Your innovation.
Accelerated.

Media+ ${ }^{\text {TM }}$ UWB (NNO1-107)

Media+ ${ }^{\text {TM }}$ UWB (NN01-107)

Ignion specializes in enabling effective mobile communications. Using Ignion technology, we design and manufacture optimized antennas to make your wireless devices more competitive. Our mission is to help our clients develop innovative products and accelerate their time to market through our expertise in antenna design, testing and manufacturing.

Ignion products are protected by Ignion patents.

All information contained within this document is property of Ignion and is subject to change without prior notice. Information is provided "as is" and without warranties. It is prohibited to copy or reproduce this information without prior approval.

Ignion is an ISO 9001:2015 certified company. All our antennas are lead-free and RoHS compliant.

INDEX OF CHAPTERS

1. ANTENNA DESCRIPTION 5
2. QUICK REFERENCE GUIDE 5
3. ELECTRICAL PERFORMANCE 6
4. MECHANICAL CHARACTERISTICS 10
5. ASSEMBLY PROCESS 11
6. PACKAGING 14
7. PRODUCT CHANGE NOTIFICATION 15

TABLE OF CONTENTS

1. ANTENNA DESCRIPTION 5
2. QUICK REFERENCE GUIDE 5
3. ELECTRICAL PERFORMANCE 6
3.1. EVALUATION BOARD 6
3.2. MATCHING NETWORK 6
3.3. VSWR AND EFFICIENCY 7
3.4. RADIATION PATTERNS (3.1-5 GHz), GAIN AND EFFICIENCY 8
3.5. CAPABILITIES AND MEASUREMENT SYSTEMS 9
4. MECHANICAL CHARACTERISTICS 10
4.1. DIMENSIONS AND TOLERANCES 10
4.2. SPECIFICATIONS FOR THE INK 10
4.3. ANTENNA FOOTPRINT 11
5. ASSEMBLY PROCESS 11
6. PACKAGING 14
7. PRODUCT CHANGE NOTIFICATION 15

1. ANTENNA DESCRIPTION

The Media+ ${ }^{T M}$ UWB chip antenna is a high-performance, cost-effective antenna designed to meet the requirements of reference designers, OEMs and ODMs considering the Multiband OFDM alliance (MBOA) recommendations for Ultra Wideband devices.

The electrical and mechanical characteristics of this small SMD monopole chip antenna ensures design flexibility and optimal performance in devices such as, but not limited to:

- Wireless USB (W-USB) dongles
- W-USB enabled devices: digital cameras and video recorders, PC Peripherals, beamers, Mobile Phones, etc...

BOTTOM

Material: The Media+ ${ }^{\text {TM }}$ UWB antenna is built on glass epoxy substrate.

APPLICATIONS

- UWB Devices
- Modules
- Handsets

BENEFITS

- High efficiency
- Cost-effective
- Small size
- Easy to use (pick and place)

2. QUICK REFERENCE GUIDE

Technical Features	$\mathbf{3 . 1} \mathbf{- 5} \mathbf{~ G H z}$
Average Efficiency	84.0%
Peak Gain	3.5 dBi
VSWR	$<2: 1$
Radiation Pattern	Omnidirectional
Polarization	Linear
Flatness	2 dB gain variation
Weight (approx.)	0.2 g
Temperature	-40 to $+1255^{\circ} \mathrm{C}$
Impedance	50Ω
Dimensions (L \mathbf{x} W $\mathbf{x H}$)	$10.0 \mathrm{~mm} \times 10.0 \mathrm{~mm} \times 0.8 \mathrm{~mm}$

Table 1 - Technical Features. Measures from the evaluation board. See Figure 1.
Please contact support@ignion.io if you require additional information on antenna integration or optimization on your PCB.

3. ELECTRICAL PERFORMANCE
 3.1. EVALUATION BOARD

The configuration used in testing the Media+ ${ }^{\mathrm{TM}}$ UWB antenna is displayed in Figure 1.

Measure	$\mathbf{m m}$
A	24.0
B	20.0
C	37.0
D	10.0
E	12.0
F	14.0
G	4.0

Tolerance: $\pm 0.2 \mathrm{~mm}$
G: Distance between the Media+ ${ }^{\text {TM }}$ UWB antenna booster and the ground plane.
Material: The evaluation board is built on FR4 substrate. Thickness is 0.8 mm .
Clearance Area: $20 \mathrm{~mm} \times 14 \mathrm{~mm}$ (BxF)

Figure 1 - NN01-107. Media $+{ }^{\text {TM }}$ UWB Evaluation Board.

3.2. MATCHING NETWORK

The specs of a Ignion standard antenna are measured in their evaluation board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended placing pads compatible with 0402 and 0603 SMD components for a PI matching network as close as possible to the antenna feeding point. Do it in the ground plane area, not in the clearance area. This is a degree of freedom to tune the antenna once the design is finished and taking into account all elements of the system (batteries, displays, covers, etc.).

Please notice that different devices with different ground planes and different components nearby the Media+ ${ }^{\text {TM }}$ UWB chip antenna may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components). If you need assistance to design your matching network beyond this application note, please contact support@ignion.io, or try our free-of-charge ${ }^{1}$ NN Wireless FastTrack design service, you will get your chip antenna design including a custom matching network for your device in $24 h^{1}$. Other related to NN's range of R\&D services is available at: https://www.ignion.io/rdservices/

[^0]
3.3. VSWR AND EFFICIENCY

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 2 - VSWR and Efficiency (\%) vs. Frequency (GHz).

3.4. RADIATION PATTERNS (3.1-5 GHz), GAIN AND EFFICIENCY

Orientation: Antenna in Plane ZY	$\theta=90^{\circ}(3.1 \mathrm{GHz}, 4 \mathrm{GHz}, 5 \mathrm{GHz})$ Plane $X Y$
$\varphi=90{ }^{\circ}(3.1 \mathrm{GHz}, 4 \mathrm{GHz}, 5 \mathrm{GHz})$ Plane YZ	$\varphi=00(3.1 \mathrm{GHz}, 4 \mathrm{GHz}, 5 \mathrm{GHz})$ Plane XZ

Gain	Peak Gain	3.5 dBi
	Average Gain across the band	2.6 dBi
	Gain Flatness (horizontal plane)	$<2 \mathrm{~dB}$
Efficiency	Peak Efficiency	92.0%
	Average Efficiency across the band	84.0%
	Efficiency Range across the band (min, max)	$77.0-92.0 \%$

Table 2 - Antenna Gain and Efficiency within the 3.1 to 5 GHz bandwidth. Measures made in the evaluation board and in the Satimo STARGATE 32 anechoic chamber.

3.5. CAPABILITIES AND MEASUREMENT SYSTEMS

Ignion specializes in the design and manufacture of optimized antennas for wireless applications, and with the provision of RF expertise to a wide range of clients. We offer turn-key antenna products and antenna integration support to minimize your time requirements and maximize return on investment throughout the product development process. We also provide our clients with the opportunity to leverage our in-house testing and measurement facilities to obtain accurate results quickly and efficiently.

Anechoic chambers and full equipped in-house lab

4. MECHANICAL CHARACTERISTICS

4.1. DIMENSIONS AND TOLERANCES

SIDE

BOTTOM

Note: all antenna pads (feed point and mounting pads) have the same dimensions.
The black circle located on the top side of the antenna indicates the feed pad.

Measure	$\mathbf{m m}$	Measure	$\mathbf{m m}$	
\mathbf{A}	10.0 ± 0.2	\mathbf{D}	5.0 ± 0.2	
\mathbf{B}	0.8 ± 0.2	E	1.5 ± 0.1	
\mathbf{C}	1.5 ± 0.1			

Figure 3 - Antenna Dimensions and Tolerances.

The Media+ ${ }^{\text {TM }}$ UWB chip antenna is compliant with the restriction of the use of hazardous substances (RoHS). The RoHS certificate can be downloaded from www.ignion.io.

4.2. SPECIFICATIONS FOR THE INK

Next figure shows the correct colors of the antenna:

34R 40G
34B

245R 245 G 245B

60R 62G
59B

255R 255G
255B

95R 96G 92B

255R 255G 233B

Acceptable color range

4.3. ANTENNA FOOTPRINT

This antenna footprint applies for the reference evaluation board described on page 6 of this User Manual.

Figure 4 - Antenna Footprint Details.
Other PCB form factors and configurations may require a different feeding configuration, feeding line dimensions and clearance areas. If you require support for the integration of the antenna in your design, please contact support@ignion.io.

5. ASSEMBLY PROCESS

Figure 5 shows the back and front view of the Media+ ${ }^{T M}$ UWB antenna, and indicates the location of the feeding point and the mounting pads:

Feed Pad (1): the black circle on the top of the antenna indicates the position of the feed pad in the bottom. Align the feed point with the feeding line on the PCB. See Figure 1.

Figure 5 - Pads of the Ignion Media $+{ }^{\text {TM }}$ UWB chip antenna.

As a surface mount device (SMD), this antenna is compatible with industry standard soldering processes. The basic assembly procedure for this antenna is as follows:

1. Apply a solder paste to the pads of the PCB. Place the antenna on the board.
2. Perform a reflow process according to the temperature profile detailed in Table 3, Figure 7 on page 13.
3. After soldering the antenna to the circuit board, perform a cleaning process to remove any residual flux. Ignion recommends conducting a visual inspection after the cleaning process to verify that all reflux has been removed.

The drawing below shows the soldering details obtained after a correct assembly process:

Figure 6 - Soldering Details.
NOTE(*): Solder paste thickness after the assembly process will depend on the thickness of the soldering stencil mask. A stencil thickness equal to or larger than 127 microns ($\mathbf{5}$ mils) is required.
The Media ${ }^{\text {TM }}$ UWB antenna should be assembled following either $\mathrm{Sn}-\mathrm{Pb}$ or Pb -free assembly processes. According to the Standard IPC/JEDEC J-STD-020C, the temperature profile suggested is as follows:

Phase	Profile features	Pb-Free Assembly (SnAgCu)
RAMP-UP	Avg. Ramp-up Rate (Tsmax to Tp)	$3{ }^{\circ} \mathrm{C} /$ second (max.)
PREHEAT	- Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (tsmin to tsmax)	$\begin{aligned} & 150{ }^{\circ} \mathrm{C} \\ & 200{ }^{\circ} \mathrm{C} \\ & 60-180 \text { seconds } \end{aligned}$
REFLOW	- Temperature (TL) - Total Time above TL (tL)	$\begin{aligned} & 217{ }^{\circ} \mathrm{C} \\ & 60-150 \text { seconds } \end{aligned}$
PEAK	- Temperature (Tp) - Time (tp)	$\begin{aligned} & 260{ }^{\circ} \mathrm{C} \\ & 20-40 \text { seconds } \end{aligned}$
RAMP-DOWN	Rate	$6{ }^{\circ} \mathrm{C} /$ second max
Time from $25{ }^{\circ} \mathrm{C}$ to Peak Temperature		8 minutes max

Table 3 - Recommended soldering temperatures.

Next graphic shows temperature profile (grey zone) for the antenna assembly process in reflow ovens.

Figure 7 - Temperature profile.

6. PACKAGING

The Media $+^{\text {TM }}$ UWB chip antenna is available in tape and reel packaging.

Figure 8 - Tape Dimensions and Tolerances.

Figure 9 - Image of the tape.

Measure	$\mathbf{m m}$
\mathbf{A} max	330.0 ± 1.0
\mathbf{G}	17.5 ± 0.1
$\mathbf{t} \max$	21.5 ± 0.2

Reel Capacity: 2500 antennas

Figure 10 - Reel Dimensions and Capacity.

7. PRODUCT CHANGE NOTIFICATION

This document is property of Ignion,
 Not to disclose or copy without prior written consent

PCN Number: NN19100015
Notification Date: October 07 ${ }^{\text {th }}, 2019$

Part Number identification:

Part Number changes, it will be applied in all the document of the company (User Manual, Data Sheet, ...)

Previous Part Number
FR05-S1-P-0-107

New Part Number
NN01-107

Reason for change:

Specs (electrical/mechanical)
User Manual/Data Sheet
Material/Composition
Processing/Manufacturing
Manufacturing location
Quality/Reliability
Logistics
Other: Logo, product color and Part
Number

Change description

1.- Part Number: From FR05-S1-P-0-107 FRACTUS to NN01-107 Ignion in the User Manual
2.- Color: From blue/white to white/black

Comments:

1.- Electrical and Mechanical specs remain the same
2.- Footprint in the PCB to solder the chip antenna remains the same

Identification method

1.- In the chip antennas, the changes are in the color, in the logo and in the part number

User Manual	X	Available from:
		March 2020
Samples	X	Available from:
		June 2020

Ignion Contact:

	Sales	Supply Chain
Name:	Josep Portabella	Albert Vidal
Email:	iosep.portabella@ignion.io	albert.vidal@ignion.io

ignion

Contact:

support@ignion.io
+34 935660710

Barcelona

Av. Alcalde Barnils, 64-68 Modul C, 3a pl. Sant Cugat del Vallés 08174 Barcelona
Spain

Shanghai

Shanghai Bund Centre
18/F Bund Centre, 222 Yan'an Road East,
Huangpu District
Shanghai, 200002
China

New Dehli

New Delhi, Red Fort Capital Parsvnath Towers
Bhai Veer Singh Marg, Gole Market,
New Delhi, 110001
India

Tampa

8875 Hidden River Parkway
Suite 300
Tampa, FL 33637
USA

[^0]: ${ }^{1}$ See terms and conditions for a free NN Wireless Fast-Track service in 24 h at: https://www.ignion.io/fast-track-project/

