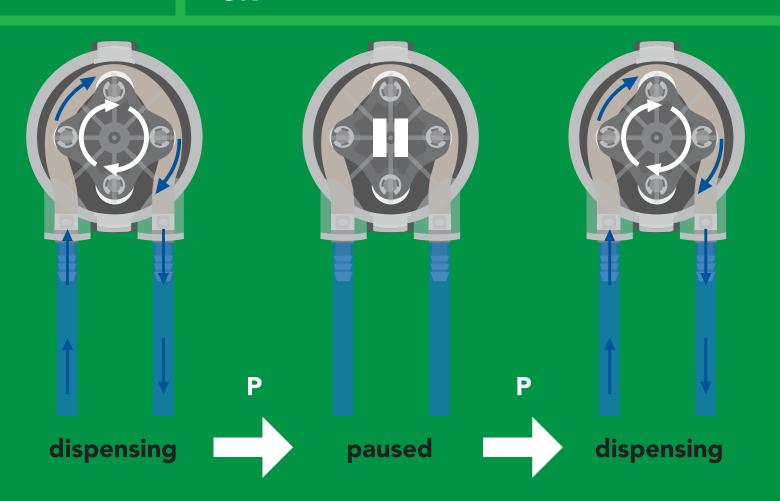
Issue the command again to resume dispensing

pauses the pump during dispensing

pause status **P,?** <cr>

Example

Response


P <cr>

*OK <cr>

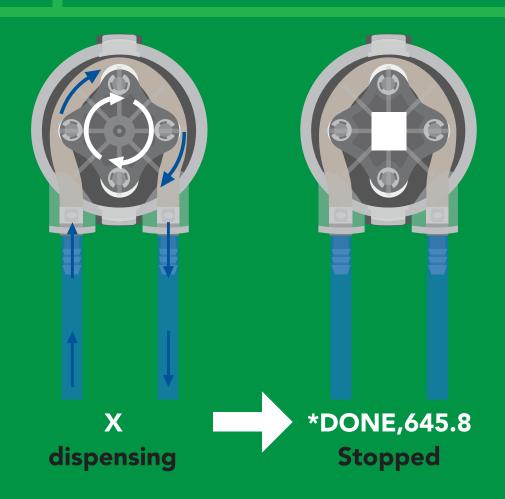
P,? <cr>

?P,1 <cr> or ?P,0 <cr>

*OK <cr>

Stop dispensing

Command syntax


X <cr> stop dispensing

Example

Response

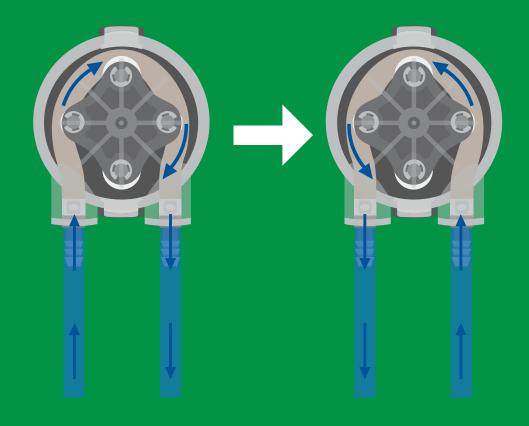
X <cr>

*DONE,v <cr> v = volume dispensed

Invert dispensing direction

Command syntax

Invert direction will be retained if power is cut


Invert <cr> changes dispensing direction of pump

Example Response

Invert <cr> *OK <cr>

Invert,? <cr> ?Invert,1 <cr> or ?Invert,0 <cr>>

*OK <cr>

Total volume dispensed

Command syntax

TV,? <cr> shows total volume dispensed

ATV,? <cr> absolute value of the total volume dispensed

Clear <cr> clears the total dispensed volume

Example	Response
TV,? <cr></cr>	?TV,434.50 <cr></cr>
ATV,? <cr></cr>	?ATV,623.00 <cr></cr>
Clear <cr></cr>	*OK <cr> total now 0.00</cr>

This data will be lost if the power is cut.

Calibration

Command syntax

Calibrate to the actual volume dispensed.

Cal,v <cr> v = corrected volume

Cal, clear <cr> delete all calibration data

<cr> device calibrated? Cal,?

This command is used for both, single dose and dose over time calibrations.

Example Response Cal,146.2 <cr> *OK <cr> Cal, clear <cr> *OK <cr> Cal,? ?Cal,1 <cr> or ?Cal,2 <cr> or ?Cal,3 <cr> or ?Cal,0 <cr> both uncalibrated *OK <cr>

Enable/disable parameters from output string

Command syntax

O, [parameter],[1,0] <cr> enable or disable output parameter 0,? <cr> enabled parameter?

Example	Response
O,V,1 <cr></cr>	*OK <cr> enable volume being pumped</cr>
O,TV,0 <cr></cr>	*OK <cr> disable total volume pumped</cr>
O,ATV,1 <cr></cr>	*OK <cr> enable absolute volume pumped</cr>
O,? <cr></cr>	?,O,V,TV,ATV <cr> if all three are enabled</cr>

Pump voltage

Command syntax

PV,? <cr> check pump voltage

Example Response

PV,? <cr> ?PV,24.67 <cr> *OK <cr>

Response breakdown

?PV, 24.67 Pump input voltage

Naming device

Command syntax

Do not use spaces in the name

Name, n < cr> set name

Name, <cr> clears name

Name,? <cr> show name

n = 8 9 10 11 12 13 14 15 16

Up to 16 ASCII characters

Example

Response

Name, <cr> *OK <cr> name has been cleared

Name,zzt <cr>

*OK <cr>

Name,? <cr>

?Name,zzt <cr> *OK <cr>

Name, zzt

Name,?

*OK <cr>

?Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

Example

Response

i <cr>

?i,PMPL,1.1 <cr> *OK <cr>>

Response breakdown

?i, PMPL, 1.1 Device Firmware

Response codes

Command syntax

*OK,1 <cr> enable response

default

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

413 <cr>

*OK <cr>

*OK,0 <cr>

no response, *OK disabled

R <cr>

413 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

*ER unknown command *OV over volt (VCC>=5.5V) *UV under volt (VCC<=3.1V)

*RS reset

boot up complete, ready *RE

*SL entering sleep mode

wake up *WA

dispensing complete *DONE

dispense amount too low *MINVOL

*TOOFAST ml/min set to fast These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Example

Response

Sleep <cr>

*OK <cr>

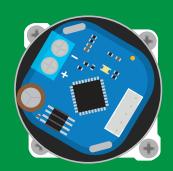
*SL <cr>

Any command

*WA <cr> wakes up device

5V

STANDBY SLEEP


0.415 mA 13.4 mA

3.3V

12.4 mA 0.13 mA

Standby 13.4 mA

Sleep 0.415 mA

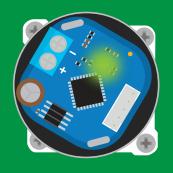
Change baud rate

Command syntax

Baud,n <cr> change baud rate

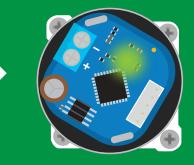
Example

Response


Baud, 38400 < cr>

*OK <cr>

Baud,? <cr>


?Baud,38400 <cr> *OK <cr>

```
300
1200
2400
9600 default
19200
38400
57600
115200
```


Baud,38400 <cr>

(reboot)

Standby

Changing baud rate *OK <cr>

Standby

Protocol lock

Command syntax

Locks device to UART mode.

Plock,1 <cr> enable Plock

default Plock,0 <cr> disable Plock

Plock,? <cr> Plock on/off?

Example

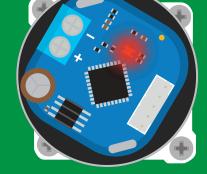
Response

Plock,1 <cr>

*OK <cr>

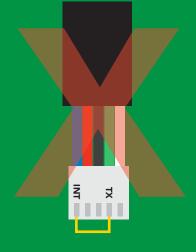
Plock,0 <cr>


*OK <cr>


Plock,? <cr>

?Plock,1 <<r> or ?Plock,0 <<r>>

Plock,1



*OK <cr>

cannot change to I²C *ER <cr>

cannot change to I²C

Factory reset

Command syntax

Clears calibration LED on "*OK" enabled

Factory <cr> enable factory reset

Example

Response

Factory <cr>

*OK <cr>

Baud rate will not change

Change to I²C mode

Command syntax

Default I²C address 109 (0x6D)

I2C,n <cr> sets I2C address and reboots into I2C mode

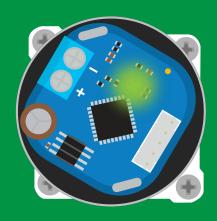
n = any number 1 - 127

Example

Response

12C,100 <cr>

*OK (reboot in I²C mode)


Wrong example

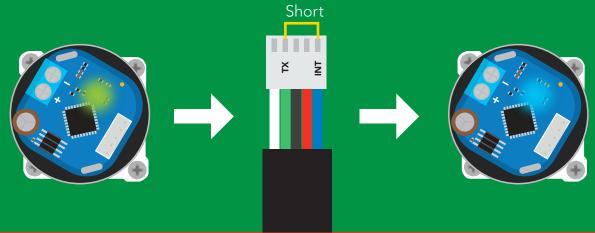
Response

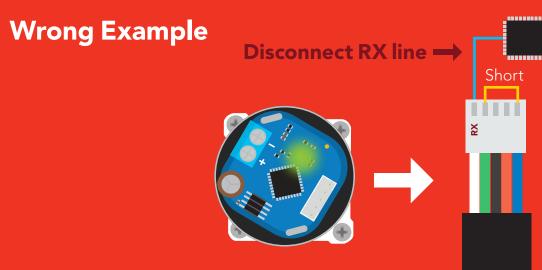
I2C,139 <cr> n ≯ 127

*ER <cr>

I2C,100

Green *OK <cr>


Blue now in I²C mode


Manual switching to I²C

- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to INT
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- **Disconnect ground (power off)**
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 109 (0x6D)

Example

l²C mode

The I²C protocol is *considerably more complex* than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

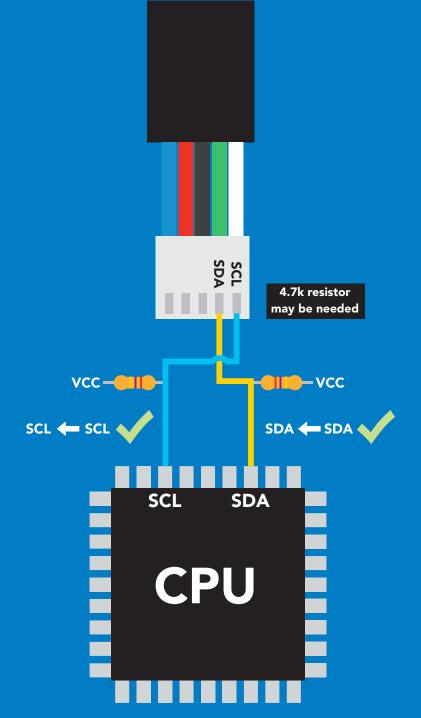
To set your EZO-PMP-L™ into I²C mode click here

Settings that are retained if power is cut

Calibration
Change I²C address
Enable/disable parameters
Hardware switch to UART mode
Invert
LED control
Protocol lock
Software switch to UART mode

Settings that are **NOT** retained if power is cut

Absolute total volume Find Sleep mode Total volume


I²C mode

I²C address (0x01 - 0x7F)

109 (0x6D) default

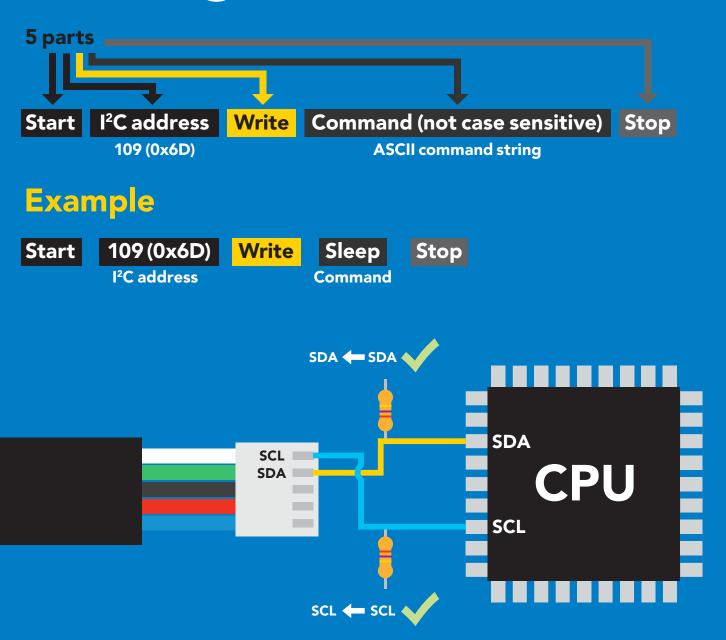
Vcc 3.3V - 5.5V

Clock speed 100 - 400 kHz

Data format

Reading volume

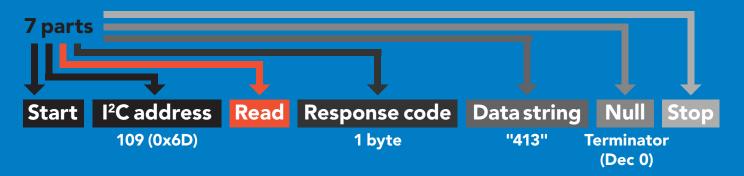
Units m

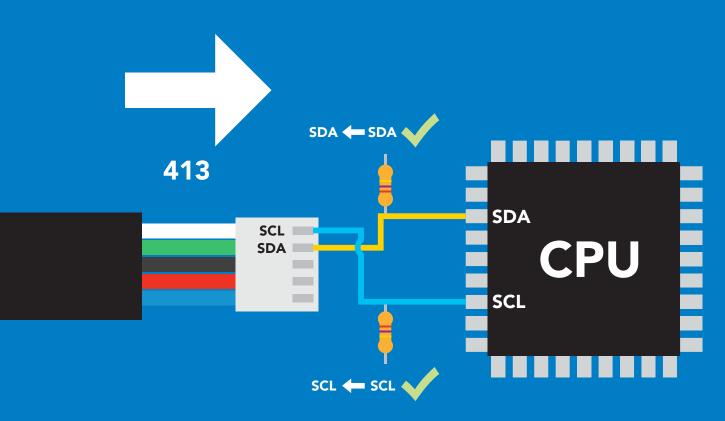

Encoding ASCII

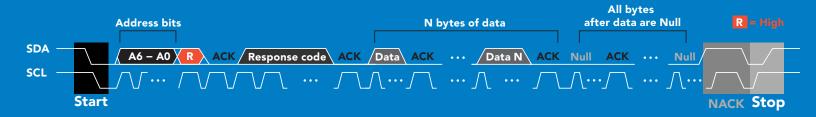
Format string Data type **Decimal places Smallest string 3 characters Largest string**

long int none 39 characters

Sending commands to device

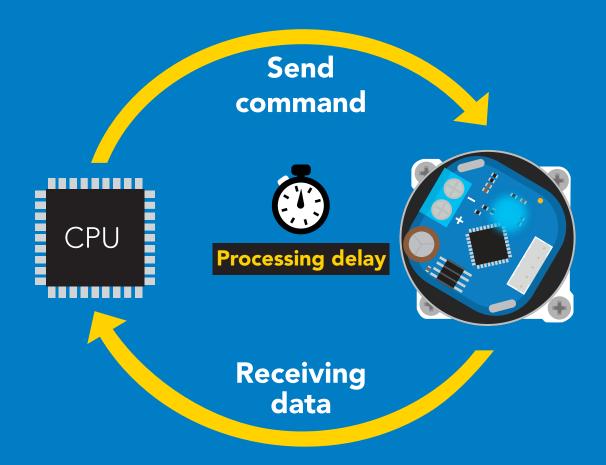



Advanced



Requesting data from device

Advanced



Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C start;

I2C address;

I2C_write(EZO_command);

I2C_stop;

delay(300);

Processing delay

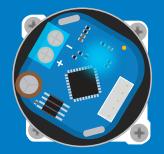
I2C start: I2C_address; Char[] = I2C read; I2C_stop;

If there is no processing delay or the processing delay is too short, the response code will always be 254.

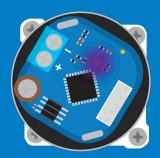
Response codes

Single byte, not string

255 no data to send


254 still processing, not ready

syntax error


successful request

LED color definition

I²C standby

Green Taking reading

Changing I²C address

Command not understood

White Find

5V

LED ON +2.5 mA

3.3V

+1 mA

I²C mode

command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 77
Cal	performs calibration	pg. 67
D	dispense modes	pg. 56 – 62
Factory	enable factory reset	pg. 76
Find	finds device with blinking white LED	pg. 54
i	device information	pg. 71
I2C	change I ² C address	pg. 75
Invert	invert dispensing direction	pg. 65
L	enable/disable LED	pg. 53
Name	set/show name of device	pg. 70
0	enable/disable parameters	pg. 68
P	pauses the pump during dispensing	pg. 63
Plock	enable/disable protocol lock	pg. 74
Pv	check pump voltage	pg. 69
R	returns a single reading	pg. 55
Sleep	enter sleep mode/low power	pg. 73
Status	retrieve status information	pg. 72
Tv	total volume dispensed	pg. 66
X	stop dispensing	pg. 64

LED control

Command syntax

300ms processing delay

L,1 LED on default

L,0 **LED** off

LED state on/off? **L,?**

Example

Response

L,1

L,0

L,0

Find

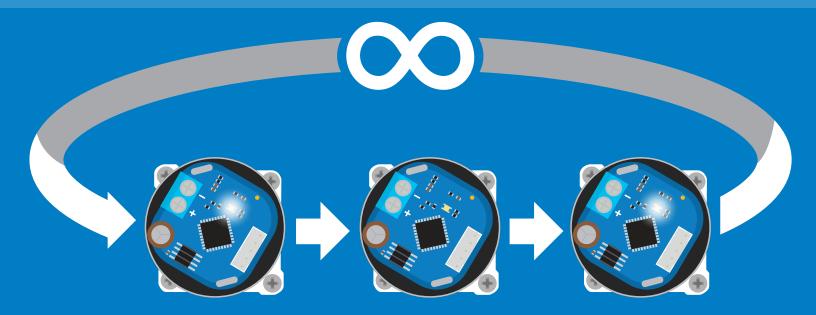
Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find

LED rapidly blinks white, used to help find device

Example


Response

Find

Single report mode

Command syntax

300ms processing delay

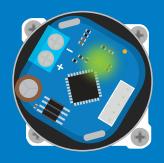
returns a single value showing dispensed volume

Example

Response

R

(If issued half way through dispensing 50ml)



Dec

ASCII

Null

(If issued once dispensing has stopped)

Green Taking reading

Transmitting

Standby

Continuous dispensing

Pump on/pump off

300ms processing delay

Command syntax

After running in continuous mode for 20 days the EZO-PMP-L™ will reset.

- dispense until the stop command is given **D**,*
- dispense in reverse until the stop command is given **D**,-*
- dispense status **D**,?

Example

Response

D,*

pump will continuously run at ~750ml/min (with supplied tubing)

D,-*

pump will continuously run in reverse at ~750ml/min (with supplied tubing)

D,?

Response breakdown

Volume dispensing

Pump a specific volume

300ms (processing delay

Command syntax

where [ml] is any volume in millimeters >= 0.5

D,[ml] dispense [this specific volume]

D,[-ml] dispense [in reverse this specific volume]

dispense status **D**,?

Example

Response

D,15

15 ml will be dispensed

D,-40

40 ml will be dispensed in reverse

D,?

?D,-40,0

Response breakdown

?D,-40,0

pump off last volume dispensed

Dose over time

Pump a fixed volume over a fixed time

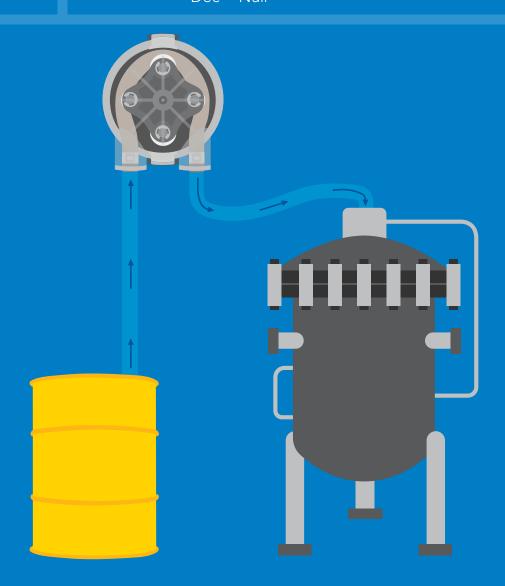
Command syntax

300ms processing delay

Dispense [this volume], [over this many minutes] D,[ml],[min]

Example

Response


D,7000,20

Dispense 7000ml over 20 mins

Constant flow rate

Maintain a constant flow rate

300ms processing delay

Command syntax

After running in continuous mode for 20 days the EZO-PMP-L™ will reset.

DC,[ml/min], [min or *] DC,?

[maintain this rate], [for this much time] reports maximum possible flow rate

[ml/min] = a single number (int or float) representing the desired flow rate [min or *] = the number of minutes to run or (*) indefinitely A negative value for ml/min = reverse

Example

Response

DC,50,40

Dispense 50ml per minute for 40 minutes

DC,?

Dec

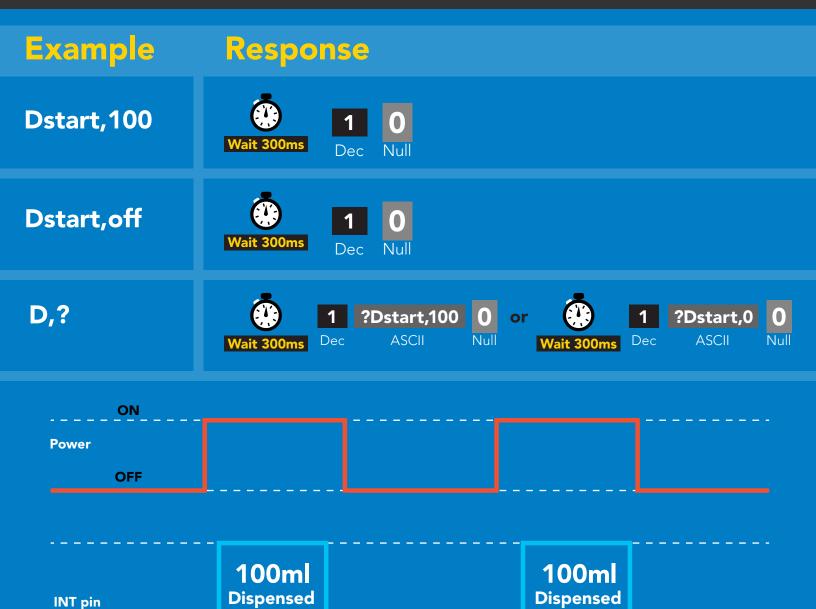
?maxrate,385

ASCII

The maximum flow rate is determined after calibration. If the flowrate entered is too fast the EZO-PMP-L[™] will send an error.

Dispense at startup

Pump a specific volume at startup and then stop


Use this command to make a simple fixed-volume pump

Command syntax

300ms processing delay

Dstart,[ml] **Dstart,off** Dstart,?

dispense [this specific volume] at startup disables dispense at startup mode startup dispense status

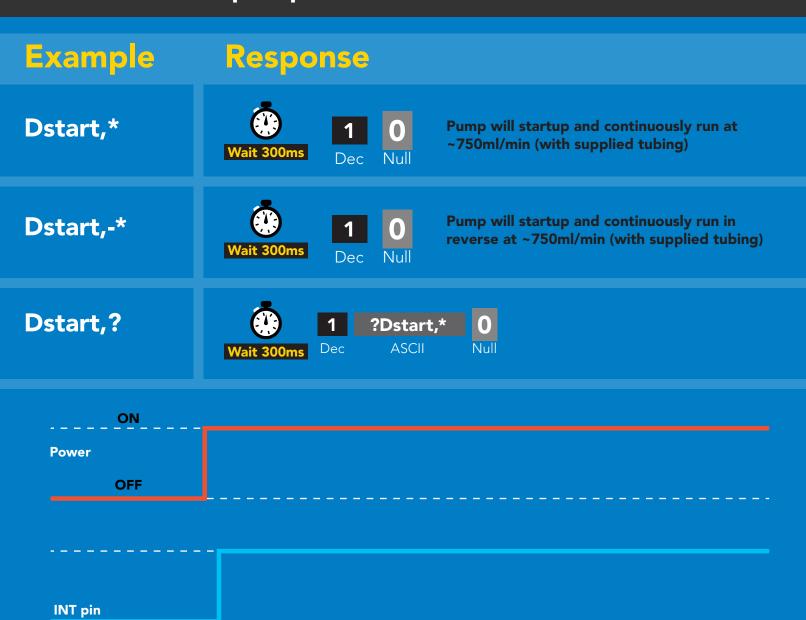
Continuous dispensing at startup

Pump on & continuously dispense

Command syntax

After running in continuous mode for 20 days the EZO-PMP-L™ will reset.

Dstart,*


dispense at startup until the stop command is given

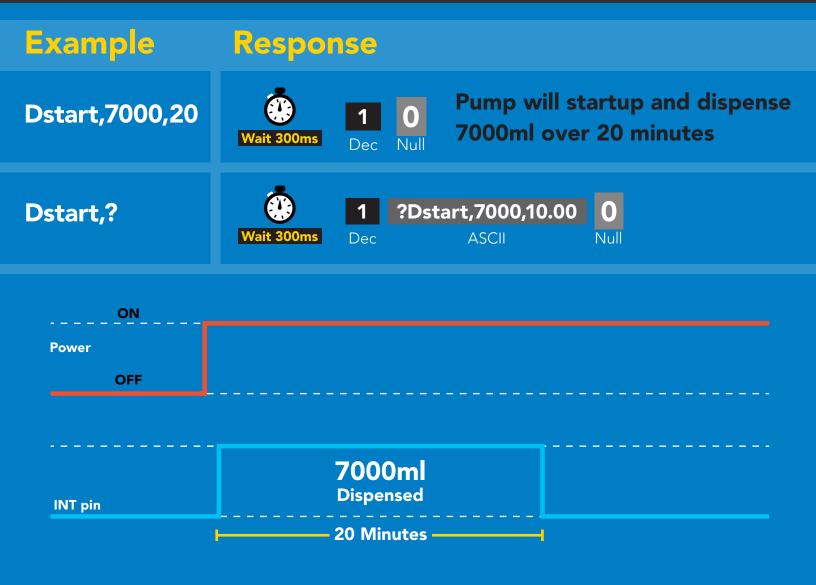
Dstart,-*

dispense in reverse at startup until the stop command is given

Dstart,?

startup dispense status

Dose Over time at startup


Pump a fixed volume over a fixed time at startup

Command syntax

300ms processing delay

D,[ml],[min]

Dispense [this volume], [over this many minutes] at startup

Pause dispensing

Command syntax

Issue the command again to resume dispensing

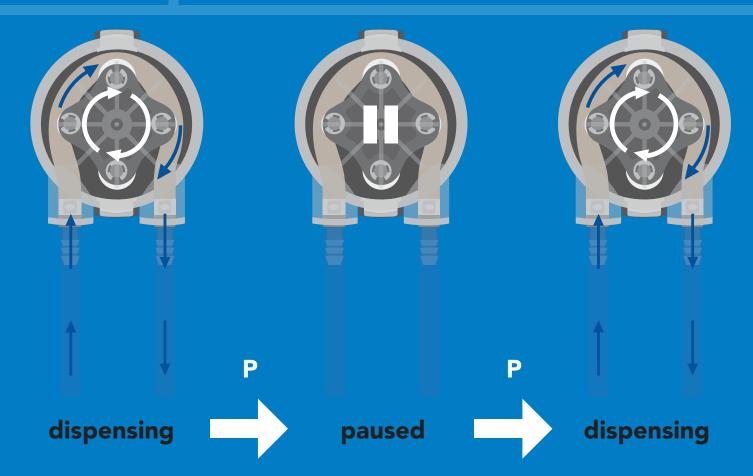
- pauses the pump during dispensing P
- pause status **P,?**

Example

Response

P

P,?



Stop dispensing

Command syntax

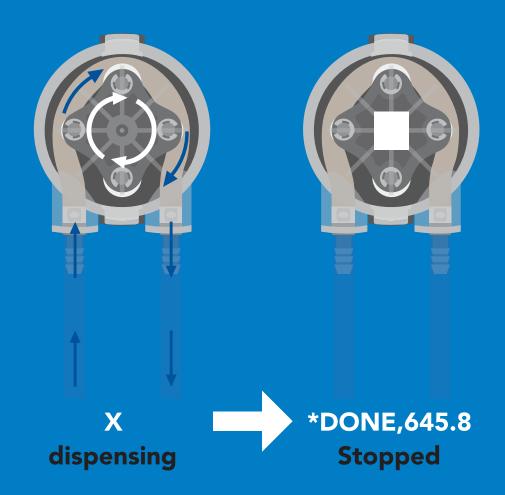
300ms processing delay

stop dispensing

Example

Response

X



v = volume dispensed

Invert dispensing direction

Command syntax

Invert direction will be retained if power is cut

Invert

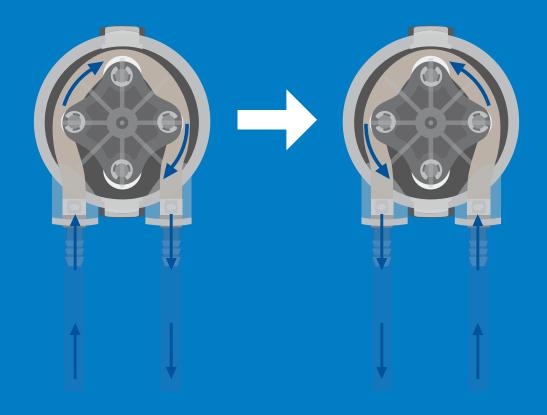
changes dispensing direction of pump

Example

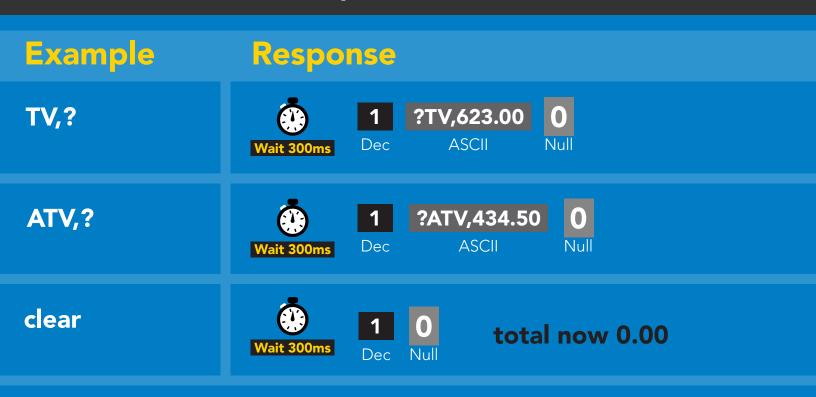
Response

Invert

Invert,?



Total volume dispensed


Command syntax

300ms processing delay

shows total volume dispensed **TV,?**

ATV,? absolute value of the total volume dispensed

clears the total dispensed volume Clear

This data will be lost if the power is cut.

Calibration

Command syntax

Calibrate to the actual volume dispensed.

Cal,v v = corrected volume

Cal, clear delete calibration data

Cal,? device calibrated?

Example

Cal, 146.2

Cal, clear

Cal,?

Response

Dec

ASCII

Dec

ASCII

?Cal,3 **ASCII**

Dec

Enable/disable parameters from output string

Command syntax

300ms (processing delay

enable or disable output parameter O, [parameter],[1,0] enabled parameter? 0,?

Example	Response	
O,V,1	1 Dec Null enable volume being pumped	
O,TV,0	Wait 300ms 1 O Null disable total volume pumped	
O,ATV,1	enable absolute volume pumped	
0,?	1 ?,O,V,TV,ATV 0 if all three are enabled	

Pump voltage

Command syntax

PV,? check pump voltage

Example

Response

PV,?

Response breakdown

?PV, 24.67

Pump input voltage

Naming device

300ms processing delay

Command syntax

Do not use spaces in the name

Name,n

set name

Name,

clears name

Up to 16 ASCII characters

Name,? show name

Example

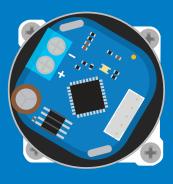
Response

Name,

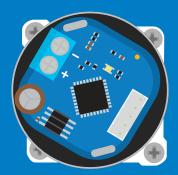
name has been cleared

Name,zzt

Name,?



?Name,zzt **ASCII**



Name,zzt

Name,?

?Name,zzt

Device information

Command syntax

300ms processing delay

device information

Example

Response

i

Response breakdown

?i, PMPL, 1.1 Device **Firmware**

Reading device status

Command syntax

voltage at Vcc pin and reason for last restart

Example

Response

Status

?Status,P,5.038

ASCII

Response breakdown

?Status, Reason for restart

5.038 Voltage at Vcc

Restart codes

- powered off
- software reset
- brown out
- watchdog W
- U unknown

Sleep mode/low power

Command syntax

Sleep enter sleep mode/low power Send any character or command to awaken device.

Example

Response

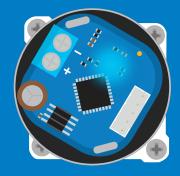
Sleep

no response

Do not read status byte after issuing sleep command.

Any command

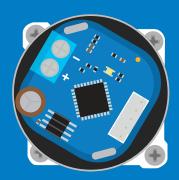
wakes up device


5V

STANDBY SLEEP

13.4 mA 0.415 mA

3.3V


12.4 mA 0.13 mA

Standby

Sleep

Sleep

Protocol lock

Command syntax

300ms processing delay

Plock,1 enable Plock

Plock,0 disable Plock default

Plock,? Plock on/off? Locks device to I²C mode.

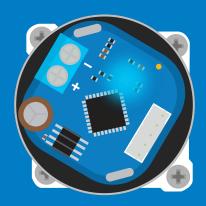
Example

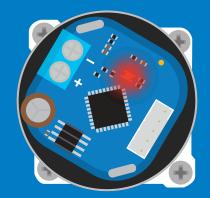
Response

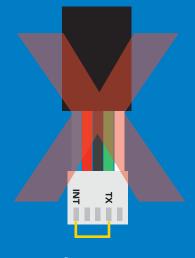
Plock,1

Plock,0

Plock,?






Plock,1

cannot change to UART

cannot change to UART

I²C address change

Command syntax

sets I²C address and reboots into I²C mode

Example

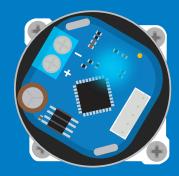
Response

I2C,101

device reboot (no response given)

Warning!

Changing the I²C address will prevent communication between the circuit and the CPU until the CPU is updated with the new I²C address.


Default I²C address is 109 (0x6D.

n = any number 1 - 127

I2C,101

Factory reset

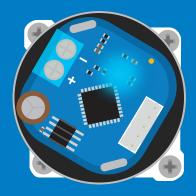
Command syntax

Factory reset will not take the device out of I²C mode.

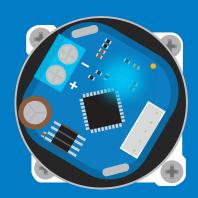
Factory enable factory reset

I²C address will not change

Example


Response

Factory


device reboot (no response given)

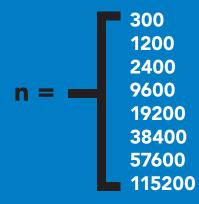
Clears calibration LED on Response codes enabled

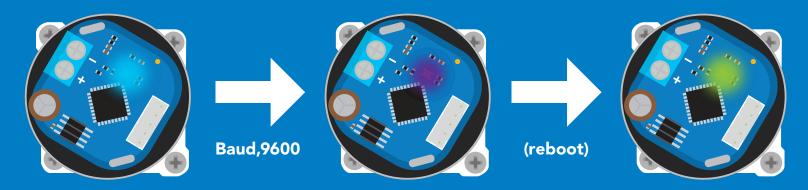
Factory

Change to UART mode

Command syntax

Baud, n switch from I²C to UART

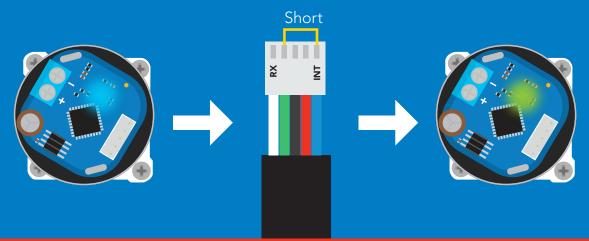

Example

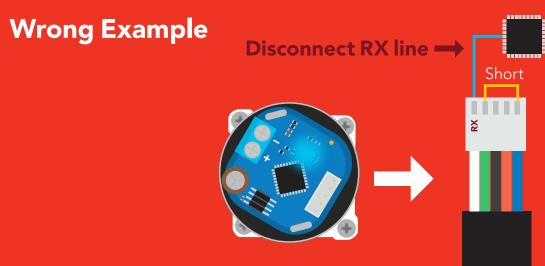

Response

Baud, 9600

reboot in UART mode

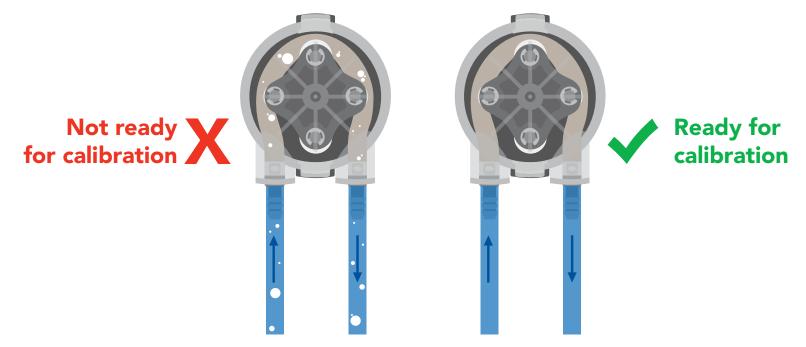
(no response given)




Changing to UART mode

Manual switching to UART

- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to INT
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power


Example

Calibration theory

Before calibration is attempted all the air bubbles should be removed from the tubing. This is done by running the pump while tapping the tubing. If air bubbles are not removed from the tubing they will slowly group together into larger air bubbles. Over time this will lead to accuracy issues.

Calibration types

Volume calibration Volume over time calibration

Calibration is optional. Both types of calibration are independent of each other and can be done at any time. Calibration can be done at any volume however; Atlas Scientific recommends using volumes above 150ml.

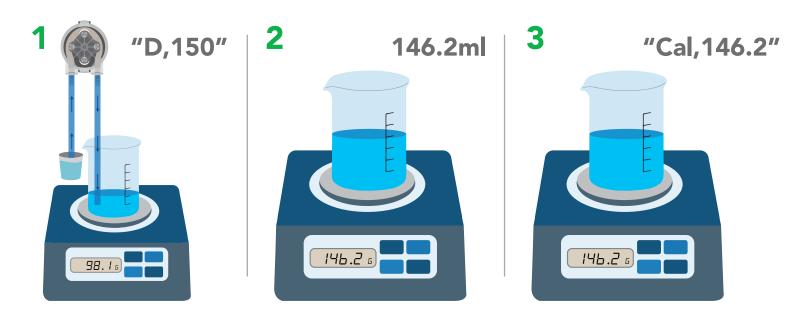
Equipment needed for calibration

1 gram of water = 1ml 250 grams of water = 250ml

An accurate beaker of at least 250ml.

An accurate scale with a resolution of at least 1 gram.

Calibration procedure


Calibration should be done with water and not a chemical

Make sure the tubing is full of water and has no bubbles before calibrating.

- 1. Instruct the pump to dispense a volume of water.
- 2. Measure the dispensed amount to determine how much water was actually dispensed.
- **3.** Calibrate the pump by sending it the volume of liquid you have measured.

Example

Calibrate the pump by dispensing 150ml.

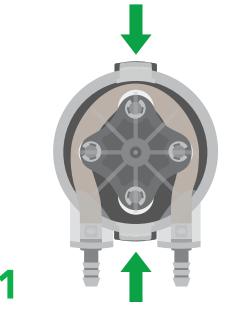
- 1. Instruct the pump to dispense 150ml into a beaker on a scale.
- 2. Measure the amount of liquid that was actually dispensed.
- 3. Inform the pump how much liquid was actually dispensed.
- 4. Calibration is now complete.

Once the pump has been calibrated it will accurately dispense any volume of liquid. It has not been calibrated specifically to the volume used during the calibration procedure (150ml). It has now been calibrated to all volumes.

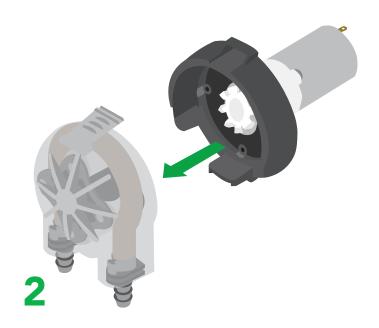
Use the same procedure to perform a volume over time calibration.

Pump speed vs. voltage

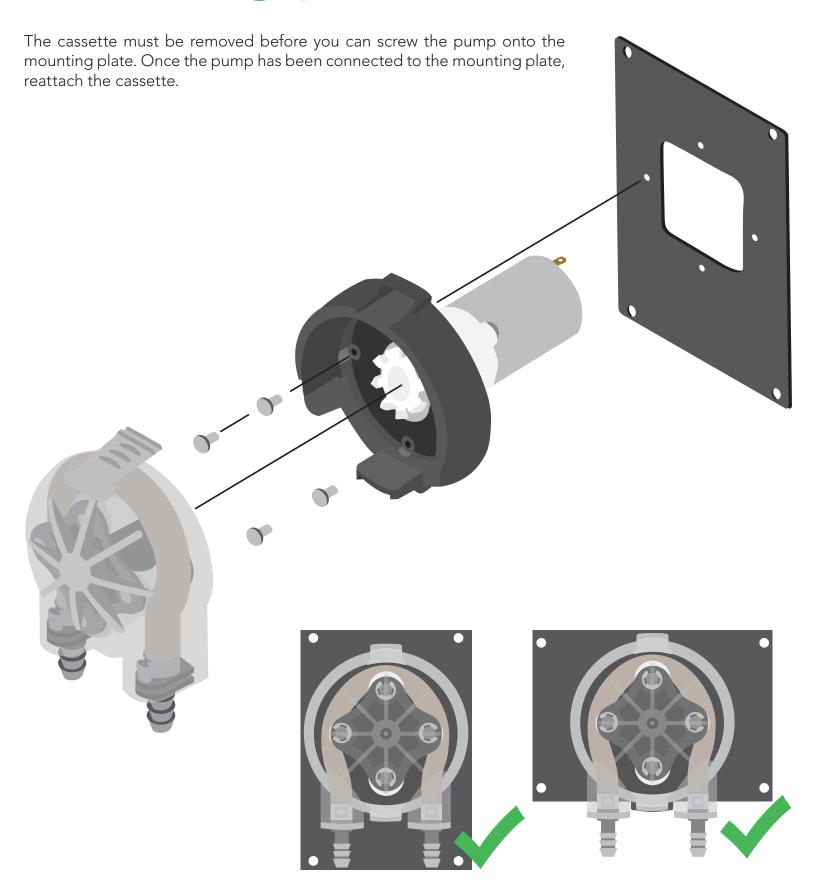
There is no change in pump speed at different voltages.



Interrupt pin


When the pump is dispensing the interrupt pin goes high.

Removing cassette


Press both release tabs on the cassette.

Pull the cassette off of the motor.

Mounting plate (optional)

Datasheet change log

Datasheet V 1.4

Added a new page about power supplies on page 8.

Datasheet V 1.3

Revised table of contents and added invert dispensing direction command on pages 30 & 64.

Datasheet V 1.2

Revised naming device info on pages 36 & 67.

Datasheet V 1.1

Added Mounting plate info on pg. 9

Datasheet V 1.0

New Datasheet.

Firmware updates

V1.0 – Initial release (March, 2021)

V1.01 - (May 26, 2021)

Changed minimum voltage for activation

V1.02 - (Feb 15, 2022)

• Internal update for new part compatibility.

V1.03 - (April 20, 2022)

Expands dstart command with * and dispense over time

Warranty

Atlas Scientific™ Warranties the EZO-PMP-L™ Large Embedded Dosing Pump to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO-PMP-L[™] Large Embedded Dosing Pump (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific™ is the time period when the EZO-PMP-L™ Large Embedded Dosing Pump is inserted into a bread board, or shield. If the EZO-PMP-L[™] Large Embedded Dosing Pump is being debugged in a bread board, the bread board must be devoid of other components. If the EZO-PMP-L™ Large Embedded Dosing Pump is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO-PMP-L™ Large Embedded Dosing Pump exclusively and output the EZO-PMP-L™ Large Embedded Dosing Pump data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO-PMP-L™ Embedded Dosing Pump warranty:

- Soldering any part of the EZO-PMP-L™ Large Embedded Dosing Pump.
- Running any code, that does not exclusively drive the EZO-PMP-L™ Embedded Dosing Pump and output its data in a serial string.
- Embedding the EZO-PMP-L™ Large Embedded Dosing Pump into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific™ does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO-PMP-L™ Large Embedded Dosing Pump, against the thousands of possible variables that may cause the EZO-PMP-L™ Large Embedded Dosing Pump to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific™ devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific™ devices can be soldered into place, however you do so at your own risk.

Atlas Scientific[™] is simply stating that once the device is being used in your application, Atlas Scientific can no longer take responsibility for the EZO-PMP-L™ Large Embedded Dosing Pump continued operation. This is because that would be equivalent to Atlas Scientific[™] taking responsibility over the correct operation of your entire device.