

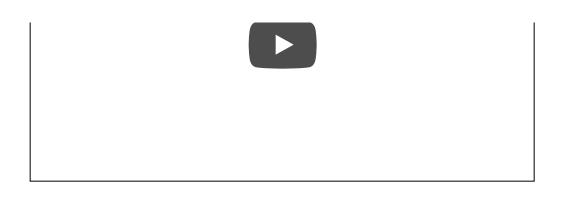
Raspberry Pi 4 Kit Hookup Guide

Introduction

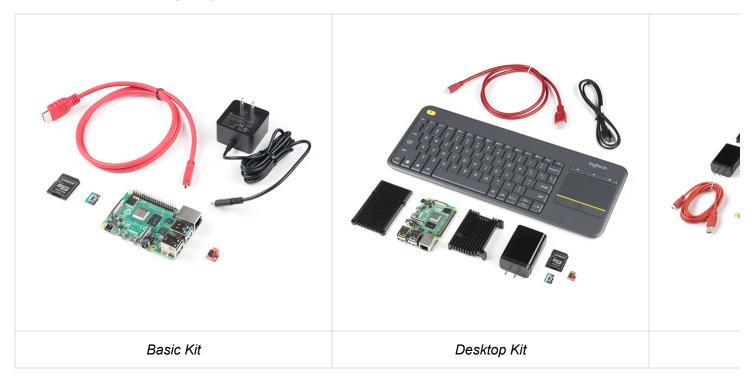
Heads up! The Raspberry Pi 4 Model B has the same mechanical footprint as both the Raspberry Pi 3 Model B+ and the Raspberry Pi 2 Model B. This guide will show images of the Pi 4 Model B but you can still follow along with the previous Pi Models to configure your Pi's software settings!

The improved Raspberry Pi 4 Model B [2GB, 4GB, and 8GB] is another upgrade in the line of Raspberry Pi single board computers, what's new? This hookup guide goes through the same process of getting going that worked with the previous Raspberry Pi Models.

Raspberry Pi 4 Model B (2 GB) © DEV-15446



Raspberry Pi 4 Model B (4 GB) O DEV-15447



Raspberry Pi 4 Model B (8 GB) O DEV-16811

Product Showcase: Raspberry Pi 4 Model B

There are a few kits available depending on your project. Depending on the version that you order, you can have one that includes the 2GB, 4GB, or 8GB RAM.

Materials Required

You'll need a mouse, keyboard, monitor, wall adapter with minimum power requirements, and cables to begin. Once configured, the Pi can be operated from its own peripherals or another computer connected over the Internet.

Kit Versions

There are three versions of the kit available at SparkFun. Each version includes a Raspberry Pi 4 with a different size RAM. Check out below for the different kit versions available!

- Basic
- Desktop
- Hardware Starter Kit

Product Showcase: SparkFunRaspberryPi 4 Kits

Basic Kit Version

The basic kit offers the bare bones of what you need to get up and running. This is assuming that you have a monitor, keyboard, mouse, and card reader ^[1] on hand. The connectors are different on the Pi 4 so the kit provides a mini-HDMI to HDMI cable and USB-C wall adapter at a minimum. The kits include a raw microSD card and SD card adapter so that you can flash your favorite Linux distribution. A Qwiic Shim is included to easily connect a I²C device to the Raspberry Pi. A Raspberry Pi 4 with either a 2GB, 4GB, or 8GB RAM is included in the kit. We also have a kit without a Raspberry Pi 4 if you already have one.

SparkFun Raspberry Pi 4 Basic Kit - Without Raspberry Pi • KIT-17237

SparkFun Raspberry Pi 4 Basic Kit - 2GB O KIT-16383

SparkFun Raspberry Pi 4 Basic Kit - 4GB O KIT-16384

SparkFun Raspberry Pi 4 Basic Kit - 8GB O KIT-17980

Desktop Kit Version

The desktop kit is pretty much the basic. However, a wireless keyboard with touchpad is included. We also include a heat sink case to keep your Pi cool as a cucumber when pushing your Pi's processing capabilities. The power supply included in this kit is provides a modular power system with the USB Type C wall adapter and Type C to Type C USB cable. Compared to the basic kit, the raw microSD card ^[1] included in this kit has a faster read/write speeds to take advantage of the Pi 4's processing power. This cuts the amount of time to flash or update the Linux distribution of your choice down significantly. A Raspberry Pi 4 with either a 2GB, 4GB, or 8GB RAM is included in the kit. We also have a kit without a Raspberry Pi 4 if you already have one.

SparkFun Raspberry Pi 4 Desktop Kit - Without Raspberry Pi O KIT-17727

SparkFun Raspberry Pi 4 Desktop Kit - 2GB O KIT-16385

SparkFun Raspberry Pi 4 Desktop Kit - 4GB Θ KIT-16386

SparkFun Raspberry Pi 4 Desktop Kit - 8GB

Hardware Starter Kit Version

The hardware kit is designed for those that are interested in prototyping a circuit on a breadboard. It includes components from both the basic and desktop kits. In addition, the hardware starter kit includes a breadboard, Pi Wedge adapter, IDC cable, LEDs, current limiting resistors, buttons, jumper wires, 2x20 extension header, 3.3V USB-to-Serial converter, and mini-B USB cable. A Raspberry Pi 4 with either a 4GB or 8GB RAM is included in the kit. We also have a kit without a Raspberry Pi 4 if you already have one.

SparkFun Raspberry Pi 4 Hardware Starter Kit - Without Raspberry Pi Θ KIT-17726

SparkFun Raspberry Pi 4 Hardware Starter Kit - 4GB O KIT-16388

SparkFun Raspberry Pi 4 Hardware Starter Kit - 8GB O KIT-17380

[1] Note: If you do not have a built-in card reader, you might want to consider adding a microSD USB reader to your cart in order to flash an image to the raw microSD card!

microSD USB Reader © COM-13004

Comparison Chart

Below is a table that shows the differences between the basic, desktop, and hardware kits.

Includes	Basic	Desktop

Raspberry Pi 4 Version	2 GB / 4 GB / 8 GB / Without Pi 4	2 GB / 4 GB / 8 GB / Without Pi 4
Wall Adapter w/ Type C Cable	√ (for the 2GB, 4GB, and 8GB, and without Pi 4 versions)	
USB Type C Wall Adapter	√ (initial release in the older 8GB version)	\checkmark
USB Type C Cable	\checkmark (initial release in the older 8GB version)	\checkmark
HDMI Micro to HDMI	\checkmark	\checkmark
MicroSD Card w/ Adapter	\checkmark (initial release of the 2GB version)	
High Speed MicroSD Card w/ Adapter	\checkmark	\checkmark
Logitech N400 Plus Wireless Keyboard & Touchpad		\checkmark

Qwiic Shim	\checkmark	\checkmark
Heat Sink Case		\checkmark
2x20 Extension Header		
Raspberry Pi Wedge w/ IDC Cable		
Breadboard		
M/F Premium Jumper Wires 6" (10 Pack)		
M/M Standard Jumper Wires 7" (30 Pack)		
Assorted Colored LEDs (20 Pack)		
330Ω 1/4 Watt Current Limiting Resistors (20 Pack)		
Multicolored Buttons (4 Pack)		
3.3V FTDI Basic Breakout		

Getting an OS

Note: You will need a microSD card with **minimum size of at least 8GB**! Not all microSD cards are the same. This is obvious in the memory size but the performance can also vary between microSD cards. The microSD card included in the basic kit (as shown on the left) is sufficient enough to run an image on the Pi 4. The microSD card included in the desktop kit (as shown on the right) has a faster read/write speed which enables you to flash, update, or boot an image in a shorter amount of time. Programs can also load faster as well.

If you are looking to test the performance of your microSD card, there is a tool that you can download to test how well the microSD card performs. Don't be alarmed by the pass/fail. A slower performing microSD card is still be sufficient to run on the Pi 4. It just means that the Pi 4 may not be running at the optimum speed. The microSD card will . Click on the link below for more information!

RASPBERRY PI SD CARD SPEED TEST

The microSD card included in each kit does not have an image flashed. You'll need to flash a new image to the microSD card if you are just starting out or if your existing image becomes corrupt somewhere down the line. There are a few Linux-based images available depending on your application. Or feel free to power down your Pi and switch microSD cards out to experiment with a different image. For beginners, we recommend getting NOOBS. Otherwise, the Raspbian with the PIXEL desktop would be the best.

- NOOBS (i.e. New Out-Of-the Box Software) Contains Raspbian and LibreELEC. Other images can also be downloaded from the internet and installed.
- Raspbian Official Raspberry Pi Debian-based computer operating system. There are three downloads. We recommend the desktop version with recommended software. The other downloads are the same but with

less software. For advanced users, Raspbian Lite is the minimal text-only version and requires users to navigate using the command line interface (CLI).

• Other 3rd Party OS Images - There are other distributions available from third-party. If you are feeling adventurous, check out the other images available!

For the scope of this tutorial, we will summarize two of the images from the Pi foundation.

Flashing the Image NOOBS

If you decide to use NOOBS, you will need to:

- **Insert** the microSD card into a card reader.
- Download the ZIP file for NOOBS.

DOWNLOAD NOOBS FROM THE PI FOUNDATION HERE!

- Extract the ZIP file.
- Format your Raspberry Pi's microSD card if needed.
- Copy all the contents from the unzipped folder into the microSD card.
- Eject the microSD card from your computer.

Flashing the Image Raspbian and 3rd Party OS Images

Note:! There are several tools available to flash your image distribution to a microSD card. For the scope of this tutorial, we'll assume that you are using the Raspberry Pi Imager for your OS. Make sure to install the software before continuing further.

Then follow the steps below to flash an image using the Raspberry Pi Imager.

- Insert the microSD card and card reader into your computer's port.
- Open the **software imaging tool** ^[2] of your choice (in this case, we'll use the Raspberry Pi Imager for your OS but you can use other images as well).

DOWNLOAD THE LATEST RASPBIAN HERE!

DOWNLOAD A 3RD PARTY OS HERE!

- Press **CHOOSE OS** to select the Operating System from the list (in this case, we'll use one of the Raspbian images but you could use any of the 3rd party images).
- Press CHOOSE SD CARD to select mounted microSD Card.
- Press **Write** (it will take a while depending on the image and microSD card so just do a little dance as you wait).
- **Eject** the microSD card when finished.

[2] **Note:** Check out this extensive guide to flashing images to a microSD card. You could use Etcher.io, Win32DiskImager, or a command line tool depending on your personal preference.

SD Cards and Writing Images JUNE 4, 2015 How to upload images to an SD card for Raspberry Pi, PCDuino, or your favorite SBC.

Assembly

The Pi is straight-forward and easy to put together, but in the event that something doesn't seem right, this section will give you an idea of what it is supposed to look like to get the Pi up and running.

Unbox and gather these components before beginning the assembly

Attaching a Heat Sink Enclosure Optional

Note: Under normal conditions, the Pi 4 can be run without the need for a heat sink enclosure. However, adding a heat sink will help prevent the Raspberry Pi 4 from throttling when you are pushing the Pi to its limits, such as running multiple displays at once. The following instructions are for those that are using the

Raspberry Pi 4 with a heat sink enclosure. The basic kit does not include the heat sink enclosure. Make sure to add it to your cart with your favorite color!

Aluminum Heatsink Case for Raspberry Pi 4 -Obsidian Black • PRT-15773

Aluminum Heatsink Case for Raspberry Pi 4 -Magnetite Grey ⊖ PRT-15775

Aluminum Heatsink Case for Raspberry Pi 4 -Rhodolite Red • PRT-15893

Aluminum Heatsink Case for Raspberry Pi 4 -Heliodor Gold O PRT-15774

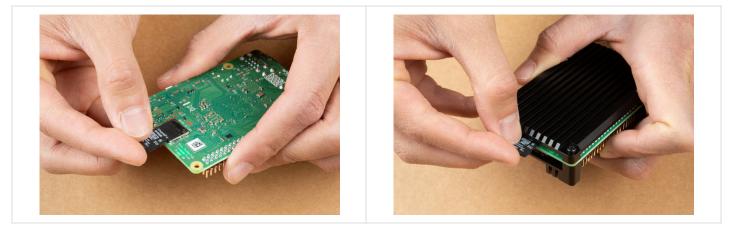
CLICK TO SEE MORE ENCLOSURES!

If you are using the heat sink enclosure, grab the thermal pad that matches the size of the Pi's CPU. Remove the thin, clear plastic film and paper from both sides of the thermal pad. Attach the side that had the paper to the Pi's CPU. There are thermal pads shaped for other IC and can be added on those chips as well. However, those do not get hot.

Grab the top of the heat sink case with the cutout for the GPIO pins and place it on the Pi. If you are using the DSI port or Raspberry Pi camera, now would be good time to insert the ribbon cable between the Pi and the top of the heat sink.

Align the mounting holes of the bottom of the heat sink case.

Screw and tighten the hex bolts using the allen key.



Rotate the Pi. Your heat sink enclosure should look like the image below!

Insert the microSD Card

With the image flashed on the microSD Card, insert it into the microSD socket.

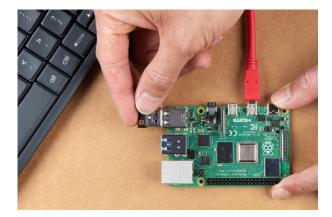
Attaching Peripherals

Attach desired consumer computer equipment. At a minimum to get up and running or navigate through the Pi, we recommend using a monitor, keyboard, and mouse. The following images will use a Pi without an enclosure to show where to connect the peripherals.

Monitor

Using a monitor with a HDMI port ^[3], insert the HDMI end of the cable to the connector. Then connect the mini-HDMI end of the cable to the connector. Note that the Pi 4 has two mini-HDMI outputs. You will need to connect to the **HDMI0** port. closest to the USB-C connector.

[3] **Note:** Depending on how old your monitor is, you may need an additional adapter to convert the HDMI to the input port. Some of these may be a VGA or DVI connector.


Alternatively, you can attach a compatible LCD display via the DSI port or take advantage of the headless setups. Keep in mind that you may need to configure additional settings in order to get the Pi to output to the display.

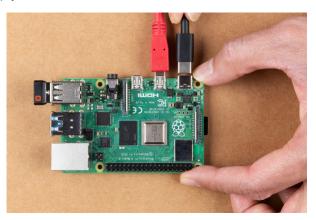
Raspberry Pi LCD - 7" Touchscreen • LCD-13733

Keyboard and Mouse

Connect a keyboard and mouse to the USB ports. In this case, we were using a wireless keyboard and mouse that had a USB dongle. While you can insert the HID device into any USB port, we recommend connecting it to the USB 2.0 port so that you have the faster USB 3.0 ports (with blue) are available for certain devices (i.e. flash drives).

If you are using a wireless keyboard/mouse combo, the wireless USB dongle that is included maybe hidden in the battery compartment. If you are using the Logitech K400 Plus, flip it over and slide the compartment for the battery holder off.

Flipping over the cover, you'll notice that the dongle is attached inconspicuously on the back. Grab the wireless dongle from the back to insert into the Pi's USB port and slide the cover back on the Logitech K400 Plus.

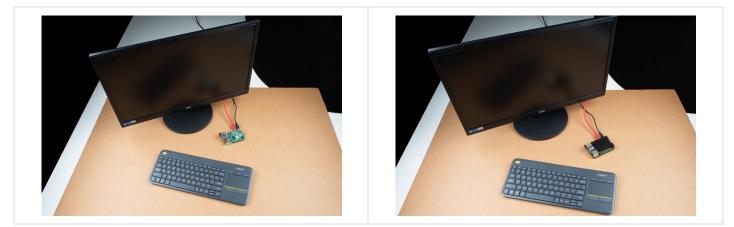


To power the keyboard, make sure to flip the power switch to the green position on the side of the Logitech K400 Plus. Feel free to flip the power switch back to the red position to remove power.

Power Supply

If you have not already, make sure that you inserted the microSD card into the microSD socket. Once everything is connected, insert the power supply ^[4]!

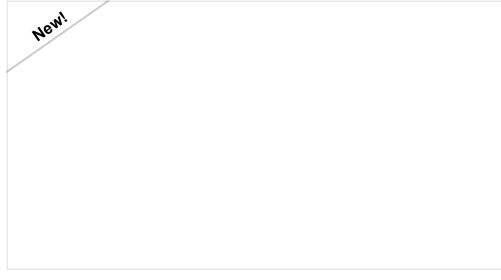
[4] \checkmark Note: The minimum power requirements to power the Raspberry Pi 4 Model B is **5VDC, 3A**. Not all power supplies are made the same so there may be voltage drops depending on specifications and cable. Make sure that your wall adapter or battery is stable and able to meet the minimum requirements. Depending on your country region, you may need a converter to connect to a wall outlet. The following products are compatible. If you decide to get the wall adapter, make sure to get the appropriate cable as well.


Raspberry Pi Wall Adapter Power Supply -5.1VDC, 3.0A, 15.3W (USB-C) O TOL-15448 USB-C Wall Adapter - 5.1V, 3A (Black) • TOL-16272

USB 2.0 C to C Cable - 1m O CAB-16395

Completed Setup

At this point, your setup should look similar to the images below to get the Pi up and running. You could add ethernet, a second monitor, headphones, speakers, or a camera depending on your setup as well!



Connecting Hardware

Need easy access to the GPIO pins on the board? If you ordered a Qwiic cable, Qwiic enabled device, and any of the kits, take a look at the Qwiic SHIM ^[5] to quickly access the I²C pins. If you are looking to use certain I²C devices with Python, we recommend taking a look at the Qwiic SHIM Kit or Qwiic Starter Kit for Raspberry Pi to get started.

Qwiic SHIM for Raspberry Pi Hookup Guide DECEMBER 5, 2019

Ever wanted to prototype I2C components on a Pi? Now you can!

Qwiic SHIM Kit for Raspberry Pi Hookup Guide FEBRUARY 16, 2021

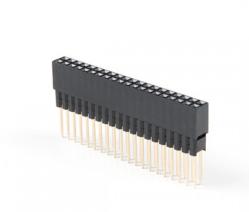
Get started with the Serial LCD with RGB backlight and 9DoF IMU (ICM-20948) via I2C using the Qwiic system and Python on a Raspberry Pi! Take sensor readings and display them in the serial terminal or SerLCD.

Qwiic Kit for Raspberry Pi Hookup Guide JULY 4, 2019

Get started with the CCS811, BME280, VCNL4040, and microOLED via I2C using the Qwiic system and Python on a Raspberry Pi! Take sensor readings from the environment and display them on the microOLED, serial terminal, or the cloud with Cayenne!

If you included the Pi Wedge with prototyping parts in your order or the Hardware Starter Kit, check out the associated tutorial for the Pi Wedge^[5] to easily access the GPIO pins on a breadboard. We recommend taking a look at the Raspberry gPlo tutorial to get started with LEDs and buttons. If you decide to go headless, you can use the 3.3V FTDI to configure or control your Pi via serial.

Preassembled 40-pin Pi Wedge Hookup Guide OCTOBER 29, 2015


Using the Preassembled Pi Wedge to prototype with the Raspberry Pi B+.

Raspberry gPlo OCTOBER 29, 2015 How to use either Python or C++ to drive the I/O lines on a Raspberry Pi.


Headless Raspberry Pi Setup

APRIL 23, 2018 Configure a Raspberry Pi without a keyboard, mouse, or monitor.

[5] **Note:** When using an enclosure with a Raspberry Pi, you may need an extension header to access the GPIO pins.

Extended GPIO Female Header - 2x20 Pin (13.5mm/9.80mm) © PRT-16764

Extended GPIO Female Header - 2x20 Pin (16mm/7.30mm) © PRT-16763

The Qwiic SHIM is not intended to be used with the heatsink case, as it prevents the case from properly connecting with the single board computer. The top of the case needs to be off should you use the SHIM or decide to use an extension header [PRT-16764] in conjunction with a Pi HAT. You can also use an extension header [PRT-16763] with the Pi Wedge's IDC cable. Note the differences in the pin length. The header with 7.30mm pin length uses three plastic spacers, which cover the pins more when using a HAT or the Pi Wedge's IDC cable.

Extension Header with 9.80mm Pin Length is Used to Help Stack the Qwiic SHIM and Pi Servo HAT on a Pi 4 with Heat Sink

Extension Header with 7.30mm Pin Length is Used to Help Connect the Pi Wedge's IDC Cable to the Pi 4 with Heat Sink

The height of the enclosure and PCB varies depending on the design. The image below shows a Pi 3 in the enclosure. The overall height of the enclosure is lower than the Pi 4's heat sink enclosure so one 2x20 extension header was needed when stacking the Qwiic pHAT v2.0 on the Pi. You may need to stack additional extension headers so that the boards have enough clearance when using other enclosures and

Methods of Working with the Pi

Once the Pi is configured, there are a few methods of using it depending on if you want to use it like a desktop or manage it remotely.

This section covers using the Pi in the following ways

- Using HDMI-out with Monitor -- Operate your Pi like a desktop computer.
- Headless without a Monitor
 - Using the serial terminal -- Some functionality.
 - Using SSH -- Operate through a network linked to another computer.
 - **Using VNC** -- Control the Pi's graphical desktop remotely over the Internet using a computer. This is useful if you decide to remotely connect to a Pi that may or may not be connected to a monitor.

Using HDMI-out with a Monitor

If this is the first time you are booting NOOBS, you'll need to connect your Raspberry Pi to a monitor and follow the installer. In the window, select **Raspbian Full [RECOMMENDED]** and click on the button to **Install**. You'll need to be patient as the software installs the OS to the microSD card. Once finished, click on **OK**. This will restart the Pi.

PIXEL Desktop (GUI)

By selecting NOOBS with Raspbian, it automatically logs in and starts a graphical user interface. Once the desktop installs, follow the wizard to configure your Raspberry Pi! You'll need to configure the settings based on your region, monitor, keyboard, Internet settings, and password. It is best to have the Pi check for updates and restart for the changes to take effect.

If you ever need to update the settings, just head to the **Raspberry Pi Start Menu > Preferences > Raspberry Pi Configuration**.

A window will pop up allowing you to easily update the region, monitor, keyboard, password, and turn on any peripherals.

Raspberry Pi Configuration 🔹 🗸 🗙							
System	Display	Interfaces	Performance	Localisation			
Password:				Change Password			
Hostname: Boot:			raspberrypi				
			To Desktop To CLI				
Auto login:	Auto login:			● Login as user 'pi' ○ Disabled			
Network at Boot:			○ Wait for network ● Do not wait				
Splash Screen:		۲	Enable O Disable				
				Cancel OK			

As for the Internet settings, simply click on the "Wireless & Wired Network icon" in the menu bar. This should be by the clock on the upper right corner of the screen. Then select the network and enter its respective password.

Command Line Interface (CLI)

If configured to boot to shell, log in with the following credentials:

username: pi password: raspberry

Then, enter in the command line to enter a graphical environment should you decide to take advantage of the desktop-type menu-driven operating system.

startx

If you need to get back to text land, you can either

- Log off through the Task Bar Menu
 - drops back to the shell, closing down the X window system

- Open xterm from the Task Bar
 - opens a shell in a graphical window
- Use CTRL + ALT + 1 through CTRL + ALT + 8
 - gives you a number of shells, with 7 being the graphic environment (if loaded).

Remember, shutdown with the task bar menu or enter the following command from a shell, and wait for the system to halt before removing power ^[6].

sudo shutdown -h now

[6] **Warning:** Removing power before properly shutting down will corrupt your Raspberry Pi's image. Make sure that you properly shut down before removing power from the Pi. Alternatively, you could write a Python script to turn off the Pi using a GPIO.

Raspberry Pi Safe Reboot and Shutdown Button APRIL 20, 2020 Safely reboot or shutdown your Raspberry Pi to avoid corrupting the microSD card using the built-in general purpose button on the Qwiic pHAT v2.0!

Headless without a Monitor

As an alternative, you can also log into the Pi as a "headless" computer. This is basically a Raspberry Pi without a monitor, keyboard, or mouse. You can decide to connect to the Pi using a serial UART or SSH. For advanced users, you will need to turn on the interfaces before you can take advantage of these setups.

Headless Raspberry Pi Setup

APRIL 23, 2018 Configure a Raspberry Pi without a keyboard, mouse, or monitor.

How to Use Remote Desktop on the Raspberry Pi with VNC

JULY 9, 2018 Use RealVNC to connect to your Raspberry Pi to control the graphical desktop remotely across the network.

Configuring the Pi

This section goes over configuring the keyboard, wired, and wireless internet.

The Raspbian distribution comes defaulted to European hardware. With US keyboards, the " (quotation mark) symbol is replaced by @ (commercial at) and our number sign # is replaced by the European pound sign \pm . This can make it aggravating when trying to #define things.

PIXEL Desktop (GUI)

The easiest method of configuring the Pi is using the PIXEL desktop. For those that need to adjust the settings again after the initial setup, check below!

Configuring the Keyboard Layout

To configure the keyboard layout again, head to the Task Bar Menu by clicking the **Pi Start Menu > Preferences > Raspberry Pi Configuration > Localisation > Set Keyboard...**

Raspberry Pi Configuration 🛛 🗸 🔺 🗙					
System	Display	Inter	faces	Performance	Localisation
Locale:				Set Locale	à
Timezone:		Set Timezone			
Keyboard:				Set Keyboa	rd
WiFi Country:				Set WiFi Cou	ntry
				Cancel	ОК

Configuring the Internet Interfaces

Raspbian does a good job of configuring wireless networks automatically. By default, DHCP is configured so that the Pi will receive an IP address when a network cable is plugged it to the Ethernet port or when a wireless network is connected.

To use the graphical network tool, right click on the icon on the right side of the task bar, and click "WiFi Networks (dhcpcdui) Settings". Then, select the interface desired (wlan0 or eth0) to disable the DHCP and set your own IP, if necessary.

To connect to a wireless network, click on the icon, select the desired network, and enter the password.

Hovering over the icon will bring up a status of wlan0 and eth0 that also shows the IP address.

Command Line Interface (CLI)

For advanced users using the command line, you can use the CLI to adjust the settings.

Configuring the Keyboard Layout

Invoke the config tool with the following command in the command line:

sudo raspi-config

Then take the following actions:

- Set the default locale for the system
 - Select "Internationalisation Options"
 - Select "Change Locale"
 - Deselect en_GB.UTF-8 UTF-8
 - Select en_US.UTF-8 UTF-8, (Ok)

- Set default to en_US.UTF-8, (Ok)
- Change the keyboard layout -- from the Internationalisation Options menu,
 - Change Keyboard Layout
 - Leave set as: Generic 105-key (Intl) PC (Ok)
 - Select **Other** (Ok)
 - Select English (US) (Ok)
 - Select English (US) (Ok)
 - Select default (Ok)
 - Select No compose key (Ok)
 - Set Ctrl+Alt+Bksp function (Ok)

• Finish with the dialog and get back to the shell

• Try the " and # keys at the prompt.

We recommend restarting the Pi at this point to ensure that the changes take effect.

Configuring the Internet Interfaces

At this time, the network configuration works out of the box so there's really nothing to configure, but in case something goes awry, here's the basics of what can be played with and a known-working configuration to compare with.

A configuration file, interfaces, configures both wired and wireless devices. Enter the following command into a terminal to edit the interfaces file.

sudo nano /etc/network/interfaces

Replace "nano" with "leafpad" if you prefer graphics. Here's what our Pi 3 is using:

```
# interfaces(5) file used by ifup(8) and ifdown(8)
# Please note that this file is written to be used with dhcpcd
# For static IP, consult /etc/dhcpcd.conf and 'man dhcpcd.conf'
# Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d
auto lo
iface lo inet loopback
iface eth0 inet manual
allow-hotplug wlan0
iface wlan0 inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
allow-hotplug wlan1
iface wlan1 inet manual
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
```

By default, this file is set up to get its configuration from /etc/wpa_supplicant/wpa_supplicant.conf, which is really the proper place for wifi information. Here are the contents:

```
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update config=1
network={
        ssid="myNetworkSSID"
        psk="mySuperSecurePassword"
        key_mgmt=WPA-PSK
```

}

A note on network configuration: Try the GUI tool first, and only modify the files as a last resort. If you find the tool doesn't work, save your configuration files as a backup, and don't be afraid to try your hand at a manual configuration.

Applying the Changes

Sometimes the link should be cycled for a new configuration to take. Rather than shutting down the pi and restarting, use ifdown and ifup to bring the link down and back up.

For wireless connections, use

sudo ifdown wlan and

sudo ifup wlan0

For wired connections, use

sudo ifdown eth0

and

sudo ifup eth0

Troubleshooting

Having issues getting the Raspberry Pi to work? Check out this sticky note from the Raspberry Pi Foundation's forum for basic troubleshooting.

PI FOUNDATION FORUMS: BASIC TROUBLESHOOTING WITH THE RASPBERRY PI

Having problems with a piece of SparkFun hardware designed for the Raspberry Pi and interfacing it? Try checking out the SparkFun forums to see if we can assist.

SPARKFUN FORUMS

Resources and Going Further

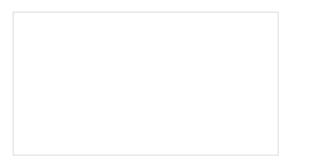
Raspberry Pi Accessories

If you are looking to add additional features, check out the accessories to power your Raspberry Pi remotely, build a homemade motion-activated security system, or go retro by building your own arcade controller to emulate classic video games!

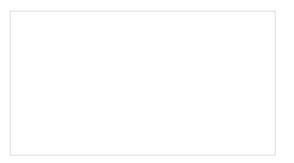
PiJuice HAT - Raspberry Pi Portable Power Platform • PRT-14803

Raspberry Pi LCD - 7" Touchscreen • LCD-13733

Raspberry Pi Camera Module V2 • DEV-14028


SparkFun PiRetrocade O KIT-14007

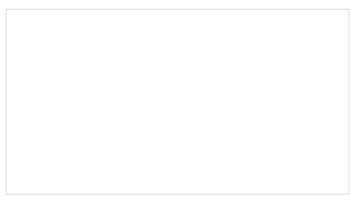
CLICK TO BROWSE MORE RASPBERRY PI ACCESSORIES


Here are some links to our other Pi resources.

- Raspberry Pi Foundation
 - Getting Started with the Raspberry Pi
 - Product Brief (PDF)
 - Schematic (PDF)
 - Mechanical Drawing (PDF)
 - Documentation
 - Projects
 - Pi Foundation Forums
 - Raspberry Pi Forums: Is Your Pi Not Booting? Basic troubleshooting tips and solutions for a Raspberry Pi that is not booting up.
- The gPlo tutorial
- The SPI and I2C tutorial

Need some inspiration? Check out these tutorials and projects.


Graph Sensor Data with Python and Matplotlib Use matplotlib to create a real-time plot of temperature data collected from a TMP102 sensor connected to a Raspberry Pi. Raspberry Pi Safe Reboot and Shutdown Button Safely reboot or shutdown your Raspberry Pi to avoid corrupting the microSD card using the built-in general purpose button on the Qwiic pHAT v2.0!


Pro Micro RP2040 Hookup Guide This tutorial covers the basic functionality of the Pro Micro RP2040 and highlights the features of the dualcore ARM Cortex-M0+ processors development board. Get started with the first microcontroller from the Raspberry Pi Foundation! Introduction to the Raspberry Pi GPIO and Physical Computing

This tutorial will teach you how to set up your Raspberry Pi as a full desktop computer and read in sensor data through the GPIO using SparkFun hardware.

Or check out some of these blog posts for ideas.

Enginursday: Time-lapse with the Raspberry Pi NOVEMBER 21, 2013

Enginursday: Monitor Twitter With a Raspberry Pi DECEMBER 5, 2013 Enginursday: Time-lapse with the Raspberry Pi Pt. 2 FEBRUARY 13, 2014

Raspberry Pi 3 FEBRUARY 29, 2016

T³: Raspberry Pi and the Stereo Arcana T³: IoT Smart Pantry (Part 1) JULY 19, 2016 SEPTEMBER 27, 2016 Friday Product Post: In Vivid 1080pi Taking Your PiRetrocade to the Next Level OCTOBER 7, 2016 NOVEMBER 10, 2016

Enginursday: Eniac, The Data-Logging Web	IoTuesday: New Year's Resolution #2 –
Server	Healthier Eating
JANUARY 26, 2017	JANUARY 31, 2017
IoTuesday: Web-Style GUIs for your Raspberry	Hardware Hump Day: Cloning your Raspberry
Pi Hardware Project	Pi
FEBRUARY 21, 2017	MARCH 8, 2017
Enginursday: Home-Brew Alexa Endpoint	Automated Conference Room Signage
MARCH 30, 2017	NOVEMBER 8, 2017

Swarming to Space on the Wings of XBee, RPi NOVEMBER 9, 2017

Mort and Mary Present: The Mind-Controlled Light Switch JANUARY 25, 2018

Friday Product Post: Power up your Pi! AUGUST 17, 2018

Hackbot in the Morning NOVEMBER 13, 2018