Description

The F2970 is a high reliability, low insertion loss, 75Ω absorptive SP2T RF switch designed for a multitude of cable systems and other RF applications. This device covers a broad frequency range from 5 MHz to 3000 MHz . In addition to providing low insertion loss, the F2970 also delivers excellent linearity and isolation performance while providing a 75Ω termination for the unselected port.

The F2970 uses a single positive supply voltage and supports 3.3 V logic.

Competitive Advantage

The F2970 provides broadband RF performance to support the CATV market along with high power handling, and high isolation.

- Low Insertion Loss
- High Isolation
- Excellent Linearity
- Extended Temperature: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

Typical Applications

- CATV/Broadband Applications
\checkmark Headend
\checkmark Fiber/HFC Distribution Nodes
\checkmark Distribution Amplifiers
\checkmark Switch Matrix
\checkmark DTV Tuner Input Select
\checkmark DVR/PVR/Set-top box
- CATV Test Equipment

Features

- Low Insertion Loss:

$$
\checkmark 0.32 \text { dB @ } 1200 \mathrm{MHz}
$$

- High Isolation:
$\checkmark 70 \mathrm{~dB}$ @ 1200 MHz (RF1/RF2 to RFC)
- Excellent Linearity:
\checkmark IIP3 of 63 dBm
- Selectable Logic Control
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- $4 \mathrm{~mm} \times 4 \mathrm{~mm} 20$-pin LQFN package

Block Diagram

Figure 1. Block Diagram

Pin Assignments

Figure 2. Pin Assignments for 4 mm x 4 mm x 0.75 mm 20-pin LQFN, NCG20 - Top View

Pin Descriptions

Table 1. Pin Descriptions

Number	Name	Description
$\begin{gathered} 1,2,4,5,6, \\ 7,9,10,11, \\ 12,14,15, \\ 18,19 \\ \hline \end{gathered}$	GND	Ground these pins as close to the device as possible.
3	RF1	RF1 Port. Matched to 75 ohms. If this pin is not $0 V$ DC, then an external coupling capacitor must be used.
8	RFC	RFC Port. Matched to 75 ohms. If this pin is not $0 V \mathrm{DC}$, then an external coupling capacitor must be used.
13	RF2	RF2 Port. Matched to 75 ohms. If this pin is not $0 V \mathrm{DC}$, then an external coupling capacitor must be used.
16	C2	Control pin to set switch state. See Table 8.
17	C1	Control pin to set switch state. See Table 8.
20	VDD	Power Supply. Bypass to GND with capacitors shown in the Typical Application Circuit as close as possible to pin.
	EP	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

Renesns

Absolute Maximum Ratings

Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter		Symbol	Minimum	Maximum	Units
V_{DD} to GND		$V_{D D}$	-0.3	4.0	V
C1, C2 to GND		$V_{\text {logic }}$	-0.3	$\begin{gathered} \text { Lower of } \\ \left(V_{D D}+0.3,3.9\right) \end{gathered}$	V
RF1, RF2, RFC to GND		$\mathrm{V}_{\text {RF }}$	-0.3	+0.3	V
Maximum Input CW Power [a]	RF1 or RF2 as an input (Connected to RFC)	$\mathrm{P}_{\text {Abs }}$		30	dBm
	RFC as an input (Connected to RF1 or RF2)			30	
	RF1 or RF2 as an input (Terminated states)			26	
Maximum Junction Temperature		$\mathrm{T}_{\text {max }}$		140	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		Tst	-65	150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)		TEAD		260	${ }^{\circ} \mathrm{C}$
ElectroStatic Discharge - HBM (JEDEC/ESDA JS-001-2012)		$V_{\text {ESOHBM }}$		$\begin{gathered} 2000 \\ \text { (Class 2) } \\ \hline \end{gathered}$	V
ElectroStatic Discharge - CDM (JEDEC 22-C101F)		$V_{\text {Escocom }}$		$\begin{gathered} 1500 \\ \text { (Class C3) } \end{gathered}$	V

a. Levels based on: $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, 5 \mathrm{MHz} \leq \mathrm{F}_{\mathrm{RF}} \leq 3000 \mathrm{MHz}, \mathrm{Tc}=105^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \mathrm{ohms}$.

Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Parameter	Symbol	Condition		Min	Typ	Max	Units
Supply Voltage	$V_{D D}$			2.7		3.6	V
Operating Temp Range	$\mathrm{T}_{\text {case }}$	Exposed Paddle Temperature		-40		+105	${ }^{\circ} \mathrm{C}$
RF Frequency Range	$\mathrm{F}_{\text {RF }}$			5		3000	MHz
RF Continuous Input CW Power (Non-Switched) ${ }^{[a]}$	Prf	RFC connected to RF1 or RF2	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$			27	dBm
			$\mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$			27	
		RF1 / RF2 Input, Terminated State	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$			24	
			$\mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$			21	
RF Continuous Input Power (RF Hot Switching CW) ${ }^{\text {a] }}$	Prfsw	RFC Input switching between RF1 and RF2	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$			21	dBm
			$\mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$			21	
		RF1 or RF2 as input, switched between RFC and Term.	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$			17	
			$\mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$			17	
RF1 Port Impedance	ZRF1	Single ended			75		Ω
RF2 Port Impedance	$\mathrm{Z}_{\text {RF2 }}$	Single ended			75		
RFC Port Impedance	$\mathrm{Z}_{\text {RFC }}$	Single ended			75		

a. Levels based on: $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, 5 \mathrm{MHz} \leq \mathrm{F}_{\mathrm{RF}} \leq 3000 \mathrm{MHz}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75$ ohms. See Figure 3 for power handling derating vs RF frequency.

Figure 3. Maximum RF Input Operating Power vs. RF Frequency

Renesns

Electrical Characteristics

Table 4. Electrical Characteristics

Typical Application Circuit: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{RF}}=1200 \mathrm{MHz}$, Driven Port $=\mathrm{RF} 1$ or RF 2 , Input Power $=0 \mathrm{dBm}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75$ ohms. PCB board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units
Logic Input High Threshold [c]	V_{H}	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	$0.7 \times V_{D D}{ }^{\text {[a] }}$		$V_{D D}$	V
Logic Input Low Threshold [c]	VIL		$-0.3{ }^{[b]}$		$0.3 \times V_{D D}$	V
Logic Current	$\mathrm{IIH}^{\text {, }} \mathrm{l}$ L	For each control pin		180	500	nA
$\mathrm{V}_{\mathrm{DD}} \mathrm{DC}$ Current ${ }^{[c]}$	IDD	Logic Inputs at GND or V_{DD}		20	30	$\mu \mathrm{A}$
Insertion Loss	IL	5-250 MHz		0.25		dB
		$250-750 \mathrm{MHz}$		0.30		
		$750-1000 \mathrm{MHz}$		0.30		
		$1000-1200 \mathrm{MHz}$		0.32	0.57	
		$1200-2000 \mathrm{MHz}$		0.32		
		$2000-3000 \mathrm{MHz}$		0.35		
Isolation (RFC to RF1 / RF2)	$\mathrm{ISO}_{\text {RFC }}$	$5-250 \mathrm{MHz}$	79	84		dB
		$250-750 \mathrm{MHz}$	69	74		
		$750-1000 \mathrm{MHz}$	67	72		
		$1000-1200 \mathrm{MHz}$	65	70		
		$1200-2000 \mathrm{MHz}$	62	67		
		$2000-3000 \mathrm{MHz}$		57		
Isolation (RF1 to RF2)	$\mathrm{ISO}_{\mathrm{R} 12}$	$5-250 \mathrm{MHz}$	79	84		dB
		$250-750 \mathrm{MHz}$	69	74		
		$750-1000 \mathrm{MHz}$	66	71		
		$1000-1200 \mathrm{MHz}$	63	68		
		$1200-2000 \mathrm{MHz}$	57	62		
		$2000-3000 \mathrm{MHz}$		53		
RF1, RF2, RFC Return Loss (Insertion Loss State)	RLIL	$5-250 \mathrm{MHz}$		25		dB
		$250-750 \mathrm{MHz}$		20		
		$750-1000 \mathrm{MHz}$		18		
		$1000-1200 \mathrm{MHz}$		18		
		$1200-2000 \mathrm{MHz}$		18		
		$2000-3000 \mathrm{MHz}$		18		

a. Items in min/max columns in bold italics are Guaranteed by Test.
b. Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
c. Increased $I_{D D}$ current will result if logic low level is above ground and up to $V_{I L}$ max. Similarly, increased $l_{D D}$ current will result if logic high level is below V_{DD} and down to $\mathrm{V}_{\mathbb{H}}$ min.

Renesns

Electrical Characteristics

Table 5. Electrical Characteristics

Typical Application Circuit: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{RF}}=1200 \mathrm{MHz}$, Driven Port $=\mathrm{RF} 1$ or RF 2 , Input Power $=0 \mathrm{dBm}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75$ ohms. PCB board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol	Condition			Min	Typ	Max	Units
RF1, RF2 Return Loss (Terminated State)	RLterm	$5-250 \mathrm{MHz}$				27		dB
		$250-750 \mathrm{MHz}$				22		
		$750-1000 \mathrm{MHz}$				20		
		$1000-1200 \mathrm{MHz}$				20		
		$1200-2000 \mathrm{MHz}$				20		
		$2000-3000 \mathrm{MHz}$				17		
Input 1dB Compression [c]	$\mathrm{ICP}_{1 \mathrm{~dB}}$	$5-250 \mathrm{MHz}$			29 [b]	31		
		$250-2000 \mathrm{MHz}$			30	32		m
Input IP2 (Insertion Loss State)	IIP2	Pin $=13 \mathrm{dBm} /$ tone (F1 + F2 Frequency)	$\begin{aligned} & \mathrm{F} 1=51 \\ & \mathrm{~F} 2=61 \end{aligned}$			95		dBm
			$\begin{aligned} & \mathrm{F} 1=18 \\ & \mathrm{~F} 2=19 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$		103		
			$\begin{aligned} & \text { F1 }=89 \\ & \text { F2 }=90 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$		129		
Input IP3 (Insertion Loss State)	IIP3	Pin $=13 \mathrm{dBm} /$ tone	$\begin{aligned} & \mathrm{F} 1=51 \\ & \mathrm{~F} 2=61 \end{aligned}$			63		dBm
			$\begin{aligned} & \mathrm{F} 1=18 \\ & \mathrm{~F} 2=19 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$		63		
			$\begin{aligned} & \mathrm{F} 1=17 \\ & \mathrm{~F} 2=17 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$		63		
CTB / CSO		77 \& 110 channels Pout $=44 \mathrm{dBmV}$				-90		dBc
Non-RF Driven Spurious [d]	Spur max $^{\text {a }}$	Out any RF port when externally terminated into 75Ω				-128		dBm
Switching Time [e]	Tsw	50\% control to 90\% RF				2.7		μs
		50\% control to 10\% RF				2.7		
Maximum Switching Rate [f]	SW ${ }_{\text {RATE }}$						25	kHz
Maximum Video Feed-through on RF Ports	VID $\mathrm{F}_{\text {F }}$	Peak transient during measured with 20 ns ri 0 to 3.3 V control pulse	witching etime,	Rise Fall		1.0 1.5		$m V_{p p}$

a. Items in min/max columns in bold italics are Guaranteed by Test.
b. Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
c. The input 1 dB compression point is a linearity figure of merit. Refer to the Recommended Operating Conditions section and Figure 3 for the maximum operating power levels.
d. Spurious due to on-chip negative voltage generator. Spurious fundamental = approx. 2.2 MHz.
e. $F_{R F}=1000 \mathrm{MHz}$.
f. \quad Minimum time required between switching of states $=1$ ((Maximum Switching Rate).

Thermal Characteristics

Table 6. Package Thermal Characteristics

Parameter	Symbol	Value	Units
Junction to Ambient Thermal Resistance.	θ_{JA}	53	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case Thermal Resistance. (Case is defined as the exposed paddle)	θ_{Jc}	13.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Moisture Sensitivity Rating (Per J-STD-020)		MSL 1	

Typical Operating Conditions (TOC)

- $V_{D D}=+3.0 \mathrm{~V}$
- $Z_{L}=Z_{S}=75 \Omega$
- $T_{\text {CASE }}=25^{\circ} \mathrm{C}$
- $\mathrm{F}_{\mathrm{RF}}=1200 \mathrm{MHz}$
- Small signal parameters measured with $\mathrm{PiN}_{\mathrm{N}}=0 \mathrm{dBm}$
- Two tone parameters measured with $\mathrm{P}_{\mathrm{iN}}=13 \mathrm{dBm} /$ tone
- Driven Port is RF1 or RF2
- All temperatures are referenced to the exposed paddle.
- Evaluation Kit traces and connector losses are de-embedded.

Renesns

Typical Performance Characteristics [1]

Figure 4. Insertion Loss vs. Frequency over Temperature and Vod [RF1]

Figure 6. Isolation vs. Frequency over Temp and Vdd [RF1 to RF2, RF1 Selected]

Figure 8. Isolation vs. Frequency over Temp and VDD [RF2 to RFC, RF1 Selected]

Figure 5. Insertion Loss vs. Frequency over Temperature and VDD [RF2]

Figure 7. Isolation vs. Frequency over Temp and Vdd [RF2 to RF1, RF2 Selected]

Figure 9. Isolation vs. Frequency over Temp and VdD [RF1 to RFC, RF2 Selected]

Renesns

Typical Performance Characteristics [2]

Figure 10. RF1 Return Loss vs. Frequency over Temperature and VDD [RF1 Selected]

Figure 12. RF1 Return Loss vs. Frequency over Temperature and Vdd [RF2 Selected]

Figure 14. RFC Return Loss vs. Frequency over Temperature and Vdd [RF1 Selected]

Figure 11. RF2 Return Loss vs. Frequency over Temperature and Vdd [RF2 Selected]

Figure 13. RF2 Return Loss vs. Frequency over Temperature and Vdd [RF1 Selected]

Figure 15. RFC Return Loss vs. Frequency over Temperature and VDD [RF2 Selected]

Typical Performance Characteristics [3]

Figure 16. Evaluation Board Loss vs. Frequency over Temperature

Figure 18. Switching Time Insertion Loss to Isolation

Figure 20. Idd vs. Control Voltage; VDD=2.7V (C1 set to GND and VDD)

Figure 17. Eval Board Through Line Return Loss vs. Frequency over Temperature

Figure 19. Switching Time Isolation to Insertion Loss

Figure 21. Idd vs. Control Voltage; VDD=2.7V (C1 set to 0.6 V and 2.1 V)

Typical Performance Characteristics [4]

Figure 22. Idd vs. Control Voltage; VDD=3.0V (C1 set to GND and VDD)

Figure 24. Idd vs. Control Voltage; VDD=3.6V (C1 set to GND and VDD)

Figure 23. Idd vs. Control Voltage; VDD=3.0V (C1 set to 0.9 V and 2.1 V)

Figure 25. Idd vs. Control Voltage; VDD=3.6V (C1 set to 0.9 V and 2.7 V)

Evaluation Kit Picture

Figure 26. Top View

Figure 27. Bottom View

Evaluation Kit / Applications Circuit

Figure 28. Electrical Schematic

Table 7. Bill of Material (BOM)

Part Reference	QTY	Description	Manufacturer Part \#	Manufacturer
C1 - C6	6	Not Installed		
C7	1	$1000 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}, \mathrm{C} 0 \mathrm{G}$ Ceramic Capacitor (0603)	GRM1885C1H102J	Murata
R1 - R3	3	0 ohm $\pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1000X	Panasonic
$\mathrm{J} 1-\mathrm{J} 5$	5	Connector Type F	222181	Amphenol RF
J 7	1	Conn Header Vert 8x2 Pos Gold	$961216-6404-A R$	3 M
U 1	1	SP2T Switch $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LQFN	F2970NCGK	IDT
	1	Printed Circuit Board	F2970 EVKIT REV 01	IDT

Control Mode

Table 8 Switch Control Truth Table

C1	C2	RFC - RF1	RFC - RF2	75 Ohm Terminated Ports
0	0	ON	OFF	RF2
0	1	OFF	ON	RF1
1	0	OFF	ON	RF1
1	1	ON	OFF	RF2

Evaluation Kit Operation

Default Start-up

Control pins do not include internal pull-down resistors to logic LOW or pull-up resistors to logic HIGH.

Power Supplies

A common $V_{c c}$ power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1V / 20 uS. In addition, all control pins should remain at OV (+/0.3 V) while the supply voltage ramps or while it returns to zero.

Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of each control pin is recommended. This applies to control pins 16 \& 17 as shown below.

Figure 29. Control Pin Interface Schematic

Renesas

External Supply Setup

Set up a V_{cc} power supply in the voltage range of 2.7 V to 3.6 V with the power supply output disabled.

Logic Control Setup

External logic control is applied to J8 CTL1 (pins 5 and 7) and CTL2 (pins 9 and 11). See Table 8 for the logic truth table.

Turn On Procedure

Setup the supplies and EVKIT as noted in the External Supply Setup and Logic Control Setup sections above.
Enable the V_{Cc} supply.
Set the desired logic setting to achieve the desired configuration (see Table 8). Note that external control logic should not be applied without $V_{\text {CC }}$ being present.

Turn Off Procedure

Set the logic control to a logic low.
Disable the V_{cc} supply.

Renesns

Package Drawings

Figure 30. Package Outline Drawing

TOLERANCES UNLESS SPECIFIED		WWW.IDT.comFAX: (408) 284-8591					
$\begin{aligned} & \text { DECIMAL } \\ & X \pm \\ & X X \pm \\ & X X X \pm \\ & \hline \end{aligned}$	ANGULAR $\pm 1^{\circ}$						
APPROVALS	DATE	TITLE NCG2O PACKAGE OUTLINE $4.0 \times 4.0 \mathrm{~mm}$ BODY 0.50 mm PITCH LQFN					
DRAWN MSS	10/09/12						
CHECKED							
		$\begin{gathered} \hline \text { SIZE } \\ \text { C } \\ \hline \end{gathered}$	DRAWING No.PSC-4445				REV
							02
		DO NOT SCALE DRAWING			SHEET 1	10	OF 2

Recommended Land Pattern

Figure 31. Recommended Land Pattern

RECOMMENDED LAND PATTERN DIMENSION
NOTES:

1. ALL DIMENSION ARE $\operatorname{IN} \mathrm{mm}$. ANGLES IN DEGREES.
2. TOP DOWN VIEW. AS VIEWED ON PCB.
3. COMPONENT OUTLINE SHOW FOR REFERENCE IN GREEN.
4. LAND PATTERN IN BLUE. NSMD PATERN ASSUMED.
5. LAND PATERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATERN.

Ordering Information

Orderable Part Number	Package	MSL Rating	Shipping Packaging	Temperature
F2970NCGK	$4.00 \times 4.00 \times 0.75 \mathrm{~mm}$ LQFN	MSL1	Bulk	-40° to $+105^{\circ} \mathrm{C}$
F2970NCGK8	$4.00 \times 4.00 \times 0.75 \mathrm{~mm}$ LQFN	MSL1	Tape and Reel	-40° to $+105^{\circ} \mathrm{C}$
F2970EVBI	Evaluation Board			

Marking Diagram

IDTF29
70NCGK
ZEYWWPBG

1. Line 1 and 2 are the part number.
2. Line 3 - "ZE" are for die version.
3. Line 3 - "YWW" is last digit of the year plus work week.
4. Line 3 - "PBG" denotes the production process.

Renesns

Revision History

Revision	Revision Date		Description of Change
0	2016-November-10	Initial Release	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

