ASNT6163-KMC
DC-32GHz Analog Signal Selector 1-of-2

- DC to $32 G H z$ broadband operation
- Two differential CML-type input ports and one differential CML-type output port
- Temperature-stabilized differential gain of approximately $0 d B$
- $1 d B$ compression point of $0 d B m$
- DC-to-1GHz broadband channel selector port
- Optional two-channel mixer/adder setting available
- Low jitter and limited temperature variation over industrial temperature range
- Single +3.6 V or -3.6 V power supply
- Power consumption: 700 mW
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFP 24-pin package

DESCRIPTION

Fig. 1. Functional Block Diagram

The temperature stable ASNT6163-KMC analog signal selector 1-of-2 is intended for use in high-speed systems. The IC shown in Fig. 1 can deliver one of two different broad-band analog differential signals $\mathrm{d} 0 \mathrm{p} / \mathrm{d} 0 \mathrm{n}$ and $\mathrm{d} 1 \mathrm{p} / \mathrm{d} 1 \mathrm{n}$ to its differential output qp/qn with a nominal gain of $0 d B$. It can also be used as a two-channel analog mixer/adder of signals $d 0 p / d 0 n$ and $d 1 p / d 1 n$. Two low-speed analog current controls lef1c and lef3c are available for bandwidth and peaking adjustments.

The active input selection is performed through the external high-speed single-ended port sel that can be referenced to either VCC or vee. When the low-speed single-ended control port on2 is set to vcc, it switches the circuit into mixer/adder mode with both inputs active at the same time.

The part's I/O's support the CML logic interface with on chip 500hm termination to vcc and may be used differentially, AC/DC coupled, single-ended, or in any combination (also see POWER SUPPLY CONFIGURATION). In the DC-coupling mode, the input signal's common mode voltage should comply with the specifications shown in ELECTRICAL CHARACTERISTICS. In the AC-coupling mode, the input termination provides the required common mode voltage automatically.

POWER SUPPLY CONFIGURATION

The part can operate with either negative supply ($\mathrm{VCC}=0.0 \mathrm{~V}=$ ground and vee $=-3.6 \mathrm{~V}$), or positive supply ($\mathrm{VCC}=+3.6 \mathrm{~V}$ and vee $=0.0 \mathrm{~V}=$ ground). In case of the positive supply, all I/Os need AC termination when connected to any devices with 50 Ohm termination to ground.

Different PCB layouts will be needed for each different power supply combination.
All the characteristics detailed below assume vcc $=0.0 \mathrm{~V}=$ ground.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed VCC).

Table 1. Absolute Maximum Ratings

Parameter	Min	Max	Units
Supply Voltage (vee)		-4	V
Power supply current		320	mA
Input Voltage	vcc-1.2	vcc-0.6	V
RF Input Voltage Swing (SE)		0.6	V
Case Temperature		+90	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40	+100	${ }^{\circ} \mathrm{C}$
Operational Humidity	10	98	$\%$
Storage Humidity	10	98	$\%$

TERMINAL FUNCTION

TERMINAL			DESCRIPTION	
Name	No.	Type		
High-speed Signals				
d0p	15	$\begin{gathered} \text { CML - } \\ \text { type } \end{gathered}$	Differential high speed data inputs with internal SE 50Ohm termination to VCC	
d0n	17			
d1p	3	$\begin{gathered} \text { CML- } \\ \text { type } \\ \hline \end{gathered}$		
d1n	5			
qp	11	$\begin{gathered} \text { CML- } \\ \text { type } \end{gathered}$	Differential high speed data outputs with internal SE 50Ohm termination to vcc. Require external SE 50Ohm termination to vcc	
qn	9			
Control Signals				
sel	21		High-speed high-i q default: low, d0	input (active: high, d1 is connected to cted to q ;)
ief1c	23	Analog Control	Analog current control with internal 64KOhm termination to vCC and 72 KOhm termination to vee.	
ief3c	7			
on2	19	CMOS	Low-speed high-impedance input (active: high, mixer/adder mode; default: low, 1-of-2 selector mode;)	
Supply and Termination Voltages				
Name		Description		Pin Number
vcc		Positive power supply rail		$2,4,6,8,10,12,14,16,18,20,22,24$
vee		Negative power supply rail		1,13

ELECTRICAL CHARACTERISTICS

PACKAGE INFORMATION

The chip die is housed in a custom 24-pin CQFP package shown in Fig. 2. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the vcc plain, which is ground for a negative supply, or power for a positive supply.

Fig. 2. CQFP 24-Pin Package Drawing (All Dimensions in mm)

The part's identification label is ASNT6163-KMC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

REVISION HISTORY

Revision	Date	
0.2 .2	$05-2020$	Updated Package Information
0.1 .2	$08-2019$	Corrected bandwidth
0.0 .2	$08-2019$	Updated Letterhead
0.0 .1	$01-2019$	Preliminary release

