

Adafruit Sharp Memory Display Breakout

Created by Bill Earl

https://learn.adafruit.com/adafruit-sharp-memory-display-breakout

Last updated on 2022-12-01 02:00:23 PM EST

©Adafruit Industries Page 1 of 32

5

6

9

10

11

14

15

17

22

22

24

29

29

Table of Contents

Overview

Assembly

• Installing the Header:

• Position the header

• Position the display

• Solder!

• Remove the Protective Film

Arduino Wiring

• Wiring to the Arduino:

Arduino Programming

• Download the Libraries

• Run the Example Code

• Programming GFX Graphics

2.7" Display Bad Apple Example

• Uploading the Video

• Additional Libraries

• Open in Arduino

CircuitPython displayio Setup

• CircuitPython Installation

• Libraries

CircuitPython displayio Usage

• Initialization

• Drawing

Circuitpython displayio Example

• Installing Project Code

Python Wiring

Python Setup

• Python Installation of SharpMemoryDisplay Library

• DejaVu TTF Font

• Pillow Library

Python Usage

• Initialization

• Example Code

CircuitPython Docs

Downloads and Links

• Libraries:

• Files

• Library Reference

• Schematic & Fabrication Print 2.7" Display

©Adafruit Industries Page 2 of 32

• Schematic & Fabrication Print 1.3" Display

©Adafruit Industries Page 3 of 32

©Adafruit Industries Page 4 of 32

Overview

The 1.3" SHARP Memory LCD display is a cross between an eInk (e-paper) display and

an LCD. It has the ultra-low power usage of eInk and the fast-refresh rates of an LCD.

This model has a matt silver background, and pixels show up as little mirrors for a

silver-reflective display, a really beautiful and unique look. It does not have a

backlight, but it is daylight readable. For dark/night reading you may need to

illuminate the LCD area with external LEDs.

The display is 3V powered and 3V logic, so we placed it on a fully assembled & tested

breakout board with a 3V regulator and level shifting circuitry. The display slots into a

ZIF socket on board and we use a piece of double-sided tape to adhere it onto one

side. There are four mounting holes so you can easily attach it to a box.

The display is 'write only' which means that it only needs 3 pins to send data. The

downside of a write-only display is that the entire memory must be buffered by the

microcontroller driver.

If you have one of the older 96x96 pixel versions, then 96x96 bits = 1,152 bytes. On

an Arduino Uno/Leonardo that's half the RAM available and so it might not be

possible to run this display with other RAM-heavy libraries like SD interfacing.

If you have one of the newer 168x144 pixel versions, then 168x144 bits = 3,024

bytes. That won't fit on an Arduino Uno or Leonardo! You must use a chip with more

RAM like a Metro or Feather M0 or ESP8266.

©Adafruit Industries Page 5 of 32

The Sharp Memory Display breakout board ships with optional headers for use in a

breadboard.

Assembly

The display and support circuitry come pre-assembled and fully tested on a handy

breakout board. For use in a breadboard, you will want to install the included 0.1"

header strip:

©Adafruit Industries Page 6 of 32

Installing the Header:

Position the header

Trim the header to length if necessary and

place it long pins down in your

breadboard.

Position the display

Place the Sharp Memory Display over the

pins on the breadboard.

©Adafruit Industries Page 7 of 32

https://learn.adafruit.com//assets/9073
https://learn.adafruit.com//assets/9073
https://learn.adafruit.com//assets/9085
https://learn.adafruit.com//assets/9085
https://learn.adafruit.com//assets/9074
https://learn.adafruit.com//assets/9074

Solder!

Solder each pin to assure good electrical

conductivity.

©Adafruit Industries Page 8 of 32

https://learn.adafruit.com//assets/9075
https://learn.adafruit.com//assets/9075
https://learn.adafruit.com//assets/9076
https://learn.adafruit.com//assets/9076
https://learn.adafruit.com//assets/9077
https://learn.adafruit.com//assets/9077

Remove the Protective Film

After soldering is complete. Gently peel

the film from the display.

Arduino Wiring

Wiring to the Arduino:

This display can be driven with only 3 pins. Any pins can be used. The wiring we show

here uses pins 10, 11 and 13 for compatibility with the library example code.

Microcontroller GND to LCD Gnd

Microcontroller 5V to LCD Vin

Microcontroller D13 to LCD Clk

Microcontroller D11 to LCD DI

Microcontroller D10 to LCD CS

Download Fritzing Diagram

The other wires are optional, and connect directly to the Memory Display for more

advanced uses. Check the raw display datasheet (in the downloads area) for details.

For the 144x168 Sharp Memory Display, you will need a microprocessor with

more memory than the Uno such as the Arduino Mega, Metro M0 or Metro M4

©Adafruit Industries Page 9 of 32

https://learn.adafruit.com//assets/9078
https://learn.adafruit.com//assets/9078
https://learn.adafruit.com//assets/83335
https://learn.adafruit.com//assets/83335
https://cdn-learn.adafruit.com/assets/assets/000/083/343/original/arduino-wiring.fzz?1572560338

Arduino Programming

Download the Libraries

To use the Sharp Memory Display with your Arduino, you will need to download and

install 2 libraries:

Sharp Memory Display Library ()

Adafruit GFX Library ()

Adafruit BusIO Library ()

For details on how to install libraries, see this guide: All About Arduino Libraries ().

Run the Example Code

Once your libraries are installed, open the Arduino IDE and select:

File->Examples->Adafruit_SHARP_Memory_Display->sharpmemtest

Upload the example code to your Arduino and you should see the test graphics

drawn on the screen.

Programming GFX Graphics

The Sharp Memory Display is part of the growing family of Adafruit graphical displays

that use the Adafruit GFX Library. This library lets you use a common set of graphical

drawing functions on a whole variety of displays including.LED matrices, OLEDs, TFT

LCDs, eInk and the Sharp Memory Display!

For more details about programming with GFX, see our Adafruit GFX Graphics Library

Guide ().

•

•

•

©Adafruit Industries Page 10 of 32

https://github.com/adafruit/Adafruit_SHARP_Memory_Display
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit_BusIO
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

2.7" Display Bad Apple Example

The Bad Apple video example was written for the 2.7" Sharp Display. This is a port of

ESP32_BadApple () which as the name implies, was plays the Bad Apple video and

was written to run on the ESP32 and OLED displays. You'll want to start by

downloading and unzipping the example files first:

Download Example Files

Uploading the Video

It's easiest to start with uploading the video file first. The video data is kept in flash

memory, so the easiest way to put it in there is to install CircuitPython briefly just to

copy the file over before uploading the Arduino code. Fortunately, Installing

CircuitPython is really easy. If you are not sure how, you can check out our Welcome

to CircuitPython guide ().

For this example, you'll want to preferably use a Metro M4 or Feather M4 so that

it will be plenty fast.

©Adafruit Industries Page 11 of 32

https://github.com/hackffm/ESP32_BadApple
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/SHARP_BadApple
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

After it finished uploading, and with the

Circuit Playground board connected over

USB, it should appear on your computer as

a flash drive called CIRCUITPY.

You can find the file inside the data folder

named video.hs.

Go ahead and copy the video file over to

the root of your CIRCUITPY drive. That's it,

it's time to move over to arduino.

Additional Libraries

We'll assume you've already installed the libraries mentioned on the Arduino

Programming page. There are a few additional libraries required to run the example:

©Adafruit Industries Page 12 of 32

https://learn.adafruit.com//assets/94216
https://learn.adafruit.com//assets/94216
https://learn.adafruit.com//assets/94217
https://learn.adafruit.com//assets/94217
https://learn.adafruit.com//assets/94218
https://learn.adafruit.com//assets/94218

Adafruit Zero DMA

This is used by the Graphics Library if you choose to use DMA

Adafruit SPIFlash

This will let you read/write to the onboard FLASH memory with super-fast QSPI

support

SdFat (Adafruit Fork)

The Adafruit fork of the really excellent SD card library that gives a lot more capability

than the default SD library

Open in Arduino

Go ahead and open up the SHARP_BadApple.ino file up in Arduino. There's only one

small change we may need to make. Go ahead and locate the following line of code:

#define SHARP_SS A5

©Adafruit Industries Page 13 of 32

If your Chip Select line is connected differently, you may to change the value of

SHARP_SS . That's the only change. After that, go ahead and upload it to your board.

You should see an animation similar to the following:

CircuitPython displayio Setup

CircuitPython Installation

First make sure you are running the latest version of Adafruit CircuitPython () for your

board, and that sharpdisplay is in its supported modules list.

Libraries

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

Download latest Library Bundle

This feature is very new and not currently available in the latest public build, so

you will need to go to https://circuitpython.org/, select your board, and find the

"Absolute Newest" image.

©Adafruit Industries Page 14 of 32

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://circuitpython.org/
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://circuitpython.org/libraries

There are many libraries in the bundle that enhance displayio, but the two we need

for the example code are

adafruit_display_text - to show text and

labels

adafruit_bitmap_font - to load fonts from

CIRCUITPY for better typography than the

"built in" font

Before continuing make sure your board's

lib folder or root filesystem has the

adafruit_display_text and

adafruit_bitmap_font folders copied over.

CircuitPython displayio Usage

It's easy to use the Sharp Memory Display with CircuitPython and the Adafruit

CircuitPython SharpMemoryDisplay () module. This module allows you to easily write

Python code to control the display.

Check the support matrix () for your board to see whether it supports the sharpdispl

ay module.

To demonstrate the usage, we'll initialize the library and the Python REPL will be

displayed on it. You can type these lines in directly or put them in code.py.

Initialization

First, import required modules and release the existing display (if any).

import board

import displayio

import framebufferio

import sharpdisplay

Release the existing display, if any

displayio.release_displays()

This feature is very new and not currently available in the latest public build, so

you will need to go to https://circuitpython.org/, select your board, and find the

"Absolute Newest" image.

©Adafruit Industries Page 15 of 32

https://learn.adafruit.com//assets/94068
https://learn.adafruit.com//assets/94068
https://circuitpython.org/
https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html

Next, create the display using the appropriate SPI bus, Chip Select (CS) Pin, width,

and height. The baudrate can also be set, though the default value of 2MHz should

work with all Sharp Memory Displays. Make sure to use the right pin names as you

have wired up to your board! If you use a nonstandard SPI bus, construct it with busi

o.SPI instead of using board.SPI() .

bus = board.SPI()

chip_select_pin = board.D6

Select JUST ONE of the following lines:

For the 400x240 display (can only be operated at 2MHz)

framebuffer = sharpdisplay.SharpMemoryFramebuffer(bus, chip_select_pin, 400, 240)

For the 144x168 display (can be operated at up to 8MHz)

#framebuffer = sharpdisplay.SharpMemoryFramebuffer(bus, chip_select_pin, width=144,

height=168, baudrate=8000000)

The last thing to do before you can use displayio routines is to connect the

framebuffer as a display:

display = framebufferio.FramebufferDisplay(framebuffer)

If you are doing this interactively at the Python REPL, you will now see the REPL

mirrored onto the Sharp Memory Display.

Drawing

The SharpMemoryDisplay module supports all the methods for drawing that DisplayIO

supports: Text, bitmaps, shapes, etc. For instance, if you wanted to display a label

using the built-in terminal font, you would use something like the following:

©Adafruit Industries Page 16 of 32

from adafruit_display_text.label import Label

from terminalio import FONT

label = Label(font=FONT, text="BLACK\nLIVES\nMATTER", x=120, y=120, scale=4,

line_spacing=1.2)

display.show(label)

We cover CircuitPython displayio more in depth in its own guide, so now that you've

got the display going, learn more about CircuitPython Display Support Using

displayio () to get the most out of it.

Circuitpython displayio Example

This example displays the names of just some of the Black people injured or killed by

police brutality in the United States. For more information about Adafruit's response

to racial injustice, visit our dedicated Black Lives Matter () page.

This particular example is designed to use the Adafruit 2.7" SHARP Memory Display.

Installing Project Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory CircuitPython_Shar

©Adafruit Industries Page 17 of 32

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://www.adafruit.com/blacklivesmatter

pDisplay_Displayio/ and then click on the directory that matches the version of

CircuitPython you're using and copy the contents of that directory to your CIRCUITPY

drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2020 Limor Fried for Adafruit Industries

SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries

#

SPDX-License-Identifier: MIT

import random

import time

import adafruit_display_text.label

from adafruit_bitmap_font import bitmap_font

import board

import displayio

import framebufferio

import sharpdisplay

When making several changes, this ensures they aren't shown partially

completed (except for the time to actually update the display)

class BatchDisplayUpdate:

 def __init__(self, the_display):

 self.the_display = the_display

 self.auto_refresh = the_display.auto_refresh

 def __enter__(self):

 self.the_display.auto_refresh = False

 def __exit__(self, unused1, unused2, unused3):

 self.the_display.refresh()

 self.the_display.auto_refresh = self.auto_refresh

https://saytheirnames.com/

real people, not just #hashtags

names = [

 "Rodney King",

 "Abner Louima",

 "Amadou Diallo",

 "Sean Bell",

 "Oscar Grant",

 "Eric Garner",

 "Michael Brown",

 "Laquan McDonald",

 "Freddie Gray",

 "Antwon Rose Jr",

 "Ahmaud Arbery",

 "Breonna Taylor",

 "John Crawford III",

©Adafruit Industries Page 18 of 32

 "Ezell Ford",

 "Dante Parker",

 "Michelle Cusseaux",

 "Laquan Mcdonald",

 "George Mann",

 "Tanisha Anderson",

 "Akai Gurley",

 "Tamir Rice",

 "Rumain Brisbon",

 "Jerame Reid",

 "Matthew Ajibade",

 "Frank Smart",

 "Nastasha McKenna",

 "Tony Robinson",

 "Anthony Hill",

 "Mya Hall",

 "Phillip White",

 "Eric Harris",

 "Walter Scott",

 "William Chapman II",

 "Alexia Christian",

 "Brendon Glenn",

 "Victor Maunel Larosa",

 "Jonathan Sanders",

 "Freddie Blue",

 "Joseph Mann",

 "Salvado Ellswood",

 "Sanda Bland",

 "Albert Joseph Davis",

 "Darrius Stewart",

 "Billy Ray Davis",

 "Samuel Dubose",

 "Michael Sabbie",

 "Brian Keith Day",

 "Christian Taylor",

 "Troy Robinson",

 "Asshams Pharoah Manley",

 "Felix Kumi",

 "Keith Harrison Mcleod",

 "Junior Prosper",

 "Lamontez Jones",

 "Paterson Brown",

 "Dominic Hutchinson",

 "Anthony Ashford",

 "Alonzo Smith",

 "Tyree Crawford",

 "India Kager",

 "La'vante Biggs",

 "Michael Lee Marshall",

 "Jamar Clark",

 "Richard Perkins",

 "Nathaniel Harris Pickett",

 "Benni Lee Tignor",

 "Miguel Espinal",

 "Michael Noel",

 "Kevin Matthews",

 "Bettie Jones",

 "Quintonio Legrier",

 "Keith Childress Jr",

 "Janet Wilson",

 "Randy Nelson",

 "Antronie Scott",

 "Wendell Celestine",

 "David Joseph",

 "Calin Roquemore",

 "Dyzhawn Perkins",

 "Christoper Davis",

 "Marco Loud",

 "Peter Gaines",

©Adafruit Industries Page 19 of 32

 "Torry Robison",

 "Darius Robinson",

 "Kevin Hicks",

 "Mary Truxillo",

 "Demarcus Semer",

 "Willie Tillman",

 "Terrill Thomas",

 "Sylville Smith",

 "Sean Reed",

 "Alton Streling",

 "Philando Castile",

 "Terence Crutcher",

 "Paul O'Neal",

 "Alteria Woods",

 "Jordan Edwards",

 "Aaron Bailey",

 "Ronell Foster",

 "Stephon Clark",

 "Antwon Rose II",

 "Botham Jean",

 "Pamela Turner",

 "Dominique Clayton",

 "Atatiana Jefferson",

 "Christopher Whitfield",

 "Christopher Mccovey",

 "Eric Reason",

 "Michael Lorenzo Dean",

 "Tony McDade",

 "David McAtee",

 "George Floyd",

]

A function to choose "k" different items from the "population" list

We'll use it to select the names to display

def sample(population, k):

 population = population[:]

 for _ in range(k):

 j = random.randint(0, len(population)-1)

 yield population[j]

 population[j] = population[-1]

 population.pop()

Initialize the display, cleaning up after a display from the previous run

if necessary

displayio.release_displays()

bus = board.SPI()

framebuffer = sharpdisplay.SharpMemoryFramebuffer(bus, board.D6, 400, 240)

display = framebufferio.FramebufferDisplay(framebuffer, auto_refresh = True)

Load our font

font = bitmap_font.load_font("/GothamBlack-54.bdf")

Create a Group for the BLM text

blm_group = displayio.Group()

display.show(blm_group)

Create a 3 line set of text for BLM

blm_font = [None, None, None]

for line in range(3):

 label = adafruit_display_text.label.Label(font, color=0xFFFFFF)

 label.anchor_point = (0, 0)

 label.anchored_position = (8, line*84+8)

 blm_font[line] = label

 blm_group.append(label)

Get something on the display as soon as possible by loading

specific glyphs.

font.load_glyphs(b"BLACK")

blm_font[0].text = "BLACK"

©Adafruit Industries Page 20 of 32

font.load_glyphs(b"ISEV")

blm_font[1].text = "LIVES"

font.load_glyphs(b"RMT")

blm_font[2].text = "MATTER"

font.load_glyphs(b"' DFGHJNOPQUWXYZabcdefghijklmnopqrstuvwxyz")

Create a 2 line set of font text for names

names_font = [None, None]

for line in range(2):

 label = adafruit_display_text.label.Label(font, color=0xFFFFFF)

 # Center each line horizontally, position vertically

 label.anchor_point = (0.5, 0)

 label.anchored_position = (200, line*84+42)

 names_font[line] = label

Create a Group for the name text

name_group = displayio.Group()

for line in names_font:

 name_group.append(line)

Repeatedly show the BLM slogan and then 5 names.

while True:

 display.show(blm_group)

 # Show the BLM slogan

 with BatchDisplayUpdate(display):

 blm_font[1].color = blm_font[2].color = 0 # hide lines 2&3

 time.sleep(1)

 with BatchDisplayUpdate(display):

 blm_font[1].color = 0xFFFFFF # show middle line

 blm_font[0].color = blm_font[2].color = 0 # hide lines 1&3

 time.sleep(1)

 with BatchDisplayUpdate(display):

 blm_font[2].color = 0xFFFFFF # show last line

 blm_font[0].color = blm_font[1].color = 0 # hide lines 1&2

 time.sleep(1)

 with BatchDisplayUpdate(display):

 for line in blm_font:

 line.color = 0xFFFFFF

 time.sleep(2)

 # Show 5 names

 display.show(name_group)

 for name in sample(names, 5):

 print(name)

 lines = name.split(" ")

 with BatchDisplayUpdate(display):

 for i in range(2):

 names_font[i].text = lines[i]

 # Due to a bug in adafruit_display_text, we need to reestablish

 # the position of the labels when updating them.

 # Once https://github.com/adafruit/

Adafruit_CircuitPython_Display_Text/issues/82

 # has been resolved, this code will no longer be necessary (but

 # will not be harmful either)

 names_font[i].anchor_point = (0.5, 0)

 names_font[i].anchored_position = (200, i*84+42)

 time.sleep(5)

 names_font[0].text = names_font[1].text = ""

©Adafruit Industries Page 21 of 32

Python Wiring

It's easy to use the Sharp Memory Display with Python and the Adafruit CircuitPython

SharpMemoryDisplay () module. This module allows you to easily write Python code

to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your Sharp

Display.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Connect the display as shown below to your Raspberry Pi.

Raspberry Pi GND to LCD Gnd

Raspberry Pi 3.3V to LCD Vin

Raspberry Pi SCK (GPIO 11) to LCD Clk

Raspberry Pi MOSI (GPIO 10) to LCD DI

Raspberry Pi GPIO 6 to LCD CS

Download Fritzing Diagram

Python Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

©Adafruit Industries Page 22 of 32

https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/83341
https://learn.adafruit.com//assets/83341
https://cdn-learn.adafruit.com/assets/assets/000/083/342/original/python-wiring.fzz?1572560302
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Python Installation of SharpMemoryDisplay Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-sharpmemorydisplay

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

•

•

•

•

©Adafruit Industries Page 23 of 32

Python Usage

It's easy to use the Sharp Memory Display with CircuitPython and the Adafruit

CircuitPython SharpMemoryDisplay () module. This module allows you to easily write

Python code to control the display.

You can use this display with a computer that has GPIO and Python thanks to

Adafruit_Blinka, our CircuitPython-for-Python compatibility library ().

To demonstrate the usage, we'll initialize the library and use Python code to control

the display from the board's Python REPL.

Since we are running full CPython on our Linux/computer, we can take advantage of

the powerful Pillow image drawing library to handle text, shapes, graphics, etc. Pillow

is a gold standard in image and graphics handling, you can read about all it can do

here ().

Initialization

First need to initialize the SPI bus. To do that, run the following commands:

import board

import busio

import digitalio

import adafruit_sharpmemorydisplay

spi = busio.SPI(board.SCK, MOSI=board.MOSI)

scs = digitalio.DigitalInOut(board.D6) # inverted chip select

display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 144, 168)

The last three parameters to the initializer are the pins connected to the display's CS

line, width and height in that order. Again make sure to use the right pin names as

you have wired up to your board!

Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This demo will fill the screen with white, draw a black box on top

and then print Hello World! in the center of the display

This example is for use on (Linux) computers that are using CPython with

©Adafruit Industries Page 24 of 32

https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

"""

import board

import busio

import digitalio

from PIL import Image, ImageDraw, ImageFont

import adafruit_sharpmemorydisplay

Colors

BLACK = 0

WHITE = 255

Parameters to Change

BORDER = 5

FONTSIZE = 10

spi = busio.SPI(board.SCK, MOSI=board.MOSI)

scs = digitalio.DigitalInOut(board.D6) # inverted chip select

display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 96, 96)

display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 144, 168)

Clear display.

display.fill(1)

display.show()

Create blank image for drawing.

Make sure to create image with mode '1' for 1-bit color.

image = Image.new("1", (display.width, display.height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black background

draw.rectangle((0, 0, display.width, display.height), outline=BLACK, fill=BLACK)

Draw a smaller inner rectangle

draw.rectangle(

 (BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),

 outline=WHITE,

 fill=WHITE,

)

Load a TTF font.

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",

FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

 (display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),

 text,

 font=font,

 fill=BLACK,

)

Display image

display.image(image)

display.show()

Let's take a look at the sections of code one by one. We start by importing the board

so that we can access the pin definitions, busio so we can initialize SPI,

©Adafruit Industries Page 25 of 32

digitalio , several PIL modules for Image Drawing, and the

adafruit_sharpmemorydisplay driver.

import board

import busio

import digitalio

from PIL import Image, ImageDraw, ImageFont

import adafruit_sharpmemorydisplay

To make it easy to keep track of which numbers represent which colors, we define

some colors near the top.

Colors

BLACK = 0

WHITE = 255

In order to make it easy to change display sizes, we'll define a few variables in one

spot here. We have the border size and font size, which we will explain a little further

below.

BORDER = 5

FONTSIZE = 10

Next we set the SPI object to the board's SPI with busio.SPI() . We also define

some Pins that will be used for the display and initialize the display. See the

initialization section above for more details. By default, the initializer for the 144x168

display is uncommented because that's what we currently have in the store. If you had

the 96x96 pixel version of the screen, you could use the other initializer instead.

spi = busio.SPI(board.SCK, MOSI=board.MOSI)

dc = digitalio.DigitalInOut(board.D6) # data/command

cs = digitalio.DigitalInOut(board.CE0) # Chip select

reset = digitalio.DigitalInOut(board.D5) # reset

#display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 96, 96)

display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 144, 168)

Next we clear the display in case it was initialized with any random artifact data.

Clear display.

display.fill(0)

display.show()

Next, we need to initialize PIL to create a blank image to draw on. Think of it as a

virtual canvas. Since this is a monochrome display, we set it up for 1-bit color, meaning

a pixel is either white or black. We can make use of the display's width and height

properties as well.

©Adafruit Industries Page 26 of 32

Create blank image for drawing.

Make sure to create image with mode '1' for 1-bit color.

image = Image.new('1', (display.width, display.height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Now we start the actual drawing. Here we are telling it we want to draw a rectangle

from (0,0) , which is the upper left, to the full width and height of the display. We

want it both filled in and having an outline of black, so we pass BLACK for both

values.

Draw a black background

draw.rectangle((0, 0, display.width, display.height), outline=BLACK, fill=BLACK)

If we ran the code now, it would still show a blank display because we haven't told

python to use our virtual canvas yet. You can skip to the end if you would like to see

how to do that. This is what our canvas currently looks like in memory.

Next we will create a smaller white rectangle. The easiest way to do this is to draw

another rectangle a little smaller than the full screen with no fill or outline and place it

in a specific location. In this case, we will create a rectangle that is 5 pixels smaller on

each side. This is where the BORDER variable comes into use. It makes calculating

the size of the second rectangle much easier. We want the starting coordinate, which

consists of the first two parameters, to be our BORDER value. Then for the next two

parameters, which are our ending coordinates, we want to subtract our border value

from the width and height. Also, because this is a zero-based coordinate system, we

©Adafruit Industries Page 27 of 32

also need to subtract 1 from each number. Again, we set the fill and outline to

WHITE .

Draw a smaller inner rectangle

draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER

- 1),

 outline=WHITE, fill=WHITE)

Here's what our virtual canvas looks like in memory.

Now drawing text with PIL is pretty straightforward. First we start by setting the font to

the default system text. After that we define our text and get the size of the text.

We're grabbing the size that it would render at so that we can calculate the center

position. Finally, we take the font size and screen size to calculate the position we

want to draw the text at and it appears in the center of the screen.

Load a TTF font.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',

FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2),

 text, font=font, fill=BLACK)

Finally, we need to display our virtual canvas to the display and we do that with 2

commands. First we set the image to the screen, then we tell it to show the image.

©Adafruit Industries Page 28 of 32

Display image

display.image(image)

display.show()

Here's what the final output should look like.

CircuitPython Docs

CircuitPython Docs ()

Downloads and Links

Libraries:

Sharp Memory Display Library ()

Adafruit GFX Library ()

Files

Datasheet for the LS013B4DN04 LCD Module ()

Datasheet for the LS027B7DH01 LCD Module ()

Don't forget you MUST call display.image(image) and display.show() to actually

display the graphics. The display takes a while to draw so cluster all your drawing

functions into the buffer (fast) and then display them once to the display (slow)

•

•

•

•

©Adafruit Industries Page 29 of 32

https://circuitpython.readthedocs.io/projects/sharpmemorydisplay/en/latest/
https://github.com/adafruit/Adafruit_SHARP_Memory_Display
https://github.com/adafruit/Adafruit-GFX-Library
http://www.adafruit.com/datasheets/LS013B4DN04-3V_FPC-204284.pdf
https://cdn-learn.adafruit.com/assets/assets/000/094/215/original/LS027B7DH01_Rev_Jun_2010.pdf?1597872422

Fritzing object in Adafruit Fritzing Library ()

EagleCAD PCB files on GitHub ()

Library Reference

Adafruit GFX Library ()

LS013B7DH05 Datasheet

Schematic & Fabrication Print 2.7" Display

•

•

•

©Adafruit Industries Page 30 of 32

https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Sharp-Memory-Display
http://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://cdn-learn.adafruit.com/assets/assets/000/068/725/original/LS013B7DH05.pdf?1546719395

Schematic & Fabrication Print 1.3" Display

©Adafruit Industries Page 31 of 32

©Adafruit Industries Page 32 of 32

	Adafruit Sharp Memory Display Breakout
	Table of Contents
	Overview
	Assembly
	Arduino Wiring
	Arduino Programming
	2.7" Display Bad Apple Example
	CircuitPython displayio Setup
	CircuitPython displayio Usage
	Circuitpython displayio Example
	Python Wiring
	Python Setup
	Python Usage
	CircuitPython Docs
	Downloads and Links

	Overview
	Assembly
	Installing the Header:
	Position the header
	Position the display
	Solder!
	Remove the Protective Film

	Arduino Wiring
	Wiring to the Arduino:
	Arduino Programming
	Download the Libraries
	Run the Example Code
	Programming GFX Graphics

	2.7" Display Bad Apple Example
	Uploading the Video
	Additional Libraries
	Adafruit Zero DMA
	Adafruit SPIFlash
	SdFat (Adafruit Fork)

	Open in Arduino

	CircuitPython displayio Setup
	CircuitPython Installation
	Libraries

	CircuitPython displayio Usage
	Initialization
	Drawing
	Circuitpython displayio Example
	Installing Project Code

	Python Wiring
	Python Setup
	Python Installation of SharpMemoryDisplay Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Initialization
	Example Code
	CircuitPython Docs
	Downloads and Links
	Libraries:
	Files
	Library Reference

	Schematic & Fabrication Print 2.7" Display
	Schematic & Fabrication Print 1.3" Display

