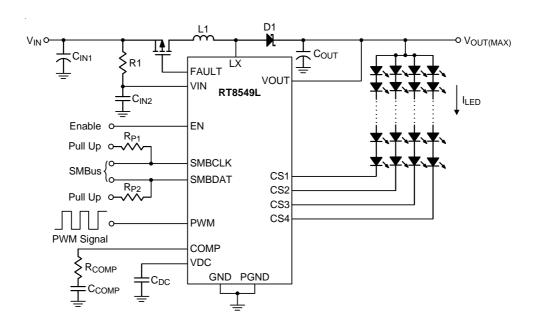
24V/60V Boost Converter with SMBus Controlled 4-CH LED Driver

General Description

The RT8549L is a high efficiency Boost converter with 4-CH LED driver supporting 60V maximum output voltage. It is designed for LCD panel applications that employs LED as lighting sources. The Boost converter generates a suitable output voltage to drive four LED strings in parallel and supports up to 18 LEDs per string.

The RT8549L supports a wide input voltage range from 4.2V to 24V and provides a SMBus interface to control the LED brightness dimming mode, operating frequency and LED currents. The internal $150m\Omega$, 60V power switch with current-mode control provides high efficiency operation.

The RT8549L is available in the WDFN-16L 5x5 package to achieve optimized solution for PCB space.


Features

- Wide Operating Input Voltage : 4.2V to 24V
- Max 60V Output Voltage
- 3% LED Current Accuracy
- 2% LED Current Matching
- Low Drop Output 120mA/0.4V Current Sink
- SMBus Programs LED Current, Switching Frequency, Dimming Mode
- LED Current : 22.58mA to 180mA
- Switching Frequency : 200kHz to 900kHz
- Dimming Mode : PWM, DC, Mixed-Mode
- Built-in Input UVP, Output OVP, OCP, and Soft-Start
- Support LED Hot-plug, Open/Short Detection
- Low EMI, Low Acoustic Noise
- 16-Load WDFN Package
- RoHS Compliant and Halogen Free

Applications

UMPC and Notebook Computer Backlight

Simplified Application Circuit

Ordering Information

RT8549L 🖵 📮

Package Type QW : WDFN-16L 5x5 (W-Type)

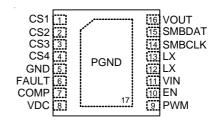
200 . WEI N-TOE 5X5 (W-Ty

Lead Plating System

G : Green (Halogen Free and Pb Free)

Note :

Richtek products are :


- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

RT8549L GQW YMDNN RT8549LGQW : Product Number YMDNN : Date Code

Pin Configuration


(TOP VIEW)

WDFN-16L 5x5

Pin No.	Pin Name	Pin Function
1	CS1	Current sink for LED channel 1.
2	CS2	Current sink for LED channel 2.
3	CS3	Current sink for LED channel 3.
4	CS4	Current sink for LED channel 4.
5	GND	Ground.
6	FAULT	Fault indicator output. When fault condition occurs, the FAULT pin will be pulled up to VIN.
7	COMP	Compensation note for error amplifier. Connect a compensation network to ground.
8	VDC	Output of internal regulator voltage. Connect a capacitor from this pin to ground.
9	PWM	PWM dimming control input.
10	EN	Enable control input. (active high).
11	VIN	Power supply input.
12,13	LX	Switch node of boost converter.
14	SMBCLK	Clock of SMBus.
15	SMBDAT	Data of SMBus.
16	VOUT	Over voltage protection sense input.
17 (Exposed Pad)	PGND	Ground. The exposed pad must be soldered to a large PCB and connected to PGND for maximum power dissipation.

Functional Block Diagram

Operation

The RT8549L integrates four LED drivers and a Boost converter. When EN is High and VIN is higher than the UVLO for a white, the RT8549L will detect the status of the channel. Then the digital part will be reset and set all default states registers.

Once SMBus receives a "STOP" signal, the RT8549L will start to check PWM duty and then enter soft-start mode. The RT8549L will choose the minimum value of V_{LED} as the feedback voltage of Boost converter.

During operation, when a LED string is defined as short, the driver of that channel will be turned off. When LED string is defined as open, the driver of that channel will be turned off, and auto-recovery when the "OPEN" is released.

Once "VOUT shorted to GND" or "Schottky diode shorted" are defined as the fault condition, the RT8549L will alarm this condition through the fault flag of SMBus. The fault flag could also be cleared through the SMBus.

Absolute Maximum Ratings (Note 1)

Supply Input Voltage, VIN to GND VDC to GND	
SMBDAT, SMBCLK to GND	
• EN, PWM, COMP, FAULT to GND	–0.3V to 44V
• CS1, CS2, CS3, CS4 to GND	–0.3V to 66V
LX, VOUT to GND	–0.3V to 72V
• LX to GND (<100ns)	-2V to 72V
 Power Dissipation, P_D @ T_A = 25°C 	
WDFN-16L 5x5	3.47W
Package Thermal Resistance (Note 2)	
WDFN-16L 5x5, θ_{JA}	
WDFN-16L 5x5, θ_{JC}	4.4°C/W
Lead Temperature (Soldering, 10 sec.)	
Junction Temperature	
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	
MM (Machine Model)	200V

Recommended Operating Conditions (Note 4)

Supply Input Voltage	- 4.2V to 24V
Junction Temperature Range	- −40°C to 125°C
Ambient Temperature Range	40°C to 85°C

Electrical Characteristics

(V_{IN} = 12V, C_{IN} = 1µF, T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Power Supply		-				
Input Supply Voltage	Vin		4.2		24	V
Quiescent Current	lq	EN = 3.3V, PWM = 0		3.3		mA
Shutdown Current	ISHDN	V _{IN} = 4.5V, EN = 0			10	μΑ
Under-Voltage Lockout Threshold	Vuvlo	VIN rising		3.8		V
Under-Voltage Lockout Hysteresis	ΔΫυνιο			500		mV
Interface Characteristic						
EN, PWM, SMBCLK, SMBDAT Input High Threshold	Viн		2			V
EN, PWM, SMBCLK, SMBDAT Input Low Threshold	VIL				0.8	V
EN Internal Pull-Low Current	lih_en	VEN = 3.3V			10	μA
SMBCLK, SMBDAT Internal Pull-Low Current	IIH_SMB	VUP = 3.3V		0.01	1	μA
PWM Internal Pull Low Current	IIH_PWM	Vpwm = 3.3V			15	μΑ

RT8549L

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SMBus Interface Timing (N	ote 5)		•			
SMBus Operating Frequency	fsмв		10		100	kHz
Bus Free Time between Stop and Start Condition	tBUF		4.7			μS
Hold Time after Start Condition	tHD_STA	After this period, the first clock is generated	4			μS
Repeated Start Condition Setup Time	tSU_STA		4.7			μS
Stop Condition Setup Time	tsu_sto		4			μS
Data Hold Time	thd_dat		300			ns
Data Setup Time	tsu_dat		250			ns
Detect Clock Low Timeout	ттімеоит		25		35	ms
Clock Low Period	tLOW		4.7			μS
Clock High Period	tнigн		4		50	μS
Slave Device Cumulative Clock Low Extend Time_Slave	tLOW_SEXT				25	ms
Mater Device Cumulative Clock Low Extend Time_Master	tlow_mext				10	ms
Fall Time of SMB DAT/CLK	tF_SMB				300	ns
Rise Time of SMB DAT/CLK	tR_SMB				1000	ns
Power On Reset of SMB	tsmb_por	Time in which a device must be operation after power on reset		3	500	ms
Boost Converter						
Switching Frequency Accuracy	fsw_acc	Boost operates at PWM mode, fsw = 400kHz	-10		10	%
Default Switching Frequency	fsw	Boost operates at PWM mode		400		kHz
Switching Frequency Setting Range	fsw_rg	Boost operates at PWM mode	200		900	kHz
Step-up Maximum Duty Cycle	DMAX			93		%
Boost Switch RDS(ON)	RDS(ON)_BST	VDC = 5V, ISW_BST = 100mA		0.18	0.5	Ω
Switching Current Limitation	IOCP_BST		2.8	3.3		А
Over-Voltage Protection	Vout	OVP selection = B10		60		V
LED Current				-		
Leakage Current of CSx	ILK_CSx	$V_{CSx} = 50V, I_{CS} = 0mA$			10	μΑ
Minimum CSx Regulation Voltage	Vcs_min	ICSx = 120mA		0.45		V
Maximum LED Current Setting	ICS_MAX				180	mA
Dimming Frequency	fрwм		200		1000	Hz

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
LED Current Accuracy	Ics_acc	PWM duty = 100%, I _{LED} = 120mA	-3		3	%
LED Current Matching	ILED_MAT	PWM duty = 100%, I _{LED} = 120mA	-2		2	%
CSx Channel Unused Threshold	Vcs_unuse			0.2		V
Light Bar Open Threshold	VCS_OPEN			0.1		V
Light Bar Short Threshold	Vcs_short			5.6		V
Thermal Shutdown Temperature	Тотр			150		°C
Thermal Shutdown Hysteresis	TOTP_hys			20		°C
Mixed Mode Dimming Frequency	fpwm_led	When dimming duty < 25%		26		kHz

- Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Guaranteed by design; not subject to production testing.

Typical Application Circuit

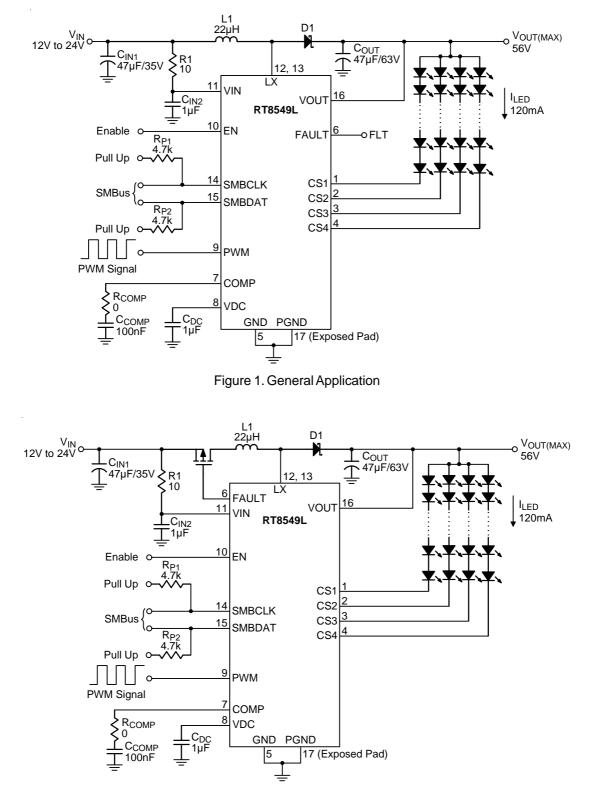
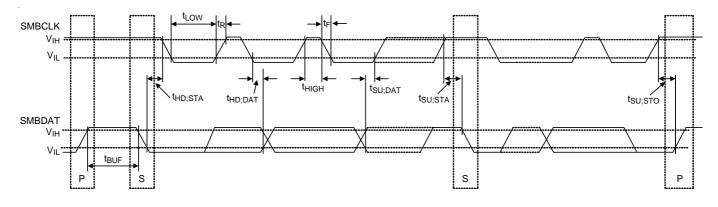
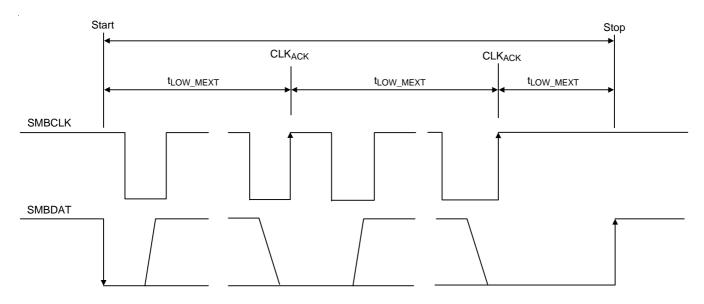
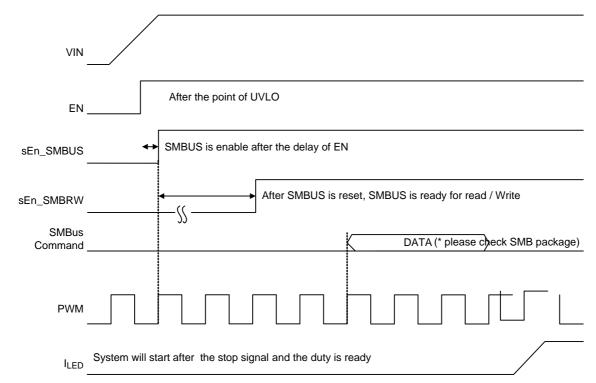
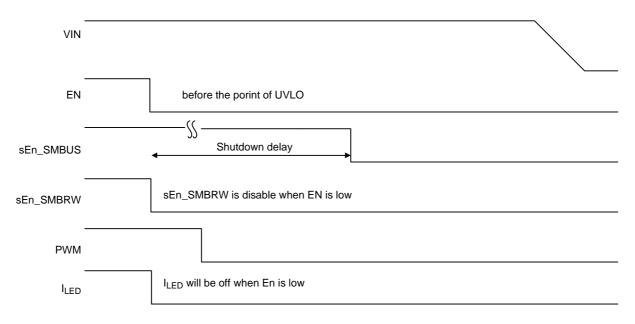



Figure 2. External P-MOSFET Isolation Application

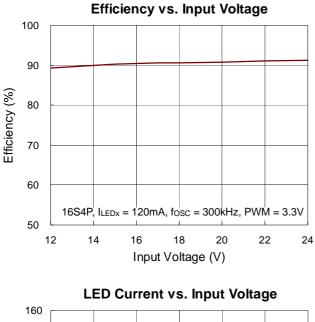


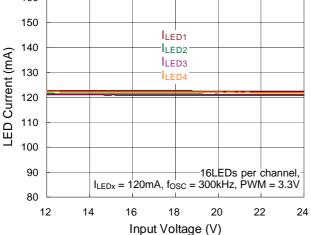
Timing Diagram

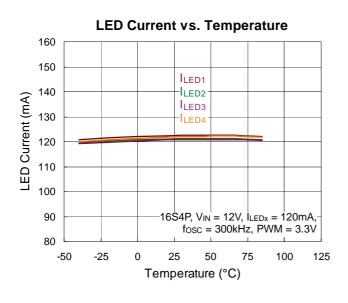

SMBus Common AC Specification

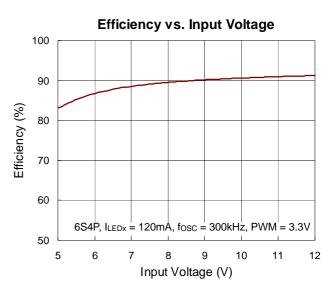

SMBus Timeout

Power-On Sequence

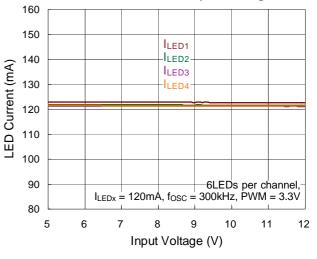


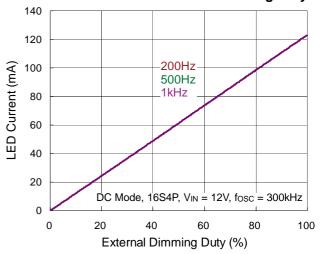

Power-Off Sequence

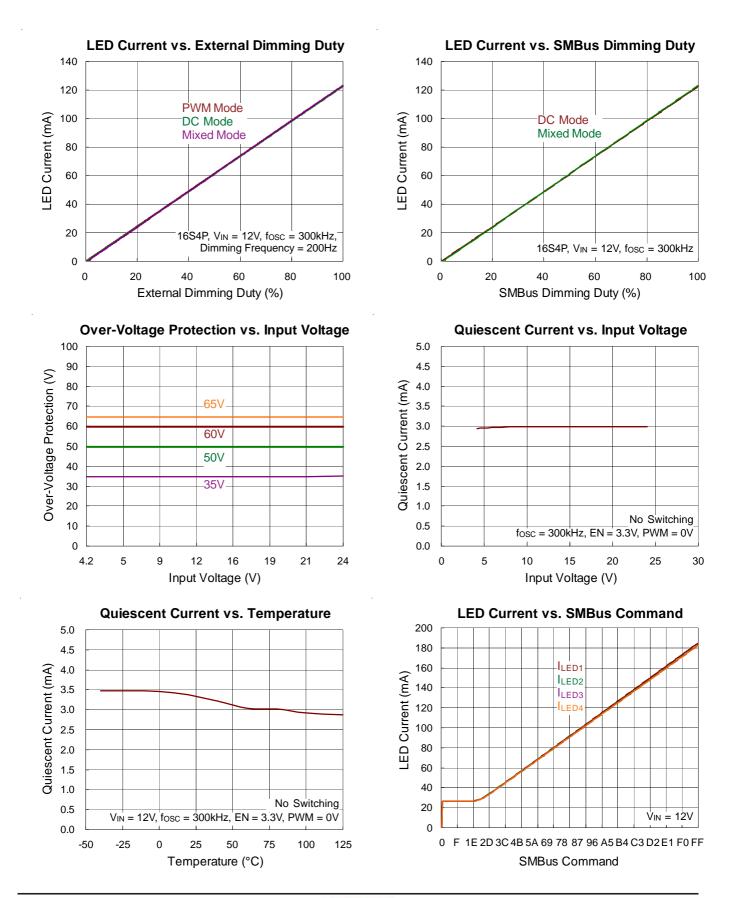




Typical Operating Characteristics







LED Current vs. Input Voltage

LED Current vs. External Dimming Duty

Copyright ©2019 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

RICHTEK

Application Information

The RT8549L is a general purpose 4-CH LED driver and is capable of delivering a maximum 180mA LED current. The IC is a current-mode Boost converter integrated with a 60V/3.3A power switch and can cover a wide VIN range from 4.2V to 24V. The part integrates both built-in softstart and with PWM dimming control; moreover, it provides over voltage, over-temperature and current limit protections. It also integrates PWM and mixed mode dimming function for accurate LED current control. The PWM dimming frequency can operate form 200Hz to 1kHz without inducing any inrush current in LED and inductor.

Dimming Control

The RT8549L provides three dimming modes for controlling the LED brightness. The three dimming modes include PWM mode, DC mode and Mixed mode, and the dimming mode could be set by register 00h. If the 00h[1:0] is set 11, the dimming mode is still in Mixed mode which is shown in Table 2 below.

PWM Mode

The ON/OFF of the current source is synchronized to the PWM signal. The frequency of LED current is equal to the PWM input signal.

DC Mode

The PWM signal will be monitored and calculate its duty. The magnitude of I_{LED} will be proportional to the duty.

 $I_{LED} = I_{MAX} x duty$

Mixed Mode

When $25\% \le PWM$ duty $\le 100\%$, the PWM duty modulated the amplitude of the current. (same as DC mode)

PWM duty < 25%, the DC dimming will translate to PWM dimming, controlling the PWM duty instead by amplitude.

Slave Add	Slave Address : b0110001										
Register Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Default Value		
0x00	OVP Reset [7]			OCP Fault [4]		DIM_sig_ Sel [2]	Dimming C	Control [1:0]	0x01		
0x01		OVP [6:5] Current_ Limit [4] Switching_frequency [3:0]						0x54			
0x02			l	LED Current	t Setting [7:0	D]			0x00		
0x03	Fault Enable [7]				Fault Flag Clear [3]	SLP [2]	SLP Latch [1]	Fault Flag [0]	0x80		
0x04	SMBus Dimming Control [7:0]								0x00		
0x06	Written Check [7]	Vendor ID							0x80		

Table 1. Register Map

Table 2. Dimming Control Mode Selection

Address	Bit	Name	Default Value	Description	R/W	
	00h [1:0]			00 : PWM mode		
00h		Dimming mode selection	DC mode (01)	01 : DC mode	R/W	
				10 : Mixed mode		

Dimming Control Signal Selection

The RT8549L integrates a dimming control signal selection. The dimming control signal source could be set by the second bit of register 00h. If the bit equals to 0, it means the dimming control signal source just depends on the input signal of the PWM pin. Otherwise, if the bit equals to 1, the dimming control signal is controlled by the command of register 04h. The dimming control signal of register 04h supports the DC mode and Mixed mode. The option is shown in Table 3 below.

Address	Bit	Name Default Value		Description	R/W			
00h		Dimming Control PWM pin (0) 0 : Dimming control signal is depend on PWM pin		R/W]			
0011	^[2] Signal Selection	F VVIVI pili (0)	1 : Dimming control signal supply by register 04h.					

Table 3 Dimming Control Signal Selection

Note : There is no two cycle delay when the bit set to 1.

OCP Fault

There is an over-current protection function cycle-by-cycle to turn off the power MOSFET of the Boost converter. We could have a further protection if the OCP Fault function is enabled (addr 0x00h, bit 4). Once this register is set high, internal counter is started to check OCP status. if OCP occurs 128 times continuously, the fault pin will be pulled high to turned off the external P-MOSFET.

The OCP Fault Could be Selection as the Table 4.

OVP Reset

The RT8549L integrates an OVP Reset mechanism. User could choose to let the IC Reset or output voltage clamped on a voltage of OVP. The OVP Reset mechanism is setting by SMBus interface, and set the bit [7] of register 00h.

Switching Frequency

The LED driver switching frequency is adjusted by the SMBus, The switching frequency setting range and resolutions are shown in the Table 6 below.

If the switching frequency command is below to 0x02h (0x01h to 0x00h), the switching frequency would be clamped at 200kHz. The command is above the 0x09h (0x0A to 0x0F), the switching frequency would be clamped at 900kHz.

Address	Bit	Name	Default Value	Description	R/W				
00h [4]		OCP Fault	Disable (0)	0 : Disable	R/W				
00h	[4]			1 : Enable					

Table 4 OCP Fault Setting

Table 5. OVP Reset Setting

Address	Bit	Name	Default Value	Description	R/W
00h	[7]		Disable (0)	0 : Disable	R/W
0011	[/]	OVP Reset	Disable (0)	1 : Enable	

Copyright ©2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Address	Bit	Name	Default Value	Description	Resolution	R/W
			0x04h : 400kHz			
01h	[3:0]	Boost switching frequency	400kHz (0x04h)	Between the code 0x00h and 0x02h are equal to 200kHz.	~100kHz (0x02h to	R/W
				Between the code 0x09h and 0x0Fh are equal to 900kHz.	0x09h)	

Table 6. Switching Frequency Setting

Current Limit Protection

The RT8549L integrates current limit protection, and the current of current limit protection could be set by SMBus, which is shown in the Table 7 below.

The RT8549L can limit the peak current to achieve overcurrent protection. The RT8549L senses the inductor current during the "ON" period that flows through the LX pin. The duty cycle depends on the current signal and internal slope compensation in comparison with the error signal. The internal switch of Boost converter will be turned off when the peak current value of inductor current is larger than the over-current protection setting. In the "OFF" period, the inductor current will be decreased until the internal switch is turned on by the oscillator.

Over-Voltage Protection

The RT8549L integrates over-voltage protection. The over-voltage protection could be set by the SMBus, the voltage of over-voltage protection (V_{OVP}) could be selected as the Table 8 below.

When the Boost output voltage rises above the V_{OVP}, the internal switch will be turned off. Once the Boost output voltage drop below the V_{OVP}, the internal switch will be turned on again. The Boost output voltage can be clamped at the V_{OVP}

Table 7. Current Limit Protection Setting

Address	Bit	Name	Default Value	Description	R/W
	01h [4] Switching current limitation selection			Boost switch current limitation.	
01h		3.3A (1)	0 : 2.2A	R/W	
				1 : 3.3A	

Table	8.	OVP	Voltage	Setting
-------	----	-----	---------	---------

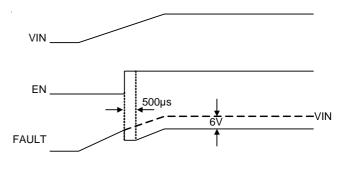
Address	Bit	Name	Default Value	Description	R/W	
				Boost output over voltage protection.		
		Over voltage protection selection		11 : 65V		
01h	[6:5]		65V (11)	10 : 60V	R/W	
				01 : 50V		
				00 : 35V		

RICHTEK

LED Current Setting

The LED current of each channel could be set by SMBus command, it is shown in the Table 9.

When the LED current setting command is below 0x20h to 0x01h, the LED current will be kept at 22.58mA. When the command is 0x00h, the LED current will be set to 0mA. The maximum LED current setting is 180mA. The one step of LED current is approximately 0.706mA.


Fault Protection

The fault protection function can protect the system once there is an abnormal state at switching pin. (eg. too low during turn off and too high during turn on) the FAULT pin will output a voltage level same with VIN, forcing the P-MOSFET to be turned off, to prevent the short current to damage IC or components. When under normal operation, the FAULT pin output voltage will be clamp at 6V making sure the P-MOSFET can be fully turn on.

In addition, this function could be chosen enable or disable by SMBus command, setting the bit [7] of register 03h. If the bit data is written 1, it means enable fault protection, and vice versa. When the protection enable, and the one of two fault condition is happened. To read fault flag bit [0] of register 03h, it would be from 0 changed to 1. After the fault condition is cleared, user could set fault flag clear bit [3] of register 03h to 1 and write it.

When IC is enable, "FAULT" will be clamped VIN - 6V, such that LX and VOUT will be equal to VIN though the P-MOSFET.

And the detection LX short function will be active 500μ s later. Once V(LX) < 2.4V, IC will define abnormal condition caused, and V(FAULT) will be pulled to VIN in order turn off the P-MOSFET.

Table 9. LED Current Setting

Address	Bit	Name	Default Value	Description	Resolution	R/W
				control the max current		
			0xFFh : 180mA			
02h	[7:0]	[7:0] LED current setting 0	0mA (0x00h)	0x20h : 22.58mA	~0.706mA	R/W
	[]			0x00h : 0mA	(0xFFh to 0x20h)	
				Between the code 0x01h and 0x20h are equal to 22.58mA		

Table 10. Fault Protection Setting

Address	Bit	Name	Default Value	Description	R/W
	[0]	Monitor fault condition		Detect fault condition happen or not (Read only).	R
03h	[3]	Fault flag could be cleared by SMBus.	Original State (0)	0 : keep the original state 1 : clear fault flag	R/W
	[7]	Fault function enable.	Enable (1)	0 : disable 1 : enable	R/W

Short LED Protection

The RT8549L integrates Short LED Protection (SLP). If CSx pin voltages exceeds the threshold of approximately 5.6V during normal operation, the channels will be turned off. And the channel will keep rechecking in the rest mode.

User could turn on or turn off the SLP function by SMBus interface. If the bit [2] of register 03h write 1, its means the SLP function is turn off. On the contrary, the bit is written 0 means turn it on. The register setting is shown in Table 11 below.

User could choose latch mode of SLP by setting. Once the SLP occurs, the particular channel will be off.

SMBus Dimming

The RT8549L integrates an SMBus dimming control signal by register 04h. The dimming duty is adjusted from 0% (0x00) to 100% (0xFF), and one step is about 0.392%. Users just need to write the register 04h. ex. Register 04h write into 0x7F, the register code is corresponds to 50% dimming duty. The setting method is shown Table 12 below.

The internal SMBus signal supports only DC mode and Mixed mode. The dimming frequency is about 26kHz when the dimming duty below to 25% of Mixed mode.

LED Current Written Check

The RT8549L provides a check bit, it is for users to check LED current greater than zero. If LED current setting is greater than zero, the check bit would be changed to 0. Otherwise, LED current setting equals to zero, and the check bit would be changed to 1. The check bit is shown in Table 13 below.

Table 11. Short LED Protection Setting

Address	Bit	Name	Default Value	Description	R/W
03h	[1]	Short LED protection latch	Reset Mode(0)	0 : Reset Mode 1 : Latch Mode	R/W
0311	[2]	Short LED protection	Enable (0)	0 : Enable 1 : Disable	R/W

Table 12. SMBus Dimming Control Setting

Address	Bit	Name	Default Value	Description	Resolution	R/W
04h	[7:0]	SMBus Dimming Control	0% (0x00)	0x00 : 0% 0xFF : 100%	0.392%	R/W

Table 13. LED Current Check Bit

Address	Bit	Name	Default Value	Description	R/W
06h	[7]	Written Check	LED Current = 0 (1)	0 : LED Current Setting > 0 1 : LED Current Setting = 0	R

Table 14. Vendor ID

Address	Bit	Name	Default Value	Description	R/W
06h	[6:4]	Vendor ID	000	Vendor Identification : Richtek : 000	R

SMBus Write Timing Sequence

Write 1 byte

(Command byte is sent after the address and determines which register receives the data that follows the command byte.)

Slave Address	R/W	Register Address	Register Data	
S 0 1 1 0 0 0	1 0 A	Command Byte A	A Data Byte A	Ρ

Write N bytes

(Command byte is sent after the address and determines which register receives the data that follows the command byte.)

Slave Address	R/W	Register Address	Register Data 1	Register Data 2
S 0 1 1 0 0 0	1 0 A	Command Byte	A Data Byte 1	A Data Byte 2 A
				Register Data N
				Data Byte N A P

SMBus Read Timing Sequence

Read 1 byte

(Command byte is sent after the address and determines which register is accessed. After a start, the device address is sent again and LSB is set to logic 1. Data defined by command byte then is sent by RT8549L.)

Slave Address				s		R/W			Regi	ster		dress										R/W			Re	giste	r Dat	a 1				
S 0	1	1	0	0	0	1	0	А		Con	nma	and I	Byte	1	А	s	1	Sla	ave A	ddre	ss	1	1	А			ata	Byte	1	1	Ā	Р

Read N bytes

(Command byte is sent after the address and determines which register is accessed. After a start, the device address is sent again and LSB is set to logic 1. Data defined by command byte then is sent by RT8549L.)

Slave Addre	ss R/W	Register Ac	ldress			R/W	Register Data 1	
S 0 1 1 0 0	0 1 0 A	Command	Byte	A S	Slave Address	1 A	Data Byte 1	A
				Register	Data 2		Register Data N	

Data Byte 2

А

Copyright ©2019 Richtek Technology Corporation. All rights reserved.	RICHTEK is a registered trademark of Richtek Technology Corporation.
--	---

Ā P

Data Byte N

LED Connection

The RT8549L equips 4-CH LED drivers and each channel supports up to 17 LEDs ($V_f = 3V$). The LED strings are connected from the output of the Boost converter to the CSx (x = 1 to 4) pins respectively. If one of the current sink channels is not used, the CSx pin should be connected to GND. If the un-used channel is not connected to GND, it will be considered that the LED string is opened, the channel will turn light when the LED string is recovering connected.

Compensation

The regulator loop can be compensated by adjusting the external components connected to the COMP pin. The COMP pin is the output of the internal error amplifier. The compensation capacitor will adjust the integrator zero to maintain stability and the resistor value will adjust the frequency integrator gain for fast transient response. Typical values of the compensation components are $R_{COMP} = 0\Omega, C_{COMP} = 100$ nF.

Over Temperature Protection

The RT8549L has over temperature protection function to prevent the IC from overheating due to excessive power dissipation. The OTP function will shutdown the IC when junction temperature exceeds 150°C (typ.). When junction temperature cools down to $130^{\circ}C$ (T_{OTP hvs} = $20^{\circ}C$), the LED driver will return to normal work.

Series Resistor Selection On PWM Pin

The calculation of series resistor should consider the Input high threshold (VIH) and the internal pull-low current (I_{IH PWM}) of PWM. The minimum value of V_{IH} is 2V, and the maximum of $I_{IH PWM}$ is 15µA. The resistor could be calculated by the equation below. Ex. $V_{PWM} = 3.3V$, the R_{PWM} must be smaller than 86.67k Ω .

$$R_{PWM} < \frac{V_{PWM} - 2V}{15\mu A}$$

Where V_{PWM} is the high level of PWM dimming signal.

Series Resistor Selection On EN Pin

The calculation of series resistor should consider the Input high threshold (V_{IH}) and the internal pull-low current $(I_{IH EN})$ of EN. The minimum value of V_{IH} is 2V, and the maximum of I_{IH} EN is 10µA. The resistor could be calculated by the equation below. Ex. V_{EN} =3.3V, the R_{EN} must be smaller than 130k Ω .

$$R_{EN} < \frac{V_{EN} - 2V}{10\mu A}$$

Where V_{EN} is the high level of EN signal.

Inductor Selection

The value of the inductance, L, can be approximated by the following equation, where the transition is from Discontinuous Conduction Mode (DCM) to Continuous Conduction Mode (CCM) :

$$L = \frac{D \times (1 - D)^2 \times V_{OUT}}{2 \times f_{OSC} \times I_{OUT}}$$

The duty cycle, D, can be calculated as the following equation :

$$\mathsf{D} = \frac{\mathsf{V}_{\mathsf{OUT}} - \mathsf{V}_{\mathsf{IN}}}{\mathsf{V}_{\mathsf{OUT}}}$$

where V_{OUT} is the maximum output voltage, V_{IN} is the minimum input voltage, f_{OSC} is the operating frequency, and IOUT is the sum of current from all LED strings. The Boost converter operates in DCM over the entire input voltage range when the inductor value is less than this value, L. With an inductance greater than L, the converter operates in CCM at the minimum input voltage and may be discontinuous at higher voltages.

The inductor must be selected with a saturated current rating that is greater than the peak current as provided by the following equation :

$$I_{\text{PEAK}} = \frac{V_{\text{OUT}} \times I_{\text{OUT}}}{\eta \times V_{\text{IN}}} + \frac{V_{\text{IN}} \times D \times T_{\text{OSC}}}{2 \times L}$$

where η is the efficiency of the power converter.

Diode Selection

Schottky diodes are recommended for most applications because of their fast recovery time and low forward voltage. Power dissipation, reverse voltage rating, and pulsating peak current are important parameters for consideration when making a Schottky diode selection. Make sure that the diode's peak current rating exceeds I_{PEAK} and reverse voltage rating exceeds the maximum output voltage.

Supply Voltage Capacitor Selection

The RT8549L equips a built-in LDO linear regulator to provide the internal logic of IC power. The output of LDO is the pin out of VDC. The VDC pin is recommended to connect at least a 1μ F/25V bypass capacitor. The bypass capacitor should be X5R or X7R type to assure the bypass capacitance remains stable in over-voltage or overtemperature.

Input Capacitor Selection

The ceramic capacitors are recommended for input capacitor applications. Low ESR will effectively reduce the input voltage ripple caused by switching operation. Two $10\mu F/25V$ capacitors are sufficient for most applications. Nevertheless, this value can be decreased for lower output current requirement. Another consideration is the voltage rating of the input capacitor must be greater than the maximum input voltage.

Output Capacitor Selection

Output ripple voltage is an important index for estimating the performance. This portion consists of two parts, one is the ESR voltage of output capacitor, another part is formed by charging and discharging process of output capacitor. Refer to Figure 3, evaluate ΔV_{OUT1} by ideal energy equalization. According to the definition of Q, the Q value can be calculated as the following equation :

$$\begin{split} & \mathsf{Q} = \frac{1}{2} \times \left[\left(\mathsf{I}_{\mathsf{IN}} + \frac{1}{2} \Delta \mathsf{I}_{\mathsf{L}} - \mathsf{I}_{\mathsf{OUT}} \right) + \left(\mathsf{I}_{\mathsf{IN}} - \frac{1}{2} \Delta \mathsf{I}_{\mathsf{L}} - \mathsf{I}_{\mathsf{OUT}} \right) \right] \\ & \times \frac{\mathsf{V}_{\mathsf{IN}}}{\mathsf{V}_{\mathsf{OUT}}} \times \frac{1}{\mathsf{f}_{\mathsf{OSC}}} = \mathsf{C}_{\mathsf{OUT}} \times \Delta \mathsf{V}_{\mathsf{OUT1}} \end{split}$$

where f_{OSC} is the switching frequency, and ΔI_L is the inductor ripple current. Move C_{OUT} to the left side to estimate the value of ΔV_{OUT1} as the following equation :

$$\Delta V_{OUT1} = \frac{D \times I_{OUT}}{\eta \times C_{OUT} \times f_{OSC}}$$

Then, take the ESR into consideration, the ESR voltage can be determined as the following equation :

$$\Delta V_{\text{ESR}} = \left(\frac{I_{\text{OUT}}}{1-D} + \frac{V_{\text{IN}} \times D \times T_{\text{OSC}}}{2L}\right) \times R_{\text{ESR}}$$

Finally, the total output ripple ΔV_{OUT} is combined from the ΔV_{OUT1} and ΔV_{ESR} . In the general application, the output capacitor is recommended to use a 47µF/63V electrolytic capacitor.

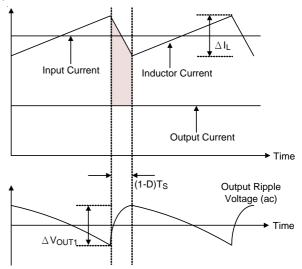
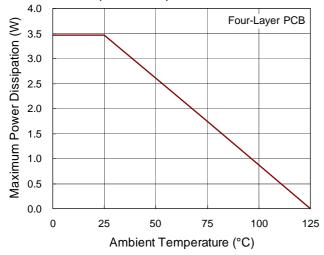


Figure 3. The Output Ripple Voltage Without the Contribution of ESR

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

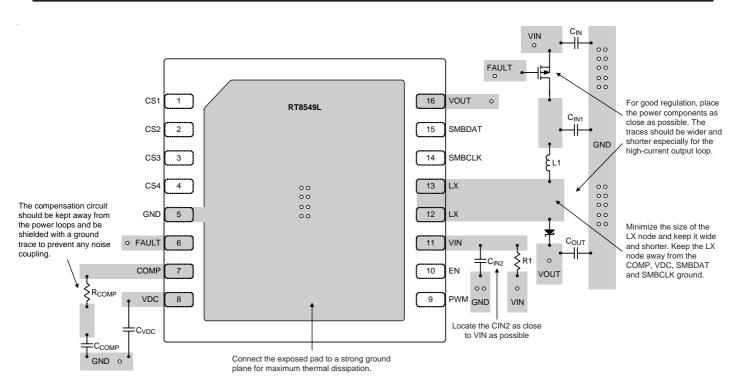

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WDFN-16L 5x5, the thermal resistance, θ_{JA} , is 28.8°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25$ °C can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (28.8^{\circ}C/W) = 3.47W \text{ for a}$ WDFN-16L 5x5 package.

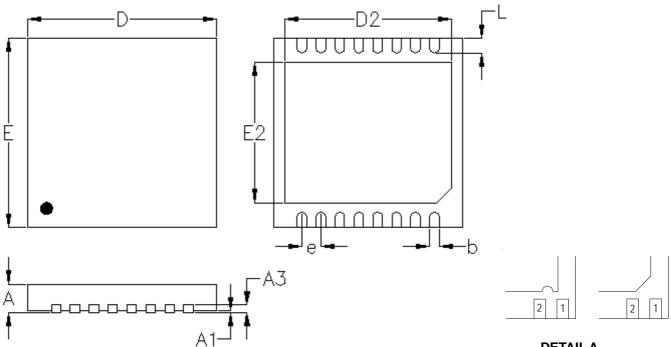
The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 4 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.


Figure 4. Derating Curve of Maximum Power Dissipation

Layout Consideration

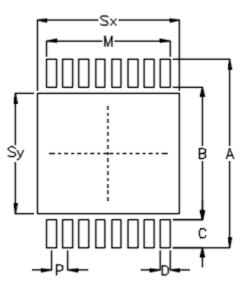
PCB layout is very important for designing switching power converter circuits. The following layout guides should be strictly followed for best performance of the RT8549L.

- The power components, L1, D1, C_{IN1} and C_{OUT} must be placed as close as possible to reduce power loop. The PCB trace between power components must be as short and wide as possible.
- Place L1 and D1 as close as possible to LX pin. The trace should be as short and wide as possible. Keep the LX node away from the COMP, VDC, SMBDAT and SMBCLK ground.
- The compensation circuit (R_{COMP}, C_{COMP}) should be kept away from the power loops and should be shielded with a ground trace to prevent any noise coupling. Place the compensation components as close as possible to the COMP pin.
- The exposed pad of the chip should be connected to a large ground plane for thermal consideration.



Outline Dimension

DETAIL A Pin #1 ID and Tie Bar Mark Options


Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions I	n Millimeters	Dimensions In Inches					
Symbol	Min.	Max.	Min.	Max.				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.200	0.300	0.008	0.012				
D	4.900	5.100	0.193	0.201				
D2	4.350	4.450	0.171	0.175				
E	4.900	5.100	0.193	0.201				
E2	3.650	3.750	0.144	0.148				
е	0.5	00	0.020					
L	0.350	0.450	0.014	0.018				

W-Type 16L DFN 5x5 Package

Footprint Information

Package	Number of			Tolerance							
Fackage	Pin	Р	А	В	С	D	Sx	Sy	М	TOIEIance	
V/W/U/XDFN5x5-16	16	0.50	5.80	4.10	0.85	0.30	4.40	3.70	3.80	±0.05	

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.