FocusLCDs.com LCDs MADE SIMPLE ${ }^{\ominus}$
 Ph. 480-503-4295 | NOPP@FocusLCD.com
 TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTDM | REPLACEMENT

Character Display Module
Part Number
C162ALBFGS16WN55PAB
Overview
Display area: $80 \mathrm{~mm} \times 36 \mathrm{~mm}(16 \times 2)$
FSTN, Black background, RGB Edge lit, Bottom
view, Wide temp, Transmissive (negative), 5 V
LCD, 5V LED, Controller=ST7066U,
RoHS Compliant

FocusLCDs．com
LCDs MADE SIMPLE

1． 5×8 dots with cursor
2．16characters＊2lines display
3．4－bit or 8－bit MPU interfaces
4．Built－in controller（ST7066U or equivalent）
5．Display Mode \＆Backlight Variations
6．ROHS Compliant

LCD type	ロTN						
	DFSTN	VFSTN Negative					
	ロSTN Yellow Green		－STN Gray			－STN Blue Negative	
View direction	『6 O＇clock		－12 O＇clock				
Rear Polarizer	$\square \mathrm{Reflective}$		－Transflective			\checkmark Transmissive	
Backlight Type	पLED Array	口EL		पInternal Power		$\square 3.0 \mathrm{~V}$ Input	
	『LED Edge	$\square C C F L$		VExternal Power		$\square 5.0 \mathrm{~V}$ Input	
Backlight Color	－White	\square Blue		\square Amber		『Red－Green－Blue	
Temperature Range	\square Normal		『Wide			\square Super Wide	
DC to DC circuit	－Build－in			VNot Build－in			
Touch screen	\square With			『Without			
Font type	『English－Japanese		口English－Europen		－English－Russian		$\square 0$ her

MECHANICAL SPECIFICATIONS

Module size	$80.0 \mathrm{~mm}(\mathrm{~L})^{*} 36.0 \mathrm{~mm}(\mathrm{~W})^{*} \operatorname{Max} 13.0(\mathrm{H}) \mathrm{mm}$
Viewing area	$64.5 \mathrm{~mm}(\mathrm{~L})^{*} 16.4 \mathrm{~mm}(\mathrm{~W})$
Character size	$3.00 \mathrm{~mm}(\mathrm{~L})^{*} 5.23 \mathrm{~mm}(\mathrm{~W})$
Character pitch	$3.51 \mathrm{~mm}(\mathrm{~L})^{*} 5.75 \mathrm{~mm}(\mathrm{~W})$
Weight	Approx．

FocusLCDs.com
LCDs MADE SIMPLE®

Absolute maximum ratings

Item	Symbol	Standard			Unit
Power voltage	$\mathrm{V}_{\text {OD }}-\mathrm{V}_{\text {SS }}$	0	-	7.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$	VSS	-	VDD	
Operating temperature range	$\mathrm{V}_{\text {OP }}$	-20	-	+70	C
Storage temperature range	$\mathrm{V}_{\text {ST }}$	-30	-	+80	

Block diagram

Interface pin description

Pin $n 0$.	Symbol	External connection	Function
1	Vss		Signal ground for LCM
2	VD	Power supply	Power supply for logic for LCM
3	V_{0}		Contrast adjust
4	RS	MPU	Register select signal
5	R/W	MPU	Read/write select signal
6	E	MPU	Operation (data read/write) enable signal
7~10	DB0~DB3	MPU	Four low order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCM. These four are not used during 4-bit operation.
11~14	DB4~DB7	MPU	Four high order bi-directional three-state data bus lines. Used for data transfer between the MPU
15	K	Power supply	Signal ground for BKL
16	A-Red		Signal ground for LCM
17	A-Green		Signal ground for LCM
18	A-Blue		Signal ground for LCM

Contrast adjust

VDD V_{0} : LCD Driving voltage
VR: 10k~20k

8. Optical characteristics

FSTN type display module ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \mathrm{~V}$)

Item		Symbol	Condition	Min.	Typ.	Max.	Unit
Viewing angle (6 0'clock)	Left--Right	θ	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	60	-	deg
	Top--Bottom	θ		-	70	-	
Contrast ratio		CR	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	3	5	-	-
Response time	Rise	tr		-	150	250	ms
	Tall	$\mathrm{t}_{\text {f }}$		-	200	300	

Electrical characteristics

DC characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage for LCD	$\mathrm{V}_{\text {DD }} \mathrm{V}_{0}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	4.3	4.5	4.7	V
Input voltage	$V_{\text {DD }}$		4.8	5.0	5.2	
Supply current	IDD	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=5.0 \mathrm{~V}$	-	1.5	2.5	mA
Input leakage current	ILкG		-	-	1.0	UA
" H " level input voltage	V_{H}		2.2	-	V ${ }_{\text {D }}$	V
"L" level input voltage	$\mathrm{V}_{\text {IL }}$	Twice initial value or less	0	-	0.6	
"H" level output voltage	Vor	LOH=-0.25mA	2.4	-	-	
"L" level output voltage	VoL	LOH=1.6mA	-	-	0.4	

Backlight information $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply Current	ILed	$\mathrm{Vf}=2.0 \mathrm{~V}$, Red	-	10	20	mA
		Vf=3.0V, Green	-	15	20	
		$\mathrm{Vf}=3.0 \mathrm{~V}$, Blue	-	15	20	
Supply voltage	Vf	Red	1.8	-	2.2	V
		Green	2.8	-	3.3	
		Blue	2.8	-	3.3	
Reverse voltage	VR	$\mathrm{Ta}=25^{\circ} \mathrm{C}$,	-	5.0	-	
Luminous Intensity	IV	Red	-	55	60	Cd/m2
		Green	-	190	200	
		Blue	-	25	30	
Peak wavelength	$\mathrm{V}_{\text {IH }}$	Red	630	-	645	nm
		Green	515	-	525	
		Blue	465	-	475	

10. Timing Characteristics

Write cycle ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, VDD $=5.0 \mathrm{~V}$)

Parameter	Symbol	Test pin	Min.	Typ.	Max.	Unit
Enable cycle time	tc	E	500	-	-	ns
Enable pulse width	tw		300	-	-	
Enable rise/fall time	tr, t ${ }_{\text {f }}$		-	-	25	
RS; R/W setup time	tsu1	$\begin{aligned} & \text { RS; R/W } \\ & \text { RS; R/W } \end{aligned}$	100	-	-	
RS; R/W address hold time	th1		10	-	-	
Read data output delay	tsu2	DB0~DB7	60	-	-	
Read data hold time	th2		10	-	-	

Write mode timing diagram

Read cycle ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, $\mathrm{VDD}=5.0 \mathrm{~V}$)

Parameter	Symbol	Test pin	Min.	Typ.	Max.	Unit
Enable cycle time	tc	E	500	-	-	ns
Enable pulse width	tw		300	-	-	
Enable rise/fall time	$\mathrm{tr}, \mathrm{t}^{\text {f }}$		-	-	25	
RS; R/W setup time	tsu	$\begin{aligned} & \text { RS; R/W } \\ & \text { RS; R/W } \end{aligned}$	100	-	-	
RS; R/W address hold time	th		10	-	-	
Read data output delay	td	DB0~DB7	60	-	90	
Read data hold time	tda		20	-	-	

Read mode timing diagram

Instruction description

Outline

To overcome the speed difference between the internal clock of SPLC780D and the MPU clock, SPLC780D performs internal operations by storing control in formations to IR or DR. The internal operation is determined according to the signal from MPU, composed of read/write and data bus (Refer to Table7).
Instructions can be divided largely into four groups:

1) SPLC780D function set instructions (set display methods, set data length, etc.)
2) Address set instructions to internal RAM
3) Data transfer instructions with internal RAM
4) Others

The address of the internal RAM is automatically increased or decreased by 1 .
Note: during internal operation, busy flag (DB7) is read "High".
Busy flag check must be preceded by the next instruction.
11.2 Instruction Table

Instruction										Instruction code	R/W	DB7	DB6

NOTE:
When an MPU program with checking the busy flag (DB7) is made, it must be necessary $1 / 2$ fosc is necessary for executing the next instruction by the falling edge of the " E " signal after the busy flag (DB7) goes to "Low".

Contents

1) Clear display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing " 20 H " (space code) to all DDRAM address, and set DDRAM address to " $00 \mathrm{H}^{\prime}$ into AC (address counter).

Return cursor to the original status, namely, bring the cursor to the left edge on the fist line of the display. Make the entry mode increment (I/D="High").
2) Return home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	-

Return home is cursor return home instruction.
Set DDRAM address to " 00 H " into the address counter.
Return cursor to its original site and return display to its original status, if shifted.
Contents of DDRAM does not change.
3) Entry mode set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	SH

Set the moving direction of cursor and display.
I/D: increment / decrement of DDRAM address (cursor or blink)
When I/D="high", cursor/blink moves to right and DDRAM address is increased by 1.
When I/D="Low", cursor/blink moves to left and DDRAM address is increased by 1 .
*CGRAM operates the same way as DDRAM, when reading from or writing to CGRAM.
SH: shift of entire display
When DDRAM read (CGRAM read/write) operation or SH="Low", shifting of entire display is not performed. If $\mathrm{SH}=$ "High" and DDRAM write operation, shift of entire display is performed according to $1 / \mathrm{D}$ value. (I/D="high". shift left, I/D="Low". Shift right).
4) Display ON/OFF control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	C	B

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit

When D="High", entire display is turned on.
When $D=$ "Low", display is turned off, but display data remains in DDRAM.

C: cursor ON/OFF control bit

When $D=$ "High", cursor is turned on.
When $D=$ "Low", cursor is disappeared in current display, but I/D register preserves its data.

B: Cursor blink ON/OFF control bit

When B="High", cursor blink is on, which performs alternately between all the "High" data and display characters at the cursor position.
When $\mathrm{B}=$ "Low", blink is off.
5) Cursor or display shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

Shifting of right/left cursor position or display without writing or reading of display data.
This instruction is used to correct or search display data.
During 2-line mode display, cursor moves to the 2nd line after the 40th digit of the 1st line.
Note that display shift is performed simultaneously in all the lines.
When display data is shifted repeatedly, each line is shifted individually.
When display shift is performed, the contents of the address counter are not changed.

Shift patterns according to S/C and R/L bits

\mathbf{S} / \mathbf{C}	R/L	
0	0	Shift cursor to the left, AC is decreased by 1
0	1	Shift cursor to the right, AC is increased by 1
1	0	Shift all the display to the left, cursor moves according to the display
1	1	Shift all the display to the right, cursor moves according to the display

6) Function set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	-	-

DL: Interface data length control bit

When DL="High", it means 8 -bit bus mode with MPU.
When DL="Low", it means 4-bit bus mode with MPU. Hence, DL is a signal to select 8-bit or 4-bit bus mode. When 4-but bus mode, it needs to transfer 4-bit data twice.

N : Display line number control bit

When $N=$ "Low", 1 -line display mode is set.
When $\mathrm{N}=$ "High", 2 -line display mode is set.

F: Display line number control bit

When $F=$ "Low", 5×8 dots format display mode is set.
When F="High", 5×11 dots format display mode.
7) Set CGRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.
The instruction makes CGRAM data available from MPU.
8) Set DDRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.
This instruction makes DDRAM data available form MPU.
When 1 -line display mode ($\mathrm{N}=\mathrm{LOW}$), DDRAM address is form " 00 H " to " 4 FH ". In 2 -line display mode ($\mathrm{N}=\mathrm{High}$),
DDRAM address in the 1st line form " 00 H " to " 27 H ", and DDRAM address in the 2 nd line is from " 40 H " to " 67 H ".
9) Read busy flag \& address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

This instruction shows whether SPLC780D is in internal operation or not.
If the resultant BF is "High", internal operation is in progress and should wait BF is to be LOW, which by then the nest instruction can be performed. In this instruction you can also read the value of the address counter.
10) Write data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8 -bit data to DDRAM/CGRAM.
The selection of RAM from DDRAM, and CGRAM, is set by the previous address set instruction (DDRAM address set, CGRAM address set).
RAM set instruction can also determine the AC direction to RAM.
After write operation. The address is automatically increased/decreased by 1 , according to the entry mode.
11) Read data from RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM.
The selection of RAM is set by the previous address set instruction. If the address set instruction of RAM is not performed before this instruction, the data that has been read first is invalid, as the direction of AC is not yet determined. If RAM data is read several times without RAM address instructions set before, read operation, the correct RAM data can be obtained from the second. But the first data would be incorrect, as there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction, it also transfers RAM data to output data register.

After read operation, address counter is automatically increased/decreased by 1 according to the entry mode.

After CGRAM read operation, display shift may not be executed correctly.
NOTE: In case of RAM write operation, AC is increased/decreased by 1 as in read operation.
At this time, AC indicates next address position, but only the previous data can be read by the read instruction.

Display character address code:

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0 A | 0 B | 0 C | 0 D | 0 E | 0 F |
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4 A | 4 B | 4 C | 4 D | 4 E | 4 F |

	cooo	Jont	111	
		日凧F＂F	－9三人p	
xxxoon	（2）	！1 \＃－$=$	－ $\overrightarrow{7} \mathbf{+}$	
	（3）	＂2EREr		
sxx＞0011	（4）	$\# 3 \mathrm{CES}$	」ウテキミ	
	（5）	䒠4DTdt		
sxax001	（6）	\％EUU	－才 $+1 \leq 0$	
vxxotio	（7）	Q GFUfu	7刀ニヨpを	
wxx9011	（8）		F才\％ 79π	
wxxt1000	（1）	（8HYHx	17 交 y ，	
uxxtoor	（2）	） 9 Hi 9	\Rightarrow T／$\\|^{-1} \underline{y}$	
	（3）		エコnvj干	
	（4）	＋：K゙［k《	才サヒロ＊	
mxat100	（5）	，＜L年11	ャコワ＋m	
	（6）	$-=\mathrm{M}] \mathrm{m}\rangle$	ュマジき	
maxt110	（7）	－ 7 H＊$n \rightarrow$	ヨセけ＊	
		270＿ロ		

QUALITY SPECIFICATIONS

Standard of the product appearance test

Manner of appearance test: The inspection should be performed in using 20W x 2 fluorescent lamps. Distance between LCM and fluorescent lamps should be 100 cm or more. Distance between LCM and inspector eyes should be 30 cm or more.

Viewing direction for inspection is 45° from vertical against LCM.

Definition of zone:

A Zone: Active display area (minimum viewing area).
B Zone: Non-active display area (outside viewing area).

Specification of quality assurance

LCDs MADE SIMPLE®
AQL inspection standard
Sampling method: MIL-STD-105E, Level II, single sampling
Defect classification (Note: * is not including)

Classify	Item		Note	AQL
Major	Display state	Short or open circuit	1	0.65
		LC leakage		
		Flickering		
		No display		
		Wrong viewing direction		
		Contrast defect (dim, ghost)	2	
		Back-light	1,8	
	Non-display	Flat cable or pin reverse	10	
		Wrong or missing component	11	
Minor	Display state	Background color deviation	2	1.0
		Black spot and dust	3	
		Line defect, Scratch	45	
		Rainbow		
		Chip	6	
		Pin hole	7	
		Protruded	12	
	Polarizer	Bubble and foreign material	3	
	Soldering	Poor connection	9	
	Wire	Poor connection	10	
	TAB	Position, Bonding strength	13	

Note on defect classification

No.	Item	Criterion			
1	Short or open circuit	Not allow			
	LC leakage				
	Flickering				
	No display				
	Wrong viewing direction				
	Wrong Back-light				
2	Contrast defect	Refer to approval sample			
	Background color deviation				
3	Point defect, Black spot, dust (including Polarizer)$\phi=(\mathrm{X}+\mathrm{Y}) / 2$				
				Point Size	Acceptable Qty.
				$\phi \leq 0.10$	Disregard
				$0.10<\phi \leqslant 0.20$	3
				$0.20<\phi \leqslant 0.25$	2
				$0.25<\phi \leqslant 0.30$	1
				$\phi>0.30$	$\text { Unit: } \begin{array}{r} 0 \\ m m \end{array}$
4	Line defect, Scratch			Line	Acceptable Qty.
			L	W	
			---	$0.015 \geqslant \mathrm{~W}$	Disregard
			$3.0 \geqslant \mathrm{~L}$	$0.03 \geqslant \mathrm{~W}$	2
			$2.0 \geqslant \mathrm{~L}$	$0.05 \geqslant \mathrm{~W}$	
			$1.0 \geqslant \mathrm{~L}$	$0.1>\mathrm{W}$	1
			---	$0.05<\mathrm{W}$	Applied as point defect
			Unit: mm		
5	Rainbow	Not more than two color changes across the viewing area.			

No.	Item	Criterion
7	Segment pattern $\mathrm{W}=$ Segment width $\phi=(\mathrm{X}+\mathrm{Y}) / 2$	(1) Pin hole $\phi<0.10 \mathrm{~mm}$ is acceptable.
8	Back-light	(1) The color of backlight should correspond its specification. (2) Not allow flickering
9	Soldering	(1) Not allow heavy dirty and solder ball on PCB. (The size of dirty refer to point and dust defect) (2) Over 50% of lead should be soldered on Land.
10	Wire	(1) Copper wire should not be rusted (2) Not allow crack on copper wire connection. (3) Not allow reversing the position of the flat cable. (4) Not allow exposed copper wire inside the flat cable.
11*	PCB	(1) Not allow screw rust or damage. (2) Not allow missing or wrong putting of component.

No	Item	Criterion
12	Protruded W: Terminal Width	Acceptable criteria: $\mathrm{Y} \leq 0.4$
13	TAB	1. Position 2 TAB bonding strength test $\mathrm{P}(=\mathrm{F} / \mathrm{TAB}$ bonding width) $\geqslant 650 \mathrm{gf} / \mathrm{cm}$,(speed rate: $1 \mathrm{~mm} / \mathrm{min}$) 5 pcs per SOA (shipment)
14	Total no. of acceptable Defect	A. Zone Maximum 2 minor non-conformities per one unit. Defect distance: each point to be separated over 10 mm B. Zone It is acceptable when it is no trouble for quality and assembly in customer's end product.

