onsemi

MOSFET – N-Channel, UniFET™, FRFET[®]

500 V, 45 A, 120 m Ω

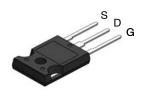
FDH45N50F

Description

UniFET MOSFET is **onsemi**'s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. The body diode's reverse recovery performance of UniFET FRFET MOSFET has been enhanced by lifetime control. Its t_{rr} is less than 100 nsec and the reverse dv/dt immunity is 15 V/ns while normal planar MOSFETs have over 200 nsec and 4.5 V/nsec respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

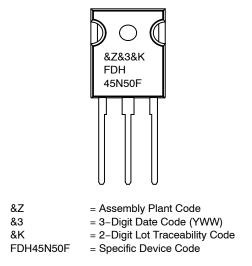
Features

- $R_{DS(on)} = 105 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 22.5 \text{ A}$
- Low Gate Charge (Typ. 105 nC)
- Low C_{rss} (Typ. 62 pF)
- 100% Avalanche Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Applications

- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

V _{DS}	R _{DS(ON)} MAX	I _D MAX
500 V	120 m Ω @ 10 V	45 A


GO

N-CHANNEL MOSFET

TO-247-3LD CASE 340CK

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter		FDH45N50F-F133	Unit V	
V _{DSS}	Drain to Source Voltage		500		
Ι _D	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		45 28.4	A A	
I _{DM}	Drain Current	-Pulsed (Note 1)	180	А	
V _{GSS}	Gate-Source Voltage		±30	V	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1868	mJ	
I _{AR}	Avalanche Current (Note 1)		45	А	
E _{AR}	Repetitive Avalanche Energy (Note 1)		62.5	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)	Diode Recovery dv/dt (Note 3)		V/ns	
P _D	Power Dissipation	(T _C = 25°C) –Derate Above 25°C	625 5	W W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range	Operating and Storage Temperature Range		°C	
ΤL	Maximum Lead Temperature for Soldering, 1/8	300	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive Rating: Pulse width limited by maximum junction temperature. 2. L = 1.46 mH, I_{AS} = 48 A, V_{DD} = 50 V, R_G = 25 Ω , Starting T_J = 25 °C. 3. $I_{SD} \le 45$ A, di/dt ≤ 200 A/µs, $V_{DD} \le \mathbb{B}V_{DSS}$, Starting T_J = 25 °C.

PACKAGE MARKING AND ORDERING INFORMATION

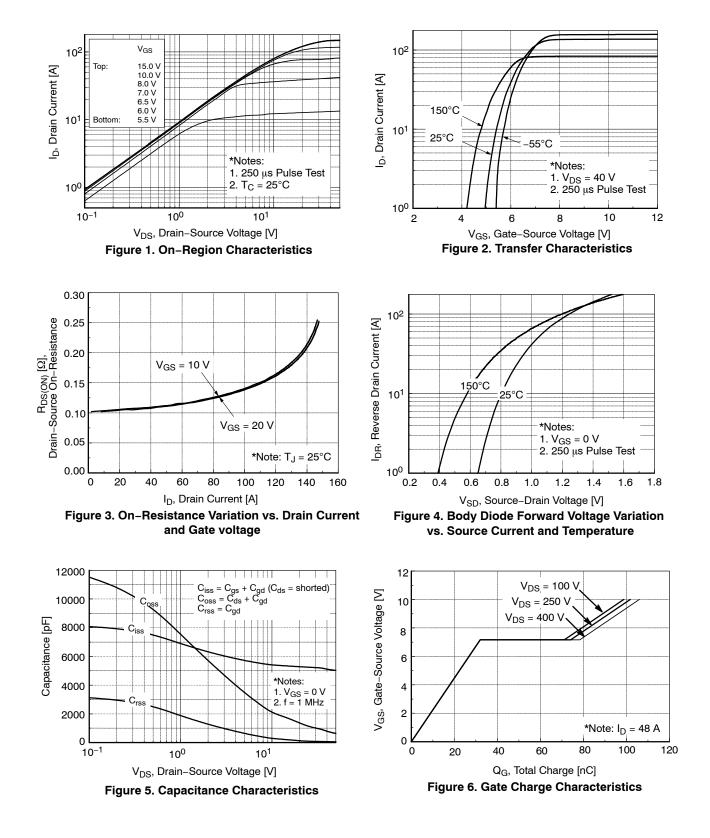
Device Marking	Device	Package	Package Method	Reel Size	Tape Width	Quantity
FDH45N50F-F133	FDH45N50F	TO-247-3	Tube	-	-	30 Units

THERMAL CHARACTERISTICS

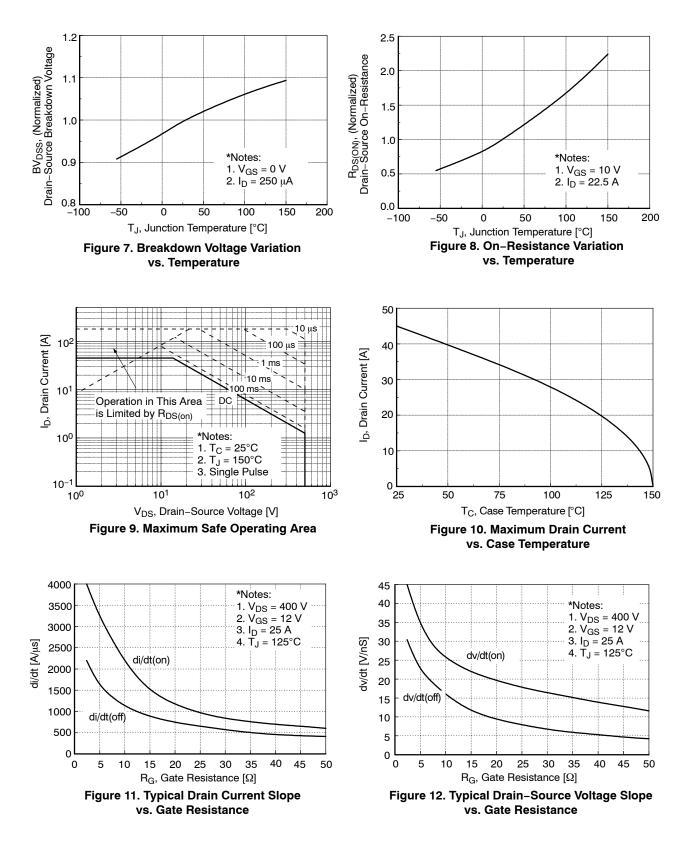
Symbol	Parameter	FDH45N50F-F133	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	0.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	

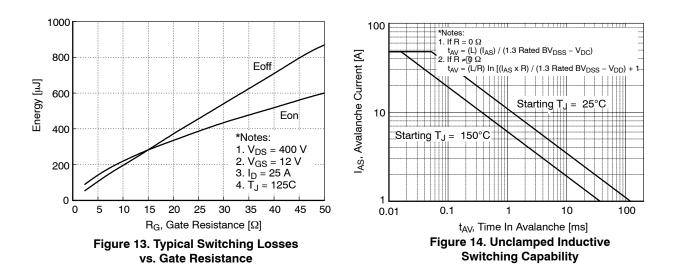
ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

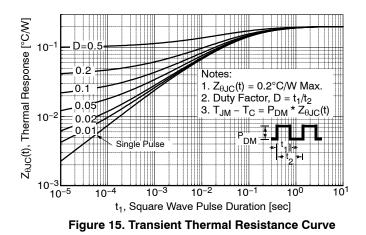
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
OFF CHAR	ACTERISTICS	-				
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	500	-	-	V
$\begin{array}{c} \Delta \text{BV}_{\text{DSS}} \\ / \Delta \text{T}_{\text{J}} \end{array}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	0.5	_	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	25	μΑ
		V_{DS} = 400 V, T_{C} = 125°C	-	-	250	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30$ V, $V_{DS} = 0$ V	-	-	-100	nA
ON CHARA	CTERISTICS			-		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS},\ I_{D}=250\ \mu A$	3	-	5	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 22.5 A	-	0.105	0.12	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 22.5 \text{ A}$	-	49	-	S
DYNAMIC C	CHARACTERISTICS					
C _{iss}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V, f = 1 MHz	-	5100	6630	pF
C _{oss}	Output Capacitance		-	790	1030	pF
C _{rss}	Reverse Transfer Capacitance	1	-	62	-	pF
C _{oss}	Output Capacitance	V_{DS} = 400 V, V_{GS} = 0 V, f = 1 MHz	-	161	-	pF
C _{oss} eff.	Effective Output Capacitance	V_{DS} = 0 V to 400 V, V_{GS} = 0 V	-	342	-	pF
SWITCHING	CHARACTERISTICS	•	-	-	-	-
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 48 \text{ A},$	-	140	290	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{G} = 25 \Omega$ (Note 4)	-	500	1010	ns
t _{d(off)}	Turn-Off Delay Time		_	215	440	ns

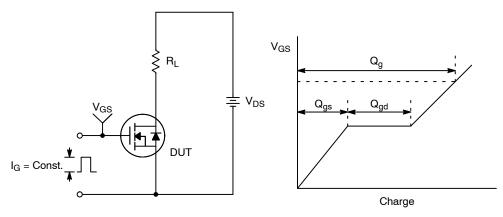

t _{d(off)}	Turn-Off Delay Time		-	215	440	ns
t _f	Turn-Off Fall Time		-	245	500	ns
Qg	Total Gate Charge	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 48 \text{ A},$	-	105	137	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V (Note 4)	-	33	-	nC
Q _{gd}	Gate-Drain Charge		-	45	1	nC

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS


۱ _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	45	А
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current		-	-	180	Α
V _{SD}	Source to Drain Diode Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 45 \text{ A}$	-	-	1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_S = 45 A,$	-	188	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/µs	-	0.64	-	μC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially Independent of Operating Temperature Typical Characteristics.


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

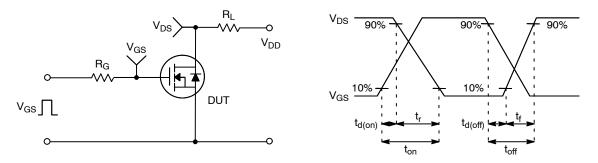


Figure 17. Resistive Switching Test Circuit & Waveforms

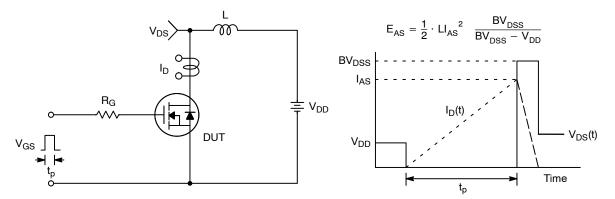


Figure 18. Unclamped Inductive Switching Test Circuit & Waveforms

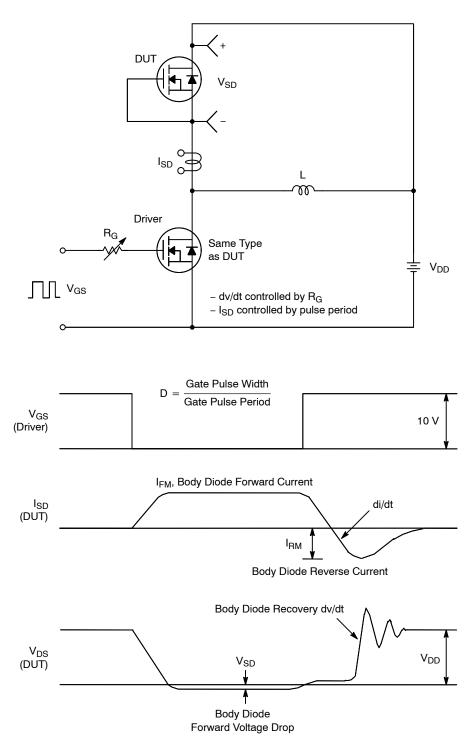
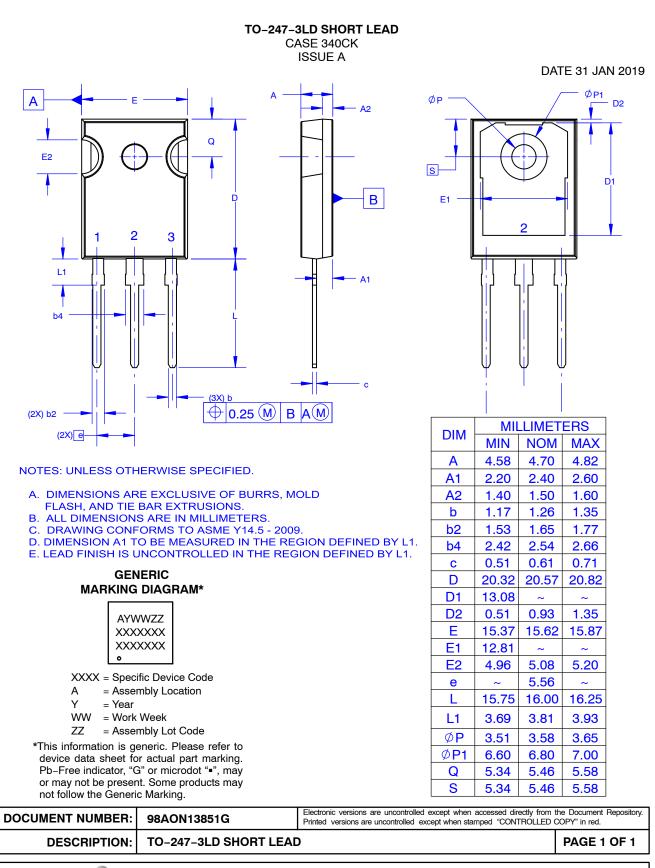



Figure 19. Peak Diode Recovery dv/dt Test Circuit & Waveforms

UniFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

FRFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative