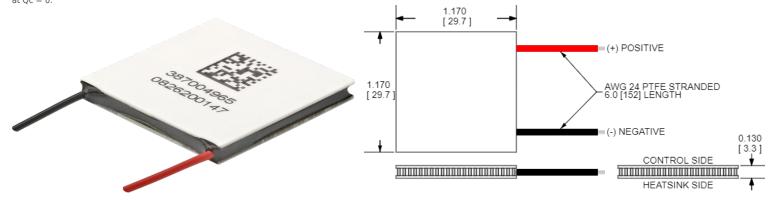


HiTemp ETX Series Thermoelectric Cooler

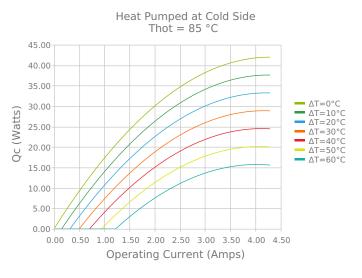

The ETX4-12-F1-3030-10-W6 high temperature, high-performance thermoelectric cooler uses Laird Thermal Systems' enhanced thermoelectric module construction preventing performance degrading diffusion, which is common in standard grade thermoelectric coolers operating in high temperature environments exceeding 80 °C. It has a maximum Qc of 38.8 Watts when $\Delta T = 0$ and a maximum ΔT of 83.2 °C at Qc = 0.

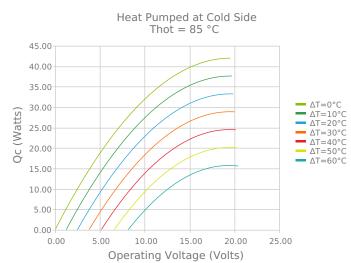
Features

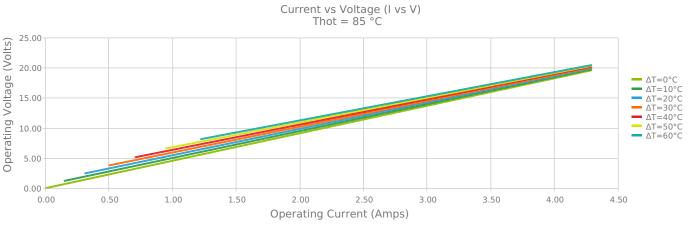
- High-temperature operation
- Reliable solid-state
- No sound or vibration · Environmentally-friendly
- RoHS-compliant

Applications

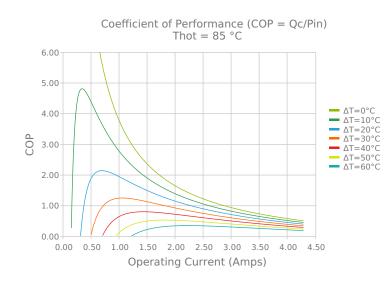
- Peltier Cooling for Refrigerated Centrifuges
- Peltier Cooling for Machine Vision
- Thermoelectric Cooling for CMOS Sensors
- Cooling Solutions for Autonomous Systems • Peltier Cooling for Digital Light Processors
- · Heating and Cooling for Liquid Chromatography Systems
- Thermoelectric Cooling for Security Cameras

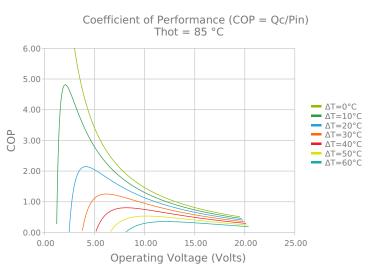


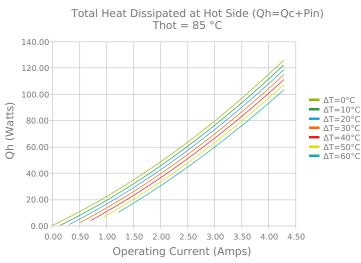

CERAMIC MATERIAL: Al2O3 SOLDER CONSTRUCTION: 232°C, SbSn

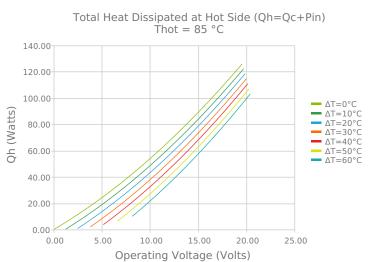

INCHES [MM]

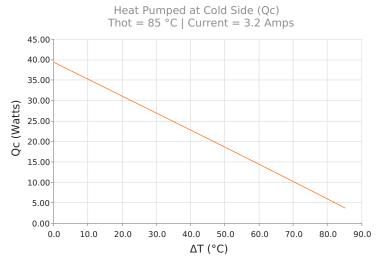
ELECTRICAL AND THERMAL PERFORMANCE

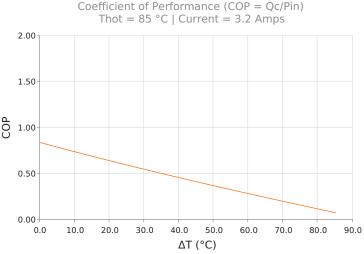

For maximum performance, be sure to orient the CONTROL side of the TEC against the application to be managed and the HEATSINK side against the heat sink or other heat rejection method. The CONTROL side is always opposite the side with lead attachments. Lead attachment is a passive heat loss and less impactful if located on the side that attaches to the heat exchanger.











SPECIFICATIONS*

Hot Side Temperature

 $Qcmax (\Delta T = 0)$

 $\Delta T max (Qc = 0)$

Imax (I @ \Darmax)

Vmax (V @ Δ Tmax)

Module Resistance

Max Operating Temperature

Weight

50.0 °C	85.0 °C	110.0 °C
38.8 Watts	42.0 Watts	43.3 Watts
83.2°C	95.3°C	102.0°C
4.0 Amps	3.8 Amps	3.7 Amps
16.6 Volts	19.1 Volts	20.8 Volts
3.91 Ohms	4.56 Ohms	4.99 Ohms
150 °C		
9.0 gram(s)		

FINISHING OPTIONS

Suffix	Thickness	Flatness / Parallelism	Hot Face	Cold Face	Lead Length
10	3.302 ±0.254 mm 0.130 ± 0.0100 in	0.051 mm / 0.051 mm 0.002 in / 0.002 in	Lapped	Metallized	152.4 mm 6.00 in

SEALING OPTIONS

Suffix	Sealant	Color	Temp Range	Description
	None			No sealing specified

NOTES

- 1. Max operating temperature: 150°C
- 2. Do not exceed Imax or Vmax when operating module
- 3. Reference assembly guidelines for recommended installation

Any information furnished by Laird and its agents, whether in specifications, data sheets, product catalogues or otherwise, is believed to be (but is not warranted as being) accurate and reliable, is provided for information only and does not form part of any contract with Laird. All specifications are subject to change without notice. Laird assumes no responsibility and disclaims all liability for losses or damages resulting from use of or reliance on this information. All Laird products are sold subject to the Laird Terms and Conditions of sale (including Laird's limited warranty) in effect from time to time, a copy of which will be furnished upon request.

© Copyright 2019-2022 Laird Thermal Systems, Inc. All rights reserved. Laird ™, the Laird Ring Logo, and Laird Thermal Systems ™ are trademarks or registered trademarks of Laird Limited or its subsidiaries.

Revision: 00 Date: 06-01-2022 Print Date: 06-13-2022

^{*} Specifications reflect thermoelectric coefficients updated March 2020