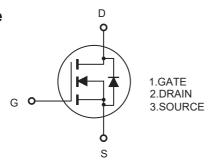


Features

- · Excellent Stability and Uniformity
- Lower R_{DS(ON)}
- · Epoxy Meets UL 94 V-0 Flammability Rating
- · Moisture Sensitivity Level 1

N-Channel Enhancement Mode Field Effect Transistor

Maximum Ratings


- Operating Junction Temperature Range: -55°C to +150°C
- Storage Temperature Range: -55°C to +150°C
- Thermal Resistance: 62°C/W Junction to Ambient

Parameter	Symbol	Rating	Unit	
Drain -Source Voltage	V _{DS}	800	V	
Gate -Source Volltage	V _{GS}	±30	V	
Drain Current-Continuous	I _D	4.0	Α	
Drain Current-Pulse ^(Note1)	I _{DM}	12	Α	
Power Dissipation	P _D	63	W	
Single Pulsed Avalanche Energy ^(Note2)	E _{AS}	162	mJ	
Repetitive Avalanche Energy ^(Note1)	E _{AR}	0.2	mJ	

TO-220

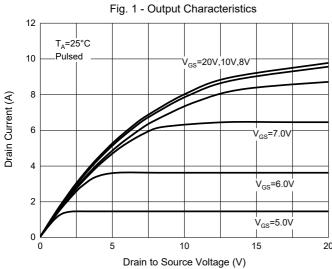
DIMENSIONS INCHES MM DIM NOTE MIN MIN MAX MAX 0.560 0.625 14.22 15.88 Α 0.380 0.420 9.65 10.67 В С 0.140 0.190 3.56 4.82 0.020 0.045 0.51 1.14 4.09 Φ 0.139 0.161 3.53 G 0.090 0.110 2.29 2.79 Н 0.250 6.35 0.012 0.025 0.30 0.64 0.500 0.580 12.70 14.73 1.52 0.045 0.060 1.14 Ν 0.190 0.210 4.83 5.33 Q 0.100 0.135 2.54 3.43 0.080 0.115 2.92 R 2.04 1.39 S 0.045 0.055 1.14 0.230 0.270 5.84 6.86 Т U 0.050 1.27 V 0.045 -----1.15

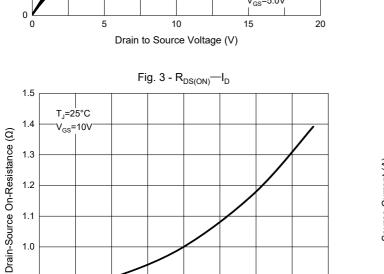
Internal Structure

Electrical Characteristics @ 25°C (Unless Otherwise Noted)

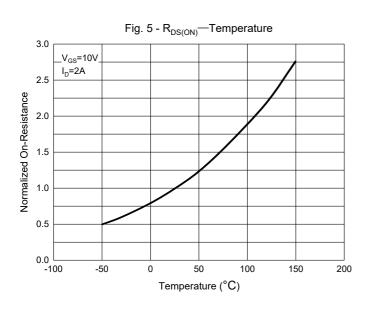
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static Characteristics			,	1	1		
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250μA	800			V	
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±30V			±100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =800V, V _{GS} =0V,T _J =25°C			1	μА	
		V _{DS} =800V, V _{GS} =0V,T _J =150°C			100		
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5		4.5	V	
Drain-Source On-Resistance (Note3)	R _{DS(on)}	V _{GS} =10V, I _D =2A		1	1.2	Ω	
Forward Tranconductance ^(Note 3)	g _{FS}	V _{DS} =10V, I _D =2A		5		S	
Dynamic Characteristics			,	1	1		
Input Capacitance	C _{iss}	V _{DS} =50V,V _{GS} =0V,f=1MHz		598			
Output Capacitance	C _{oss}			30		pF	
Reverse Transfer Capacitance	C _{rss}			4			
Total Gate Charge	Qg	V _{DD} =640V,V _{GS} =10V,I _D =4A		13			
Gate-Source Charge	Q _{gs}			4.5		nC	
Gate-Drain Charge	Q _{gd}			3			
Turn-On Delay Time	t _{d(on)}			39			
Turn-On Rise Time	t _r	V -400V L -44 D -250		25		no	
Turn-Off Delay Time	t _{d(off)}	$V_{DD} = 400V, I_D = 4A, R_G = 25\Omega$		100		ns	
Turn-Off Fall Time	t _f			18			
Drain-Source Body Diode Cha	racteristic	S					
Continuous Body Diode Current	Is	T 05%0			4	۸	
Pulsed Diode Forward Current	I _{SM}	T _C =25°C			12	Α	
Body Diode Voltage	V _{SD}	T _J =25°C,I _{SD} =4A, V _{GS} =0V		0.9	1.2	V	
Reverse Recovery Time	t _{rr}			250		ns	
Reverse Recovery Charge	Q _{rr}	V_R =400V, I_F = I_S , di_F / dt =100A/ μ s		2.1		μC	
Peak Reverse Recovery Current	I _{rrm}			16		Α	

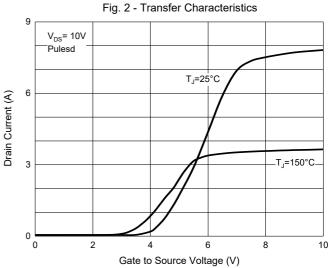
Notes:

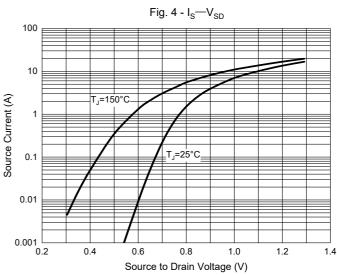

^{1.}Pulse Width Limited by Maximum Junction Temperature.

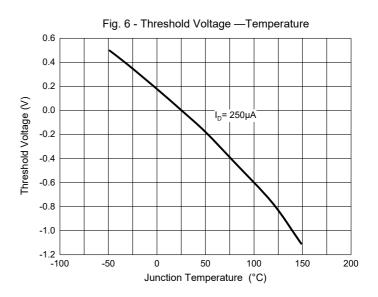

^{2.}L=20mH,I_L=4A,V_{DD}=50V, V_{GS}=10V,R_G=25Ω,Starting T_J=25°C 3. Pulse Test : Pulse Width≤300μs, Duty Cycle ≤2%.

0.8 0


Curve Characteristics






2

Drain Current (A)

Ordering Information

Device	Packing		
Part Number-BP	Bulk:50pcs/Tube,1Kpcs/Box,5Kpcs/Carton		

Note: Adding "-HF" Suffix For Halogen Free, eg. Part Number-BP-HF

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp.** products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.