

DATA SHEET

SV4E-I3C

I3C Test and Debug Module

E SERIES

TABLE OF CONTENTS

Table of Contents

ntroduction
Overview
Key Features
Key Benefits
Block Diagram4
Typical Application4
Typical Waveforms
hysical Connections
QTH / QSH Connector
QSH I3C Signal Connections
QSH GPIO Connections
QSH Programmable Power Supplies9
Addtional Documentation
Ordering Information
pecifications

Introduction

OVERVIEW

The SV4E-I3C is an all-inclusive solution for I3C-based device interface development, test, and programming. Containing three instruments in one, this tool can act as a protocol exerciser for testing and debugging I3C slave or master devices. It can also act as a complete protocol analyzer with fine-resolution timing analysis and a full suite of conformance test capability. Finally, it contains a deep vector memory, which allows it to be used as a general purpose I3C device programmer. All three categories of instrumentation features are accessible simultaneously and in real-time using the award winning Introspect ESP Software.

KEY FEATURES

- **Device roles:** able to configure multiple devices with different roles (main master, secondary master, slave) concurrently
- Device instances: integrates 4 parallel devices, each with its own independent protocol stack
- Timing resolution: 5 ns resolution on delay generation (exerciser) and time-stamp (analyzer) logic
- **Protocol analysis:** easily trigger on CCC's and patterns for private and device to device communication, IBI, and hot-join

KEY BENEFITS

- **Complete characterization:** simultaneous protocol exercising and analysis enables complete characterization, debug and test of individual sensor/controller devices or entire multi-device systems
- Flexible: solution featuring I3C and I3C Basic protocol support with real-time voltage and timing controls
- Automated: scripting capability ideal for debug tasks, verification and full-fledged production screening of devices and system boards

BLOCK DIAGRAM

Figure 1: Block diagram of the SV4E-I3C module (blue) and detail of one of four internal I3C devices (orange).

TYPICAL APPLICATION

INTRODUCTION

TYPICAL WAVEFORMS

Physical Connections

The physical connections on the SV4E-I3C module are as labelled below in Figure 4. The SV4E-I3C has a USB port that allows the SV4E to communicate directly with a PC through a USB mini cable connection on the left side of the module. Power is provided to the SV4E-I3C module with a 12 V DC supply through a barrel connector on the left side of the module. The recommended DC power supply, included with the SV4E-I3C module, is produced by CUI Incorporated, Part # ETSA120500U.

The SV4E-I3C ships with an I3C interface adapter board as shown in Figure 5. This adapter board connects to the QTH connector on the right side of the module and provides a 0.1" header for access to I3C SCL and SDA signals. The full pinout of the QTH connector is provided in the following section.

Figure 5: The SV4E-I3C interface adapter board which connects to the QTH connector on the SV4E-I3C

QTH / QSH CONNECTOR

The SV4E-I3C module has an 80 pin, high speed connector containing all connections for I3C SCL and SDA lines, programmable power supplies PV1 to PV6 and all user defined GPIOs. The connector has part number Samtec QTH-040-01-L-D-DP-A.

https://www.samtec.com/products/qth-dp

This part is designed to mate to a high speed connector on the provided interface adapter board (or customer adapter board) using the following part number: Samtec QSH-040-01-L-D-DP-A

https://www.samtec.com/products/qsh-dp

QSH I3C SIGNAL CONNECTIONS

The pinout for the I3C signals on the QSH connector is given in Table 1.

FOOTPRINT	PINS	SIGNAL NAME	DESCRIPTION
QSH-040-01-L-D-DP-A (QSH top view, placed	1	SCL1	Port 1 SCL
on bottom side of adapter board)	13	SDA1	Port 1 SDA
	49	SCL2	Port 2 SCL
	61	SDA2	Port 2 SDA
	5	SCL3	Port 3 SCL
	17	SDA3	Port 3 SDA
	53	SCL4	Port 4 SCL
79 80	65	SDA4	Port 4 SDA

TABLE 1: SV4E I3C SIGNAL PINS

QSH GPIO CONNECTIONS

The pinout for the general purpose I/Os (GPIOs) on the QSH connector is given in Table 2. Customers should consult with Introspect Technology if they intend to use these GPIO pins. All pins below operate with 2.5 V LVCMOS logic levels.

FOOTPRINT	PINS	NAME	1/0	DESCRIPTION
	2	GPIO_0	I/O	User configurable, input or output
	4	GPIO_1	I/O	User configurable, input or output
(QSH top view, placed	6	GPIO_2	I/O	User configurable, input or output
on bottom side of adapter board)	8	GPIO_3	I/O	User configurable, input or output
1 2	10	GPIO_4	I/O	User configurable, input or output
	12	GPIO_5	I/O	User configurable, input or output
a cc	14	GPIO_6	I/O	User configurable, input or output
	16	GPIO_7	I/O	User configurable, input or output
	18	GPIO_8	I/O	User configurable, input or output
	20	GPIO_9	I/O	User configurable, input or output
	22	GPIO_10	I/O	User configurable, input or output
	24	GPIO_11	I/O	User configurable, input or output
	26	GPIO_12	I/O	User configurable, input or output
	28	GPIO_13	I/O	User configurable, input or output
	30	GPIO_14	I/O	User configurable, input or output
	32	GPIO_15	I/O	User configurable, input or output

TABLE 2: SV4E GPIO PINS

QSH PROGRAMMABLE POWER SUPPLIES

The QSH connector provides access to six programmable power supplies which may be used on a customer adapter board to power the DUT. The programmable range of these supplies is between 1.0V to 5.0V, in steps of 1 mV, with a maximum supply current of 3.0 A for each supply.

The pinout for these supplies is specified in Table 3. If used, please ensure that appropriate decoupling is applied for these supplies. Please see Introspect reference designs for decoupling examples.

FOOTPRINT	PINS	NAME	DESCRIPTION	
QSH-040-01-L-D-DP-A (QSH top view, placed on bottom side of	34	PV1_OUT	Programmable Power Supply # 1 Output Pin	
	36	PV1_OUT	Programmable Power Supply # 1 Output Pin	
adapter board)	38	PV2_OUT	Programmable Power Supply # 2 Output Pin	
	40	PV2_OUT	Programmable Power Supply # 2 Output Pin	
	42	PV3_OUT	Programmable Power Supply # 3 Output Pin	
	44	PV3_OUT	Programmable Power Supply # 3 Output Pin	
	45	PV4_OUT	Programmable Power Supply # 4 Output Pin	
	47	PV4_OUT	Programmable Power Supply # 4 Output Pin	
	73	PV5_OUT	Programmable Power Supply # 5 Output Pin	
	75	PV5_OUT	Programmable Power Supply # 5 Output Pin	
	77	PV6_OUT	Programmable Power Supply # 6 Output Pin	
79 80	79	PV6_OUT	Programmable Power Supply # 6 Output Pin	

TABLE 3: SV4E PROGRAMMABLE POWER SUPPLIES

ADDITIONAL DOCUMENTATION

SV4E-I3C Quick Start Manual

• EN-G035E-E-20100 - SV4E-I3C Quick Start Manual

SV4E-I3C Adapter Board Design Files.zip

• Includes reference schematic, layout and CAD files for an example device interface board. Please contact Introspect Technology.

ORDERING INFORMATION

TABLE 4: ITEM NUMBERS FOR THE SV4E-I3C

PART NUMBER	NAME	KEY DIFFERENTIATORS
6604	SV4E-I3C Test and Debug Module	Characterization, debug and test of I3C devices. Includes PC software license (perpetual) and interface adapter board.
5410	I3C Slave Device CTS Application	

Specifications

TABLE 5: GENERAL SPECIFICATIONS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS	
Protocol				
Physical Layer Interface	MIPI I3C		MIPI I3C version 1.0 and 1.1 MIPI I3C Basic	
I3C Master Device Support	Yes			
I3C Slave Device Support	Yes			
Ports				
Number of I3C device instances	4		Each fully configurable as master, secondary master or slave.	
Number of GPIO pins	16			
Programmable On-Board Power Supplies	6			
Connections to PC for Introspect ESP Software Control	1		USB 2.0	
Physical Line Characteristics				
Internal SCL and SDA pull-up resistance value	25	kOhm	For compliant open-drain operation at 400 kHz, an external pull-up resistor must also be placed on the bus within the customer application	
Pin Capacitance	2.5	рF	Typical	
Memory				
On-board memory	1	GByte		
Power Consumption				
DC Input Voltage	12	V	DC Input Voltage	
Maximum Current Draw	TBD	А	Maximum Current Draw	

TABLE 6: I3C MODES AND OPERATIONS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Additional supported features			
	CCC		
	Direct RW		
Operations	Private RW		
	Hot-Join		
	IBI		
Signaling Mades	SDR		
Signaling Modes	HDR-DDR		
Mixed Bus Mode Support	Yes		
50 ns Spike Filter	Yes		Automatic for mixed bus mode
			ACK/NACK behavior
Error Injection	Yes		Missing T bit
			Setup time and hold time violations
Protocol Analysis	Yes		
Offline Capability / Tri-State Mode	Yes		Tri-state mode for SCL/SDA pins

TABLE 7: 13C BUS SPECIFICATIONS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS	
Programmed operating voltage				
Minimum Programmed VDD voltage	1200	mV	VDD sets SCL and SDA high voltage	
Maximum Programmed VDD voltage	2020	mV	VDD sets SCL and SDA high voltage Extendable to 5.0 V	
VDD resolution	1	mV		
Operating Frequencies				
Minimum Open Drain Frequency	0.25	MHz		
Maximum Open Drain Frequency	5.0	MHz		
Maximum Push-Pull Frequency	0.25	MHz		
Maximum Push-Pull Frequency	12.9	MHz		
Minimum Legacy I2C Frequency	0.002	MHz	Interoperates with legacy I2C devices	
Minimum Legacy I2C Frequency	1	MHz	Interoperates with legacy I2C devices	
SCL / SDA Timing				
SDA Setup Time Range	1.0	UI	Specification for timing from SCL falling edge to the following SDA edge. See Figure 6 on following page	
Independent SDA Setup Timing	Yes		SDA setup set independently for I3C Open Drain, I3C Push Pull, and I2C operation	
Skew Injection Resolution	5	ns	Per SCL or SDA wire	
Duty Cycle Timing Resolution	5	ns		
Analyzer Timing Resolution	5	ns		

TABLE 8: PROGRAMMABLE POWER SUPPLY SPECIFICATION

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
General Performance			
Number of Programmable Power Supplies	6		Each supply programmed independently.
Minimum Voltage	1000	mV	
Maximum Voltage	5000	mV	
Voltage Programming Resolution	1	mV	
Maximum Output Current	3.0	А	
Current Measurement Capability	Yes		Independent measurement provided on each programmable supply.
Minimum Current Measurement	50	mA	
Current Measurement Resolution	4	mA	

TABLE 9: GPIO CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Voltage			
Voltage Level	2.5	V	All GPIOs operate at 2.5 V LVCMOS
V _{IL} minimum	-0.3	V	
V _{IL} maximum	0.7	V	
V _{IH} minimum	1.7	V	
V _{IH} maximum	3.3	V	
V _{OL} maximum	0.4	V	
V _{он} minimum	2.0	V	

Revision Number	History	Date
1.0	Document Release	June 8, 2020

The information in this document is subject to change without notice and should not be construed as a commitment by Introspect Technology. While reasonable precautions have been taken, Introspect Technology assumes no responsibility for any errors that may appear in this document.

© Introspect Technology, 2020 Published in Canada on June 8, 2020 EN-D016E-E-20160

INTROSPECT.CA