

Smart Integrated Matrix LED Driver with Touch Key Controller

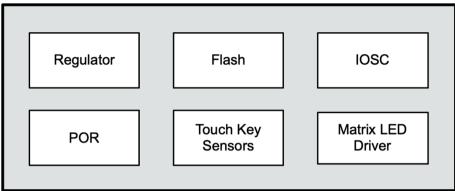
GENERAL DESCRIPTION

IS31FL3800 is an ultra-low power, fully integrated 18x4 matrix LED driver with a touch key controller. It is designed with an easy to use GUI for touch key tuning and GPIO configuration. The application of IS31FL3800 requires the presence of a host MCU with an I2C master, to poll the status and control the LED drivers. Each LED in the matrix can be dimmed individually with 8-bit PWM data and 8-bit DC scaling (Color Calibration) data. This allows 256 steps of linear PWM dimming and 256 steps of adjustable DC current level. Additionally, each LED's open/short state can be detected. The host MCU can poll for the open/short information stored in the Open/Short Registers.

An eleven-channel capacitive touch controller is integrated with on-chip calibration logic which continuously monitors the environment and automatically adjusts the threshold levels to prevent false triggers. An on-chip I²C slave controller with 400kHz capability and programmable slave addresses serves as the communication port for the host MCU. An interrupt, INTB, can be configured so it is generated when a trigger event (touched or released) occurs. Trigger or clear condition can be configured by setting the interrupt register.

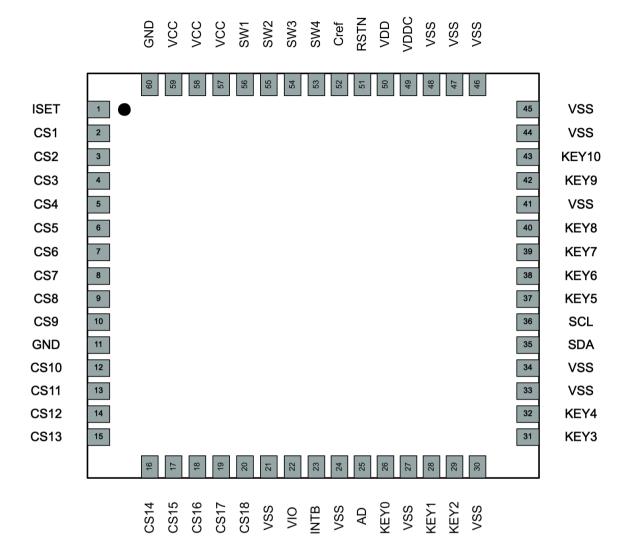
IS31FL3800 is available in RoHS compliant package QFN-60 (7mm×7mm). It operates from 2.7V to 5.5V over the temperature range of -40°C to +105°C.

FEATURES


- Matrix LED Driver
 - 18 current sinks
 - 2.7 to 5.5V LED driver supply (VCC)
 - Support 18×n (n=1~4) LED matrix configurations
 - Individual 256 PWM control steps
 - Individual 256 DC current steps
 - Global 256 current steps
 - Programmable H/L logic: 1.4V/0.4V, 2.4V/0.6V
 - 29kHz PWM frequency
 - State lookup registers
 - Individual open and short error detect function
 - 180 degree phase delay operation to reduce power noise
- Capacitive Touch Sensor
 - Capacitive touch controller with readable key value through shared GPIO
 - Individual sensitivity threshold setting for each touch key
 - Optional multiple-key function
 - Press and hold function
 - Automatic calibration
 - Individual key calibration
 - Interrupt output with auto-clear and repeating
 - Auto sleep mode for extremely low power
- Key wake up from sleep mode
- 400kHz fast-mode I²C interface
- Operating temperature between -40°C ~ +105°C
- QFN-60 package

APPLICATIONS

- Home appliance touch control keys
- Industrial applications
- Gaming devices
- IoT devices


BLOCK DIAGRAM

Block Diagram of IS31FL3800

PACKAGE TYPE

PIN CONFIGURATION

No.	Pin	Description
1	ISET	An external resistor to ground is required for setting the LED current
2-10, 12-20	CS1-CS18	Current sinks for LED matrix
11,60,21,24,27,30,33,34 ,41,44,45,46,47,48	VSS	Ground connection
22, 50	VDD	Power supply. Typical decoupling capacitors of 0.1uF and 10uF should be connected between VDD and VSS
23	INTB	Interrupt output, active low.
25	AD	I2C address setting.
26,28,29,31,32,37,38,39 ,40,42,43	KEY0- KEY10	Input sense channel 0 -10. Can be programmed as GPIOs.
35	SDA	I2C data, need to pull up with 4.7K resistor
36	SCL	I2C clock, need to pull up with 4.7K resistor
49	VDDC	Internal regulator output around 1.8V. Typical decoupling capacitors of 0.1uF and 10uF should be connected between VDDC and VSS
51	RSTN	Low active. A resistor to VDD and a capacitor to VSS are typically connected. RSTN is pulled low when LVR occurs. The threshold of RSTN is set at 0.3VDD. RSTN is also used for special test mode and writer mode entry.
52	Cref	External capacitor must be connected for touch key controller.
53-56	SW1-SW4	Power SW.
57-59	VCC	Supply of LED power switch.

ORDERING INFORMATION

Industrial Range: -40°C to +105°C

Order Part No.	Package	QTY
IS31FL3800-QFLS3-TR	QFN-60, Lead-free	2500

Copyright © 2020 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances

TYPICAL APPLICATION CIRCUIT (QFN-60)

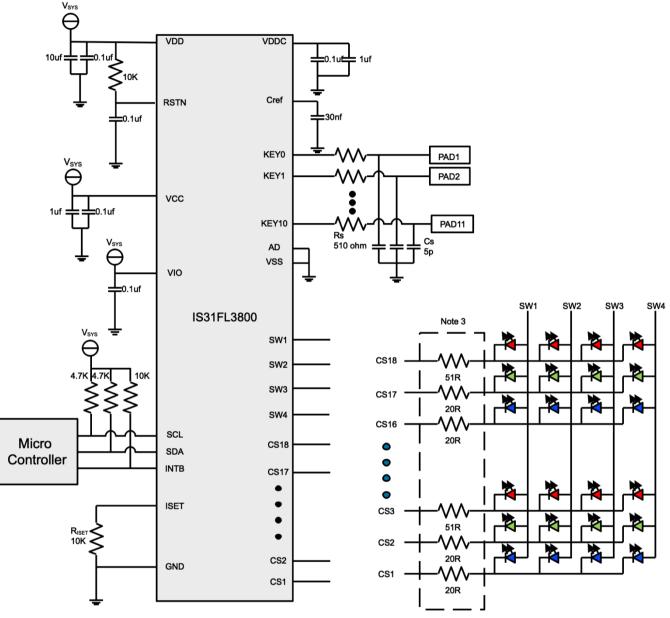
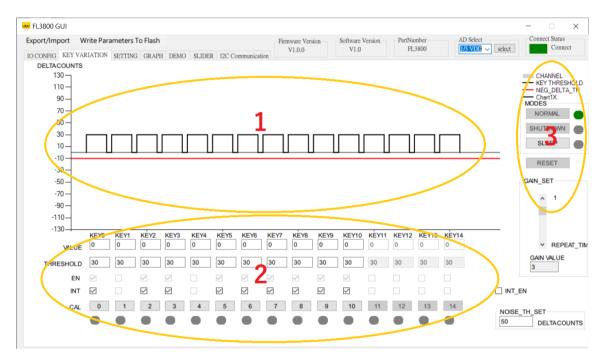


Figure 1 Typical Application Circuit (QFN-60)

Note 1: The chip should be placed far away from the noise points in order to prevent the EMI.

Note 2: The R_S and C_S should place as close to the chip as possible to reduce EMI.

Note 3: The 20R or 51R resistors between LED and the chip are only for thermal reduction. For mono red LED, if Vcc=3.3V, these resistors are not required.



1. DETAILED DESCRIPTION

1.1 IS31FL3800 GUI

IS31FL3800 GUI is a windows-based Integrated Design Environment (IDE). User can use it to develop touch key applications without firmware coding. With the GUI user can design the touch key system easily. With the GUI you can:

- 1. Monitor the Key value
- 2. Set touch threshold and enable keys
- 3. Switch the operating modes
- 4. Tune System parameters
- 5. Set LED and GPIO parameters
- 6. LED demo
- 7. Set Slider Electrodes

Export/Import Write Parameters	GRAPH DEMO SLIDER I2C Communication	Firmware Version V1.0.0	Software Version V1.0		Select Connect Status VDD v select Connect
MAX_DURATION_TIME_SET MAX_DUR_TIME_ENABLE MAX_DURATION_TIME: 12 s	MULTI-KEY_SELECTION:	AUTO_SLEEP_SE AUTO_SLEEP_ AUTO_SLEEP_ OSCILLATOR_D	P_ENABLE FIME: 12 v s		
AUTO_CLAER_INT_SET AUTO_CLEAR_INT_ENABLE AUTO_CLEAR_INT_TIME: 10 ms	INT_REPEAT_SET INT_MODE_SELECT INT_MODE_0 INT_MODE_1 INT_REPEAT_TIME: Disabled v ms	✓ KEY0 ✓ KEY1 ✓ KEY2 ✓ KEY3 ✓ KEY3 ✓ KEY5 ─ KEY6	KEY8 KEY9 KEY10 KEY11 KEY12 KEY13 KEY14		N FRE SET: 2 V MHZ CAN FRE SET: 1 V MHZ
SPREAD_SPECTRUM_SET	MULTI_PRESS_TIME:	WAKE_THRESH	IOLD_SET: 5	THIRD SCA	N FRE SET: 0.89 ∨ MHZ CAN FRE SET: 0.67 ∨ MHZ
SPREAD_SPECTRUM_ SWEEP_RATE: 0 ~ SPREAD_SPECTRUM_ AMPLITUDE +/-4 ~	CALIB_SET CALIB_SAMPLE_CNT: 16 ~ NEG_DELTA_CNT: 4 ~ NEG_DELTA_TH: -10 ~ N_CAL_NEG_TH: Disabled ~	SAMPLE_AVERAGE SAMPLE_CNT_S SAMPLE_TIME_S CYCLE_DELAY_1	ET: 3 ~ ET: 2 ~		JMISSIL ROSYSTEMS

	Write Parameters To	Flash		Firmware Version	Software Version	Paruvamber	AD Select		Connect Status
			SLIDER I2C Communication	V1.0.0	V1.0	FL3800	1/3 VDD •	select	Connect
KLI V	AMATION SETTING	OKAIN DEMO	LEDER 12C Communication						
		Touch Key	GPIO(high)	GPIO(low)	Slider1(Open-end)	\sim	AD	INTB	
	Key0	\checkmark							
	Key1		\square						
	Key2	\checkmark							
	КеуЗ	\checkmark							
	Key4			⊴ 5					
	Key5				\checkmark				
	Key6				\checkmark				
N	Key7				\checkmark				
\mathbf{N}	Key8				\checkmark				
	Key9				\checkmark				
	Key10				\checkmark				
	Key11/AD						\checkmark		
	Key12/INTB								
FL3800 GUI							1D S Lot	-	
port/Import \	Write Parameters To		LIDER I2C Communication	Firmware Version V1.0.0	Software Version V1.0	PartNumber FL3800	AD Select 1/3 VDD		Connect Status
port/Import \			LIDER 12C Communication			PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH DEMO S	LIDER 12C Communication			PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (LIDER 12C Communication	V1.0.0	V1.0	PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH DEMO S	LIDER 12C Communication	V1.0.0 Demo Pi	V1.0 Info: atternName:	PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH DEMO s		V1.0.0 Demo Pi N	V1.0 Info: atternName: umberOfFrame:	PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH [DEMO] S LoadDemo Demo1	file: Moving	V1.0.0 Demo Pi N Fi	V1.0 Info: atternName: umberOfFrame: ameDelays(ms):	PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH [DEMO] S LoadDemo Demo1 Demo2 Demo3	file: Moving file: Square file: Color	V1.0.0 Demo Pi N Fi R	V1.0 Info: atternName: umberOfFrame:	PartNamber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH DEMO S LoadDemo Demo1 Demo2	file: Moving file: Square	V1.0.0 Demo Pi N Fi R	V1.0 Info: atternName: umberOfFrame: ameDelays(ms): epeatTimes:	PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH [DEMO] S LoadDemo Demo1 Demo2 Demo3	file: Moving file: Square file: Color	V1.0.0 Permo Pi N Fi R D	V1.0 Info: atternName: umberOfFrame: ameDelays(ms): epeatTimes:	PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH [DEMO] S LoadDemo Demo1 Demo2 Demo3	file: Moving file: Square file: Color	V1.0.0 Permo Pi N Fi R D	V1.0 Info: atternName: umberOfFrame: ameDelays(ms): apeatTimes: irection: ng Info:	PartNumber FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH DEMO S LOAdDemo Demo1 Demo2 Demo3 LoadDemo Single Step	file: Moving file: Square file: Color file: Next	V1.0.0 Pr N Fr B D Runni Currer	V1.0 Info: atternName: umberOfFrame: ameDelays(ms): epeatTimes: irection: ing Info: t Repeat: C	FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH DEMO S LoadDemo Demo1 Demo2 Demo3 LoadDemo	file: Moving file: Square file: Color file:	V1.0.0 Pr N Fr B D Runni Currer	V1.0 Info: atternName: umberOfFrame: ameDelays(ms): apeatTimes: irection: ng Info:	FL3800			Connect Status
port/Import \	ARIATION SETTING (GRAPH DEMO S LOAdDemo Demo1 Demo2 Demo3 LoadDemo Single Step	file: Moving file: Square file: Color file: Next	V1.0.0 Pr N Fr B D Runni Currer	V1.0 Info: atternName: umberOfFrame: ameDelays(ms): epeatTimes: irection: ing Info: t Repeat: C	FL3800			Connect Status
xport/Import \	ARIATION SETTING (GRAPH DEMO S LOAdDemo Demo1 Demo2 Demo3 LoadDemo Single Step	file: Moving file: Square file: Color file: Next	V1.0.0 Pr N Fr B D Runni Currer	V1.0 Info: atternName: umberOfFrame: ameDelays(ms): epeatTimes: irection: ing Info: t Repeat: C	FL3800			Connect Status
xport/Import \	ARIATION SETTING (GRAPH DEMO S LOAdDemo Demo1 Demo2 Demo3 LoadDemo Single Step	file: Moving file: Square file: Color file: Next	V1.0.0 Pr N Fr B D Runni Currer	V1.0 Info: atternName: umberOfFrame: ameDelays(ms): epeatTimes: irection: ing Info: t Repeat: C	FL3800			

	Write Parameter VARIATION SE		DEMO SLIDER	I2C Communication	Firmware Version V1.0.0	Software V V1.0	/ersion PartNumł FL38		Select VDD V select	Connect Status Connect
130 _T				CHANNE	. [Sequence Number	Moving Direction	Initial Position	End Position	*Duration (Unit:0.1 Sec)
110 -				KEY THE NEG_DE		81	Left to Right	45	46	47
90 -				- Chart1X		82	Left To Right	45	46	50
	/					83	Left To Right	45	46	51
70 -						84	Left To Right	45	46	56
50 -						85	Left To Right	45	46	57
30 -						86	Left To Right	45	46	59
10-						87	Left To Right	45	46	60
-10-				_		88	Left To Right	45	46	61
-30 -						89	Left To Right	45	46	63
					7	90	Left To Right	45	46	66
-50 -						91	Left To Right	45	46	67
-70 -					_	92	Left To Right	45	46	69
-90 -						93	Left To Right	45	46	72
-110 -						94	Left To Right	45	46	73
-130						95	Left To Right	45	46	76
K	iey5 v Key6 v I	Key7 ~ Key8 ~	Key9 ~ Key10	~		96	Left To Right	45	46	78
			Key5 Key6	1		97	Left To Right	45	46	81
			Key6 Key7 Key8	Calibration		98	Left To Right	45	46	82
			Key8 Key9	Canonation						~
			Key10							

Please refer to the User's Guide for other details.

ABSOLUTE MAXIMUM RATINGS

Supply voltage, VCC (for LED driving)	-0.3V ~ +6.0V
Supply voltage, VDD	+5.5V
Voltage at any input pin	-0.3V ~ Vcc+0.3V
Maximum junction temperature, T _{JMAX}	+150°C
Storage temperature range, Tstg	-65°C ~ +150°C
Operating temperature range, T _A =T _J	-40°C ~ +105°C
Junction Package thermal resistance, junction to ambient (4 layer standard test PCB based on JESD 51-2A), θ_{JA}	35°C/W
ESD (HBM)	±2kV
ESD (CDM)	±750V

Note 4: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1.2 ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$, $V_{DD} = 2.7V \sim 5.5V$, unless otherwise noted. Typical value are $T_A = 25^{\circ}C$, $V_{DD} = 5V$.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdd	Supply voltage		2.7		5.5	V
Vcc	Supply voltage		2.7		5.5	V
Ι _{Ουτ}	Maximum constant current of CSy	R _{ISET} =10kΩ, GCC=0xFF SL=0xFF		34.5		mA
Idd, stop	Quiescent power supply current	V _{DD} = 5.5V		2.5		mA
	Electrical Ch	naracteristics (LED Driver)				
ILED	Average current on each LED $I_{LED} = I_{OUT(PEAK)}/Duty(4.14)$	R _{ISET} =10kΩ, GCC=0xFF SL=0xFF		8.33		mA
N/	Current switch headroom voltage SWx	Iswitch=612mA RISET =10kΩ, GCC=0xFF, SL=0xFF		450		
Vhr	Current sink headroom voltage CSy	I _{SINK} =34mA, R _{ISET} =10kΩ, GCC=0xFF, SL=0xFF		250		mV
t _{SCAN}	Period of scanning			33		μs
t _{NOL1}	Non-overlap blanking time during scan, the SWx and CSy are all off during this time			0.83		μs
t _{NOL2}	Delay total time for CS1 to CS 18, during this time, the SWx is on but CSy is not all turned on	(Note 5)		0.3		μs
	Electrical Cl	haracteristics (Touch Key)				
ΔCs	Normal detectable capacitance			40		pF
tscan, TK	Period of scanning for 11 Touch Key channels			55		mS

LUMISSIL MICROSYSTEMS

1.3 I2C SWITCHING CHARACTERISTICS (Note 5)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
fscl	Serial-Clock frequency				400	kHz
tbuf	Bus free time between a STOP and a START condition		1.3			μs
t hd, sta	Hold time (repeated) START condition		0.6			μs
tsu, sta	Repeated START condition setup time		0.6			μs
t _{SU, STO}	STOP condition setup time		0.6			μs
t hd, dat	Data hold time				0.9	μs
t su, dat	Data setup time		100			ns
tLOW	SCL clock low period		1.3			μs
t _{ніGH}	SCL clock high period		0.7			μs
t _R	Rise time of both SDA and SCL signals, receiving	(Note 6)		20+0. 1Cb	300	ns
t⊧	Fall time of both SDA and SCL signals, receiving	(Note 6)		20+0. 1Cb	300	Ns
IOL	Low level sink current			10		mA
VIH	Logic "0" input voltage	VDD = 5.5V	1.4			V
VIL	Logic "0" input voltage	VDD = 2.7V			0.4	V

Note 5: Guaranteed by design.

Note 6: Cb = total capacitance of one bus line in pF. ISINK \leq 6mA. tR and tF measured between 0.3 × VDD and 0.7 × VDD.

1.4 <u>I2C INTERFACE</u>

IS31FL3800 uses a serial bus, which conforms to the I2C protocol, to control the chip's functions with two wires: SCL and SDA. IS31FL3800 has a 7-bit slave address (A7:A1), followed by the R/W bit, A0. Set A0 to "0" for a write command and set A0 to "1" for a read command. The value of bits A1 and A2 are determined by the connection of the AD pin, to GND, 1/3 VDD, 2/3VDD, and VDD.

The complete slave address is:

Bit	A7:A3	A2:A1	A0
Value	01111	AD	1/0

AD connected to GND, AD = 00;

AD connected to 1/3VDD, AD = 01;

AD connected to 2/3VDD = 10;

AD connected to VDD = 11;

AD pin can also be configured as a Touch Key channel. When then AD pin is used for a Touch Key channel, A2: A1 = 00.

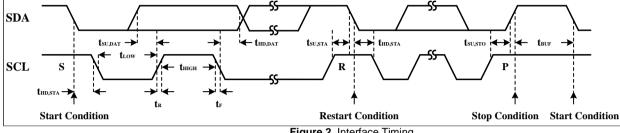
The SCL and SDA are open-drain IO so an external pull-up resistor (typically $4.7k\Omega$) is required. The maximum clock frequency specified by the I2C standard is 400kHz. In this discussion, the master is the host microcontroller and the slave is IS31FL3800.

The timing diagram for the I2C is shown in Figure 2. When there is no interface activity, both the SDA and SCL should be held high.

The "START" signal is generated by lowering the SDA signal while the SCL signal is high. The start signal will alert all devices attached to the I2C bus to check the incoming address against their own chip address.

The 8-bit chip address is sent next, most significant bit first. Each address bit must be stable while the SCL level is high.

After the last bit of the chip address is sent, the master checks for IS31FL3800's acknowledge. The master releases the SDA line which gets pulled to high (through a pull-up resistor). Then the master sends an SCL pulse. If


IS31FL3800 has received the address correctly, it holds the SDA line low during the SCL pulse. If the SDA line is not low, the master should send a "STOP" signal (discussed later) and abort the transfer.

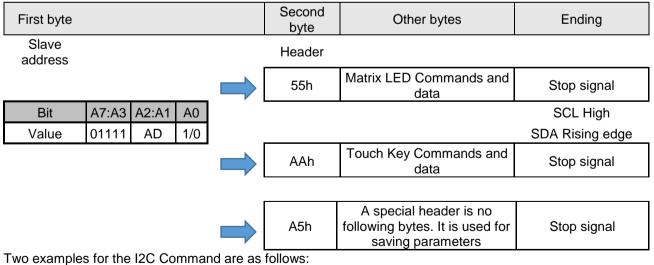
Following acknowledge of IS31FL3800, the header byte is sent, most significant bit first. IS31FL3800 must generate another acknowledge indicating that the header has been received.

Following acknowledge of IS31FL3800, the commands or register address byte is sent, most significant bit first. IS31FL3800 must generate another acknowledge indicating that the register address has been received.

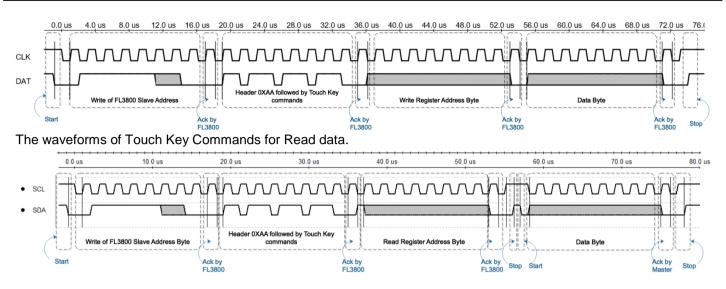
Then 8-bit of data byte are sent next, most significant bit first. Each data bit should be valid while the SCL level is stable high. After the data byte is sent, IS31FL3800 must generate another acknowledge to indicate that the data was received.

The "STOP" signal ends the transfer. To signal "STOP", the SDA signal goes high while the SCL signal is high.

Figure 2 Interface Timing


1.5 **READING PORT REGISTERS**

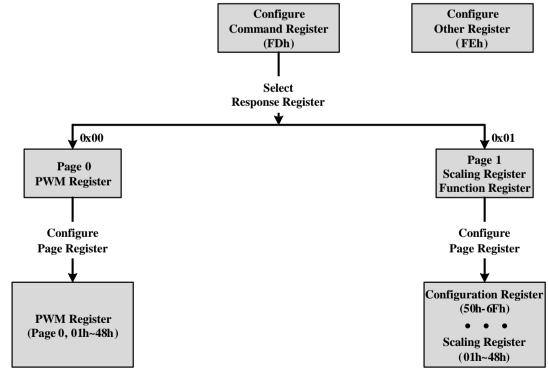
To read the device data, the bus master must first send to IS31FL3800's address with the R/W bit set to "0", followed by the header byte. The address of the register of interest is then specified. After a restart, the bus master must then


send to IS31FL3800's address with the R/W bit set to "1". Data from the register defined by the command byte is then sent from IS31FL3800 to the master.

I2C Command Format 1.6

In the I2C bus, some devices are masters, and they have to generate the bus clock and initiate communication. To select the IS31FL3800 device, they must choose the right slave address and follow it by a header. If the header is 55h, the commands and data that follows are for the matrix LED driver. If the header is AAh, the commands and data that follows are for the Touch Key controller. If the header is A5h, IS31FL3800 will immediately save the current data in the registers. Saved data will become the default value of IS31FL3800. Commands are always ended by a stop signal.

The waveforms of Touch Key Commands for Write data.



1.7 Matrix LED Operation

Command Register Definition

Address	Name	Function	Table	R/W	Default
FEh	Command Register Write Lock	To unlock Command Register	-	W	0000 0000
FDh	Command Register	Available Page 0 to Page 1 registers	-	W	XXXX XXXX

REGISTER CONTROL

LUMISSIL

A Division of [