

Specification for E-Paper

AES200200A00-1.54ENRS

Revision 1.1

Α	Orient Display
ES	E-Paper
200200	Resolution 200 x 200
A00	Revision A00
1.54	Diagonal: 1.54", Module: 31.80×37.32×0.98 mm
E	EPD - Electrophoretic Display (Active Matrix)
N	Normal, Top: 0~+50°C; Tstr: -25~+70°C
R	Reflective Polarizer
S	3-/4-wire SPI Interface
/	Controller SSD1681 Or Compatible
/	ZIF FPC
/	Ultra Wide Viewing Angle
1	Ultra Low Power Consumption

REVISION HISTORY

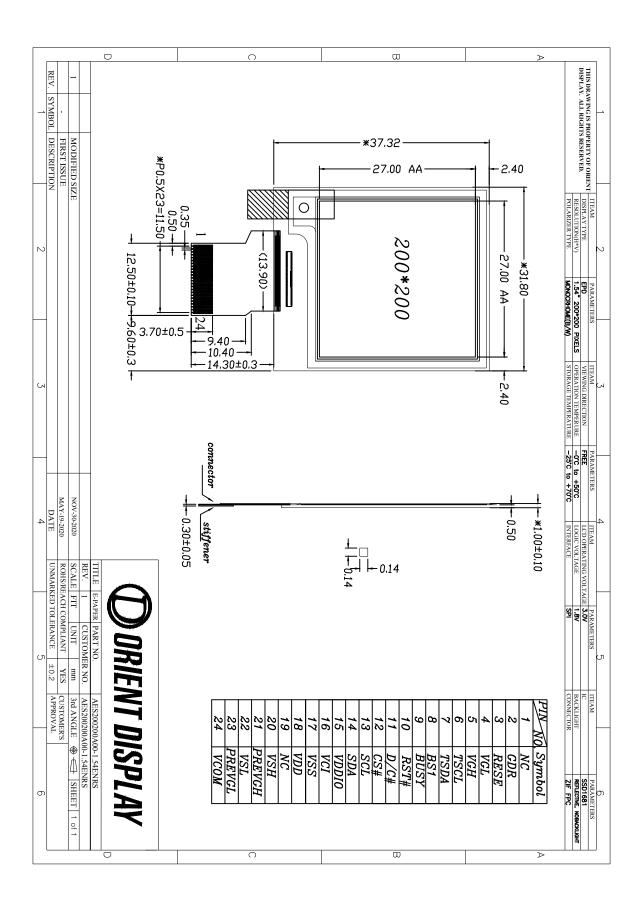
Rev	Date	Item	Page	Remark
1.0	JUN.04.2020	New Creation	ALL	
1.1	NOV.23.2020	Update DC Characteristics Add Packaging	P20 P31	

LIST

1. O	verview	(4)
2. F	eatures	(4)
3. M	lechanical Specifications	(4)
4. M	lechanical Drawing of EPD module	(5)
5. In	put/Output Terminals	(6-7)
6. C	ommand Table	(8-19)
7. E	lectrical Characteristics	(20-24)
8. O	peration Flow and Code Sequence	(25)
9. O	ptical Characteristics	(26)
10.	Handling, Safety and Environment Requirements	(26)
	Reliability test7-28)	
12.	Block Diagram	(29)
13.	Point and line standard	(30)
14.	Packaging	(31)

1. Overview

AES200200A00-1.54ENRS is a TFT active matrix electrophoretic display, with interface and a reference system design. The 1.54" active area contains 200×200 pixels, and has 1-bit black/white full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.


2.Features

- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface
- Low current sleep mode
- On chip display RAM
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and source driving voltage
- I²C Signal Master Interface to read external temperature sensor
- Available in COG package IC thickness 300um

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	200(H)×200(V)	Pixel	Dpi:184
Active Area	$27.0(H) \times 27.0(V)$	mm	
Pixel Pitch	0.14×0.14	mm	
Pixel Configuration	Square		
Outline Dimension	$31.80(H) \times 37.32(V) \times 0.98(D)$	mm	
Weight	2.18 ± 0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

5-1) Pin out List

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	Ι	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	Ι	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	Ι	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	C	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	
23	VGL	C	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled Low.
- Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled High, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is Low, the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin

Low when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor
- Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6.Command Table

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ng	nu.	
0	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao				, 200 MUX	
0	1		0	0	0	0	0	0	0			MUX Gate	e lines se	tting as (A	[8:0] + 1
0	1		0	0	0	0	0	0 B ₂	0 B ₁	A ₈ B ₀		B[2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec B[1]: SM Change s SM=0 [PC G0, G1, G interlaced SM=1,	00 [POR] nning seq ie 1st out DR], 1st gate of quence is canning of DR], 62, G31	l. uence and	nnel, gat 62, G3, nnel, gat G3, G2,
												B[0]: TB			
												TB = 0 [P		n from G0 G199 to G	
0	0	03	0								Cata Driving valtage	TB = 0 [Pe	can from	G199 to G	
0	0 1	03	0 0	0 0	0	0 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Gate Driving voltage Control	TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0	driving vo	G199 to G	0.
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0	driving vo	G199 to G	0.
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate o A[4:0] = 0 VGH setti	driving vo	G199 to G litage 0V to 20V	0.
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0]	driving vo 0h [POR] ng from 1 VGH 20	0199 to Goldand	VGH
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate of A[4:0] = 0 VGH setti A[4:0] 00h	driving vo 0h [POR] ng from 1 VGH 20 10	0V to 20V A[4:0]	VGH 15
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5	Oltage OV to 20V A[4:0] ODh OEh OFh 10h	VGH 15 15.5
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11	Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h	VGH 15 15.5
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5	Oltage OV to 20V A[4:0] ODh OEh OFh 10h	VGH 15 15.5 16 16.5
-		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11	Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h	VGH 15 15.5 16 16.5
-		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate of A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5	0V to 20V A[4:0] ODh OEh OFh 10h 11h	VGH 15 15.5 16 16.5 17
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate of A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12	0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h	VGH 15 15.5 16 16.5 17 17.5
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate of A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12	Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h 15h 16h	VGH 15 15.5 16 16.5 17 17.5 18
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate A [4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 13	0V to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h 15h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19
		03		- 7		-		1	-			TB = 0 [Po TB = 1, so Set Gate A [4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12	Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h 15h 16h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19

-	man		D7	D6	D5	D4	D3	D2	D1	DO	Comm	and		Description			
	1000	Day of the last		1000	1000	1000	10000	100		-	Print Mariana	STATE OF STREET	volt	Description			
0	0	04	0	0	0	0	0	1	0	0		e Driving	voltage	Set Source driving voltage			
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Contro	1		A[7:0] = 41h [POR], VSH1 at 15V B[7:0] = A8h [POR], VSH2 at 5V.			
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo				C[7:0] = 32h [POR], VSL at -15V			
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	211			Remark: VSH1>=VSH2			
200]/B[7]	= 1	"	- 0					7]/B[7	13-17-9				C[7] = 0,			
VSI	H1/VS		oltag	e se	tting	from	2.4V	VS	SH1/			e setting	from 9V	VSL setting from -5V to -17V			
	V8.8	Twon	10/01/0	LAZE	17.01	Lycus	A/CHO		17V	Lve	HI MOHO I	A /P(7:01	LVCHANCH				
	B[7:0] 8Eh	-	1/VSH2 2.4	_	[7:0] Fh	-	/VSH2		A/B[7:0] 23h	VS	9 9	A/B[7:0] 3Ch	VSH1/VSH	2 C[7:0] VSL 0Ah -5			
_	8Fh	+	2.5		0h	-	.8		24h		9.2	3Dh	14.2	0Ch -5.5			
	90h	_	2.6	В	1h	_	.9		25h		9.4	3Eh	14.4	0Eh -6			
	91h	+	2.7	_	2h	-	6	T I	26h		9.6	3Fh	14.6	10h -6.5			
_	92h	-	2.8	_	3h	-	.1		27h		9.8	40h	14.8	12h -7			
	93h 94h		3	_	4h 5h	_	.2	-	28h 29h	-	10.2	41h 42h	15 15.2	14h -7.5			
	95h		3.1		6h	-	.4		2Ah		10.2	43h	15.4	16h -8			
_	96h	_	3.2		7h	_	.5		2Bh		10.6	44h	15.6	18h -8.5			
1. !	97h	+	3.3	В	8h	_	.6		2Ch		10.8	45h	15.8	1Ah -9			
_	98h	_	3.4	-	9h	_	.7		2Dh		11	46h	16	1Ch -9.5			
_	99h	_	3.5		Ah	_	.8		2Eh	_	11.2	47h	16.2	1Eh -10			
_	9Ah 9Bh	_	3.6		Bh Ch	_	7		2Fh 30h	-	11.4	48h 49h	16.4 16.6	20h -10.5			
_	9Ch	_	3.8		Dh	_	.1		31h	7	11.8	4Ah	16.8	22h -11			
	9Dh	+	3.9	_	Eh	-	.2		32h		12	4Bh	17	24h -11.5			
113	9Eh		4	В	Fh	7	.3		33h	4	12.2	Other	NA	26h -12			
_	9Fh	_	4.1		Oh .	_	.4		34h		12.4			28h -12.5			
_	A0h	_	1.2	-	1h	_	.5		35h		12.6			2Ah -13			
	A1h A2h	+	4.3		2h 3h	_	.6		36h 37h	-	12.8		-	2Ch -13.5			
	A2n A3h	+	4.5	_	Ah	-	.8		38h	-	13.2			2Eh -14			
_	A4h	_	4.6		5h	-	.9		39h	-	13.4			30h -14.5			
	A5h	-	4.7	C	6h	_			3Ah		13.6			32h -15			
111	A6h		4.8	C	7h	8	.1		3Bh		13.8			34h -15.5			
_	A7h	- 9	4.9	_	8h	_	8 8.1 8.2 8.3 8.4							36h -16			
	A8h A9h		5.1	-	9h Ah	_	_							38h -16.5			
	AAh	-	5.2	_	Bh	_	.5							3Ah -17			
_	ABh	-	5.3	_	Ch	_	.6							Other NA			
	ACh	-	5.4	_	Dh	_	.7										
	ADh	+	5.5	_	Eh	_	.8										
	AEh		5.6	0	ther	N	IA										
0	0	80	0	0	0	0	1	0	0	0		Code Set	ting	Program Initial Code Setting			
											OIPP	rogram		The command required OUNTAL			
														The command required CLKEN=1.			
														Refer to Register 0x22 for detail.			
						1								BUSY pad will output high during			
			1-4											operation.			
0	0	09	0	0	0	0	1	0	0	1	Write	Register	for Initial	Write Register for Initial Code Setting			
-	7.7	55		-		-	-	-		-		Setting	o mual	Selection			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Soue (octarig		A[7:0] ~ D[7:0]: Reserved			
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo				Details refer to Application Notes of Initi			
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co				Code Setting			
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	1			Code Octang			
U	1		U7	D 6	D 5	D 4	D 3	U2	D1	00							
											4		1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -				
0	0	0A	0	0	0	0	1	0	1	0	Read I	Register	for Initial	Read Register for Initial Code Setting			

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	A.
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable	with Phase 1, Phase 2 and Phase
0	1		1	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A		for soft start cur	rrent and duration setting.
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	_		tart setting for Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	_	-		h [POR] tart setting for Phase2
0	1		0	0	D ₅	D ₄	D ₃	D ₂	-	-	-	= 9Cl	h [POR]
U			U	U	D5	D4	D3	D ₂	Di			= 96h D[7:0] -> Durati = 0Fh	itart setting for Phase3 in [POR] ion setting in [POR] iption of each byte:
													[6:0] / C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	
												0011	NA
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												Ď[5:4]: d D[3:2]: d D[1:0]: d	uration setting of phase luration setting of phase 3 luration setting of phase 2 luration setting of phase 1 Duration of Phase
												Bit[1:0]	[Approximation]
												00	10ms
												01	20ms
												10	30ms
												11	40ms
0	0	10	0	0	0	1	0	0	0	0 1	Doon Sloon mode	Doon Sloen	mode Control:
)	1	10	0	0	0	0	0			_	Deep Sleep mode		escription
,	1		U	U	U	U	U	U	A ₁	A ₀			ormal Mode [POR]
													nter Deep Sleep Mode 1
													nter Deep Sleep Mode 2
												enter Deep S keep output h Remark: To Exit Deep	nmand initiated, the chip wil Sleep Mode, BUSY pad will high. o Sleep mode, User required RESET to the driver

2.000	man D/C#	-	-	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will b completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	0 1	15	0	0	0	1 0	0	1 A2	O A1	Ao	VCI Detection	VCI Detection A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A4	Control (Write to temperature register)	A[11:0] = 7FFh [POR]
0	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from	- Inposition of the control of the c
1	1		Аз	A ₂	A ₁	Ao	0	0	0	0	temperature register)	
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

Comma R/W# D/0	-		_	D6	D5	D4	D3	D2	D1	D0	Command	Description
0 0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
-	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0 1	1	1	B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	to External temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR],
0 1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co	ourisor)	C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature senso starts. BUSY pad will output high during operation.
0 0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0 0	0	21	0	0	1	0	0	0	0	1	Display Undata Cantral	PAM content ention for Display Lindate
-	1	21	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Display Update Control 1	RAM content option for Display Update A[7:0] = 00h [POR] B[7:0] = 00h [POR]
								1				A[7:4] Red RAM option
												0100 Bypass RAM content as 0 1000 Inverse RAM content
												A[3:0] BW RAM option
												0000 Normal
												0100 Bypass RAM content as 0 1000 Inverse RAM content
0 (0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0 1	1		0	0	0	0	0	A2	Aı	Ao		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decremer setting The setting of incrementing or decrementing of the address counter can be made independently in each upper an lower bit of the address. 00 —Y decrement, X decrement, 01 —Y decrement, X increment, 10 —Y increment, X decrement, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after da are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.

	man			De	DE	D.	Da	Do.	D4	Do	0	Danadaktau	
4.55	2000	100000	10.70	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	1	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Opt Enable the stage for Master Ad A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrice written into the BW RAM until a command is written. Address padvance accordingly For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	another pointers will

-		d Ta	ble				,			,		The second secon
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
		Tre-ce	-12	r-3		F	T - 2	l de		r	Tourses Income	12
0	1	29	0	1	0	0	1 A ₃	0 A ₂	0 A ₁	1 A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1	20	0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1		D04h and D63h should be set for this command.

-	man							-	-			In .			
CLOSE C	D/C#	C. ST. ST. ST.		D6	D5	D4	D3	D2	D1	D0	Command	Descript			
0	0	2C	0 A ₇	0 A ₆	1 A ₅	0 A ₄	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register	Write VC A[7:0] =	OM regist 00h [POR]	er from M	ICU interface
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
											1 A	34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1		A7 B7 C7 D7 E7 F7 G7 H7 J7	A ₆ B ₆ C ₆ D ₆ E ₆ G ₆ H ₆ I ₆ J ₆	A ₅ B ₅ C ₅ D ₅ E ₅ F ₅ G ₅ H ₅ I ₅ V ₅	A ₄ B ₄ C ₄ D ₄ E ₄ F ₄ G ₄ H ₄ I ₄ J ₄	A ₃ B ₃ C ₃ D ₃ E ₃ F ₃ G ₃ H ₃ I ₃ J ₃ K ₃	A ₂ B ₂ C ₂ D ₂ E ₂ F ₂ G ₂ H ₂ I ₂ L ₂ K ₂	A ₁ B ₁ C ₁ D ₁ E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	A ₀ B ₀ C ₀ D ₀ E ₀ F ₀ G ₀ H ₀ I ₀	Display Option	Read Register for Display Option: A[7:0]: VCOM OTP Selection (Command 0x37, Byte A) B[7:0]: VCOM Register (Command 0x2C) C[7:0]~G[7:0]: Display Mode (Command 0x37, Byte B to Byte F) [5 bytes] H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J) [4 bytes]			
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Dood 10	Duto Lloo	r ID ators	ed in OTP:
1	1	ZE	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Osel ID Redu				Byte A and
1	1	-	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀			[10 bytes]	1127	26.27 (0.20)
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co					
1	1		D ₇		D ₅	D ₄	D ₃	D ₂	_	_	1				
1	1		E ₇	D ₆	E ₅	E ₄	E ₃	E ₂	D ₁	D ₀					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go					
1	1		H ₇		H ₅	H ₄		100	7727	100					
_	_			H ₆			H ₃	H ₂	H ₁	H ₀					
1	1		17	16	15	14	l ₃	12	11	l ₀					
1	1		J ₇	J 6	J ₅	J ₄	J ₃	J ₂	J_1	Jo					

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A4	0	0	A ₁	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1	1.74	A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao		[153 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], and FR[n]
0	1	-	:	fi::	:	137	13	1	1			Refer to Session 6.7 WAVEFORM
0	1		0.				6.40	•	i.	60		SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1681 application note. BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	30			-		-	- 2	1		ONO Status Read	A[15:0] is the CRC read out value
_	-		A ₁₅	A ₁₄				A ₁₀	A ₉	A ₈		
1	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao		

V	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]	
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.	
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option	
0	1	01	A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection	
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	11 - 11	0: Default [POR]	
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1	1: Spare	
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]	
0	1	-	E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		C[7:0] Display Mode for WS[15:8]	
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo	1	D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]	
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		F[3:0 Display Mode for WS[35:32]	
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho	l'	0: Display Mode 1	
0	1		17	16	15	14	13	l ₂	l ₁	lo		1: Display Mode 2	
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version.	
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not suppo for Display Mode 1	
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID [10 bytes]	
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Remarks: A[7:0]~J[7:0] can be stored in	
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		OTP	
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do			
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀			
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀			
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀			
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho			
0	1		17	l 6	15	14	l ₃	12	I ₁	lo			
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode	
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage	
												Remark: User is required to EXACTLY follow the reference code sequences	

1 1	D2 1 A2	0 A ₁	0 A ₀	Command Border Waveform Control	A[7:0] = C0h A [7:6] :Selec A[7:6] 00 01 10 11[POR]	r waveform for VBD [POR], set VBD as HIZ. ct VBD option Select VBD as GS Transition, Defined in A[2] and A[1:0] Fix Level, Defined in A[5:4] VCOM HiZ
	-		-	Border Wavelorin Control	A[7:0] = C0h A [7:6] :Selec A[7:6] 00 01 10 11[POR]	[POR], set VBD as HIZ. ct VBD option Select VBD as GS Transition, Defined in A[2] and A[1:0] Fix Level, Defined in A[5:4] VCOM
					00 01 10 11[POR]	Select VBD as GS Transition, Defined in A[2] and A[1:0] Fix Level, Defined in A[5:4] VCOM
					00 01 10 11[POR]	GS Transition, Defined in A[2] and A[1:0] Fix Level, Defined in A[5:4] VCOM
					01 10 11[POR]	Defined in A[2] and A[1:0] Fix Level, Defined in A[5:4] VCOM
					10 11[POR]	Defined in A[5:4] VCOM
					11[POR]	
						HiZ
					Δ [5·/] Eiv I o	
						vel Setting for VBD
					A[5:4]	VBD level
					00	VSS
					01	VSH1
					10	VSL
					11	VSH2
					A[2] GS Tran	sition control
						S Transition control
	- 1			12		ollow LUT
				1		
				112		Output VCOM @ RED)
					1 10	MOW LOT
				. 0	A [1:0] GS Tr	ansition setting for VBD
					A[1:0]	VBD Transition
					00	LUT0
				11	01	LUT1
					10	LUT2
40					11	LUT3
1 1	4 1	4	1	End Ontion (EODT)	Option for LLI	Tand
-	-	1	1	End Option (EOPT)	Option for LU A[7:0]= 02h [I	
A ₃ A ₂	A ₂	A ₁	A ₀		22h Norm	
						ce output level keep
		+ +		1		ous output before power off
0 0	0	0	1	Read RAM Option	Read RAM O	ention
0 0		0	Ao		A[0]= 0 [POR	
	0	Ü	Λ0		0 : Read RAN	I corresponding to RAM0x2 I corresponding to RAM0x2
0 1	1.6	0	0	Set RAM X - address		tart/end positions of the ess in the X direction by an
				Start / Life position		
B ₃ B ₂	B ₂	B ₁	B ₀		addioso difft	isi i u mi
						5:0], XStart, POR = 00h 5:0], XEnd, POR = 15h
_	1	0	1	Set Ram Y- address	Specify the st	tart/end positions of the
0 1			Ao	Start / End position	window addre	ess in the Y direction by an
	0	0			address unit f	or RAM
A ₃ A ₂	-	10			VI8-01- ACVID	3:0], YStart, POR = 000h
A ₃ A ₂ 0 0	D2 1	0	B ₈			3:0], YEnd, POR = 127h
-	A ₃ B ₃ 0 A ₃ 0	A ₃ A ₂ B ₃ B ₂ 0 1 A ₃ A ₂	A ₃ A ₂ A ₁ B ₃ B ₂ B ₁ 0 1 0 A ₃ A ₂ A ₁ 0 0 0 B ₃ B ₂ B ₁	A ₃ A ₂ A ₁ A ₀ B ₃ B ₂ B ₁ B ₀ 0 1 0 1 A ₃ A ₂ A ₁ A ₀ 0 0 0 A ₈ B ₃ B ₂ B ₁ B ₀	A3 A2 A1 A0 B3 B2 B1 B0 Start / End position 0 1 0 1 A3 A2 A1 A0 0 0 0 A8 B3 B2 B1 B0 Start / End position	A3 A2 A1 A0 B3 B2 B1 B0 Start / End position window addres address unit A[5:0]: XSA[5] B[5:0]: XEA[5] D 1 0 1 Set Ram Y- address Start / End position Specify the st window addres address unit for

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for			M for Reg	ular Patter
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0 A[7]: The A[6:4]: St	0h [POR] 1st step v ep Height,	alue, POF POR= 00	R = 0
												to Gate	tor ru um n	i i dilooti	orr dooord
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
											1	001	16	101	200
												010	32	110	200
												011	64	111	200
												Step of al) on accordi
												to Source	Width	10.01	Width
												A[2:0] 000	8	A[2:0]	128
												000	16	100	200
												010	32	110	200
												011	64	111	200
												BUSY par operation	d will outp	ut high du	ring
)	0	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	1 A ₀	Auto Write B/W RAM for Regular Pattern		e B/W RAI	M for Reg	ular Patter
			7.4	7.0		7.4		7.2	7.11	7.0		A[6:4]: St	1st step v ep Height, ter RAM ir	POR= 00	
												A[6:4]	Height	A[6:4]	Height
											V 1	000	8	100	128
											\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	001	16	101	200
												010	32	110	200
											A 1	011	64	111	200
) on accordi
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												During op	eration, B	USY pad	will output
)	0	4E	0	1	0	0	1	1	1	0	Set RAM X address		al settings		
0	1		0	0	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	counter	A[5:0]: 00	n the addr h [POR].	ess count	er (AC)
)	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address		al settings		
)	1	- 1	A7	A ₆	A5	A ₄	A ₃	A ₂	A ₁	A ₀	counter		n the addr		er (AC)
)	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	00h [POR].	Y Lobert	
)	0	7F	0	1	1	1	1	1	1	1	NOP	does not module.		effect on t	ommand; i he display
												Frame Mo Comman	emory Wri ds.	te or Read	d

7. Electrical Characteristics

7-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

7-2) Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	$V_{\rm CI}$	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	V_{IH}	-	-	0.8 V _{CI}	-	-	V
Low level input voltage	$V_{\rm IL}$	-	-	-	-	0.2 V _{CI}	V
High level output voltage	V_{OH}	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	V_{OL}	IOL = 100uA	-	-	-	0.1 V _{CI}	V
Typical power	P_{TYP}	V _{CI} =3.0V	-	-	4.5	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0V	-	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	V _{CI} =3.0V	-	-	1.5	-	mA
Image update time	-	25 ℃	-	-	3	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

- The Typical power consumption is measured with following pattern transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern.(Note 7-1)
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by ODNA
- Vcom is recommended to be set in the range of assigned value $\pm\,0.1V.$

Note 7-1

The Typical power consumption

7-3) Panel AC Characteristics

7-3-1) MCU Interface

7-3-1-1) MCU Interface selection

The module can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 7-1.

A-control of the second	Pin Name								
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA			
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA			
3-wire serial peripheral interface (SPI) – 9 bits SPI	H	RES#	CS#	L	SCL	SDA			

Table 7-1: Interface pins assignment under different MCU interface

Note

(1) L is connected to V_{SS} and H is connected to V_{DDIO}

7-3-1-2) MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 7-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Table 7-2: Control pins status of 4-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

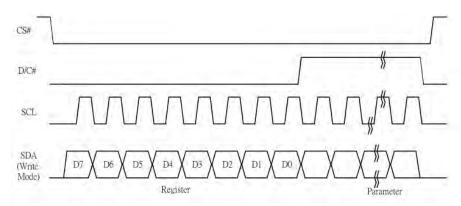


Figure 7-1: Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

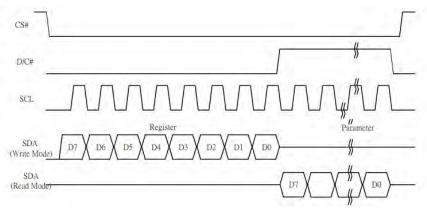


Figure 7-2: Read procedure in 4-wire SPI mode

7-3-1-3) MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	Ľ

Table 7-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

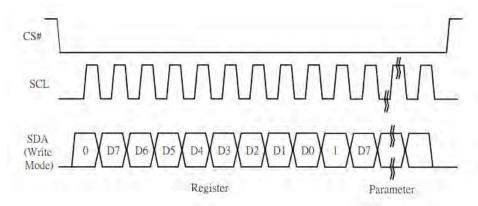


Figure 7-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

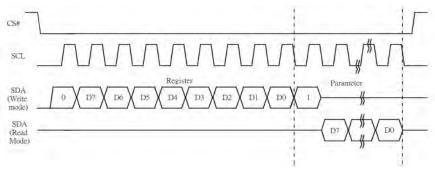


Figure 7-4: Read procedure in 3-wire SPI mode

7-3-2)Serial Peripheral Interface

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)	12.7	10-1	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65	15.50	- P.	ns
tcsнigh	Time CS# has to remain high between two transfers	100	11.5	10-0	ns
tsclhigh	Part of the clock period where SCL has to remain high	25	Te.		ns
tscllow	Part of the clock period where SCL has to remain low	25	11	1	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	11.2	140	ns
tsiHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	0.51		ns

Read mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Read Mode)	W.C	1031	2.5	MHz
Time CS# has to be low before the first rising edge of SCLK	100	1.0	PAT	ns
Time CS# has to remain low after the last falling edge of SCLK	50	113	11(4)	ns
Time CS# has to remain high between two transfers	250		1.4	ns
Part of the clock period where SCL has to remain high	180	- 1	1.54	ns
Part of the clock period where SCL has to remain low	180	100	14	ns
Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	l les	50	16	ns
Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	4 75	0	1.	ns
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK 100 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low 180 Time SO(SDA Read Mode) will be stable before the next rising edge of SCL -	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers 250 - Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL - 50	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers 250 - Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL - 50 -

Note: All timings are based on 20% to 80% of VDDIO-VSS

Table 7-4: Serial Peripheral Interface Timing Characteristics

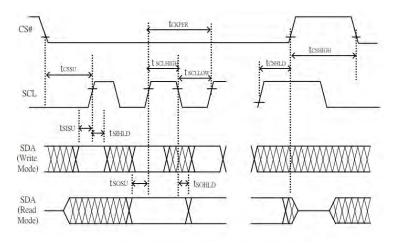
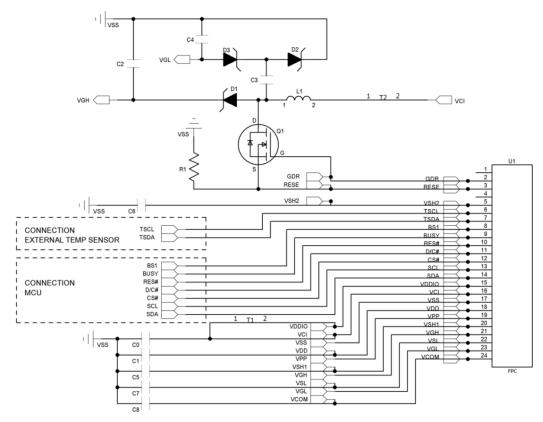
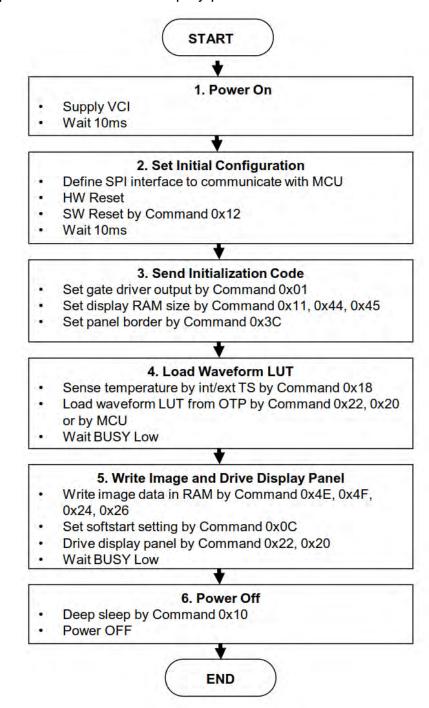



Figure 7-5: SPI timing diagram

7-4) Reference Circuit


Part Name	Value	Requirements/Reference Part
C0-C1	1uF	X5R/X7R; Voltage Rating : 6V or 25V
C2-C7	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
C8	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
R1	2.2 ohm	0402/0603/0805; 1% variation, ≥ 0.05W
D1-D3	Diode	MBR0530 1) Reverse DC voltage ≥ 30V 2) lo ≥ 500mA 3) Forward voltage ≤ 430mV
Q1 NMOS		Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage ≥ 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on ≤ 2.1Ω @ Vgs = 2.5V
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)
U1	0.5mm ZIF socket	24pins, 0.5mm pitch

Remarks:

- 1) The recommended component value and reference part in Table is subject to change depending on panel loading.
- 2) Customer is required to review if the selected component value and part is suitable for their application.

8. Operation Flow and Code Sequence

8-1) General operation flow to drive display panel

9. Optical Specifications

9-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	ı	%	9-1
CR	Contrast Ratio	Indoor	8:1		-		9-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			9-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes: 9-1. Luminance meter: Eye-One Pro Spectrophotometer.

9-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

9-3 WS: White state, DS: Dark state

10. Handling, Safety and Environment Requirements

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

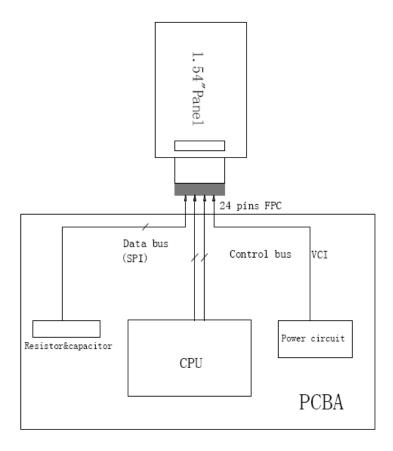
Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status						
Product specification	The data sheet contains final product specifications.					
	Limiting values					
Limiting values given are in acc	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).					
Stress above one or more of the limiting values may cause permanent damage to the device.						
These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics						
sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.						
Application information						
Where application information is given, it is advisory and dose not form part of the specification.						

Product Environmental certification
RoHS

11.Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temp erature Operation	T=50°C,RH=35% for 240 hrs	When the experimental cycle finished, the EPD samples will be taken out from the high temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Bp.	When experiment finished, the EPD must meet electrical performance standards.
2	Low-Tempe rature Operation	T = 0°C for 240 hrs	When the experimental cycle finished, the EPD samples will be taken out from the low temperature environmental chamber and set aside for a few minutes. As EPDs return room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Ab.	When experiment finished, the EPD must meet electrical performance standards.
3	High-Temp erature Storage	T = +70°C, RH=35% for 240 hrs Test in white pattern	When the experimental cycle finished, the EPD samples will be taken out from the high temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Bp.	When experiment finished, the EPD must meet electrical performance standards.
4	Low-Tempe rature Storage	T = -25°C for 240 hrs Test in white pattern	When the experimental cycle finished, the EPD samples will be taken out from the low temperature environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-2Ab	When experiment finished, the EPD must meet electrical performance standards.
5	High Temperatur e, High- Humidity Operation	T=+40°C, RH=80% for 240 hrs	When the experimental cycle finished, the EPD samples will be taken out from the environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-3CA.	When experiment finished, the EPD must meet electrical performance standards.
6	High Temperatur e, High- Humidity Storage	T=+50°C, RH=80% for 240 hrs Test in white pattern	When the experimental cycle finished, the EPD samples will be taken out from the environmental chamber and set aside for a few minutes. As EPDs return to room temperature, testers will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-3CA.	When experiment finished, the EPD must meet electrical performance standards.


7	Temperatur e Cycle	[-25°C 30mins] →[Temperature rise 30mins] [+70°C,RH=35% 30mins] →[Temperature drop 30mins], 1 cycle=2hrs, 50 cycles Test in white pattern	 Samples are put in the Temp & Humid. Environmental Chamber. Temperature cycle starts with -25°C, storage period 30 minutes. After 30 minutes, it needs 30min to let temperature rise to 60°C. After 30min, temperature will be adjusted to 60°C,RH=35% and storage period is 30 minutes. After 30 minutes, it needs 30min to let temperature rise to -25°C. One temperature cycle (2hrs) is complete. Temperature cycle repeats 50 times. When 50 cycles finished, the samples will be taken out from experiment chamber and set aside a few minutes. As EPDs return to room temperature, tests will observe the appearance, and test electrical and optical performance based on standard# IEC 60 068-2-14NB. 	When experiment finished, the EPD must meet electrical performance standards.
8	UV exposure Resistance	765 W/m ² for 168 hrs,40°C	Standard# IEC 60 068-2-5 Sa	
9	Electrostatic discharge	Machine Model: +/-250V, 0Ω, 200PF	Standard# IEC61000-4-2	
10	Package Vibration	1.04G,Frequency: 10~500Hz Direction: X, Y, Z Duration:1hours in each direction	Full packed for shipment	
11	Package Drop Impact	Drop from height of 122 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment	

Actual EMC level to be measured on customer application.

Note: (1) The protective film must be removed before temperature test.

- (2) There's temperature vs display quality limitation in our display module, we guarantee 1 pixel display quality from $5^{\circ}\text{C} \sim 30^{\circ}\text{C}$, and 2 pixel display quality for $0^{\circ}\text{C} \sim 5^{\circ}\text{C}$ & $30^{\circ}\text{C} \sim 40^{\circ}\text{C}$.
- (3) In order to make sure the display module can provide the best display quality, the update should be made after putting the display module in stable temperature environment for 4 hours at 25° C.

12. Block Diagram

13. Point and line standard

Shipment Inseption Standard

Part-A: Active area Part-B: Border area

Equipment: Electrical test fixture, Point gauge

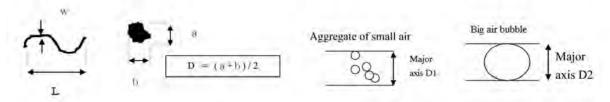
Outline dimension:

31.8(H) ×37.32(V) ×0.98(D)

Unit: mm

	Temperature	Humidity	Illumina	nce Distance	Time	Angle	
Environment	23±2℃	55± 5%RH	1200~ 1500Lu	300 mm	35 Sec		
Name	Causes		Spot	size	Part-A	Part-B	
	B/W spot in glass or		$D \le 0$,15mm	Ignore		
Spot	protection sheet,	().15mm <	2	Ignore		
	foreign mat. Pin hole		0.25mm	< D	0		
	Scratch on glass or	Length		Width	Part-A	Ignore	
	Scratch on FPL or	L ≤1.0mm		W≤0.1 mm	Ignore		
Scratch or line defect	Particle is Protection	1.0 mm < L ≤ 2.5mm		0.1 mm <w≤ 0.2mm<="" td=""><td>2</td></w≤>	2		
	sheet.	2.5 mm	n <l< td=""><td>0.2mm < W</td><td>0</td><td></td></l<>	0.2mm < W	0		
		D1, D2 ≤ 0.15 mm					
Air bubble	Air bubble	0.15 mm < D1,D2 ≤ 0.2mm			2	Ignore	
			0				
Side Fragment			*				
		X≤3mm	, Y≤0.5m	m & display is ok, Ignor	2		

Remarks: Spot define: That only can be seen under WS or DS defects.

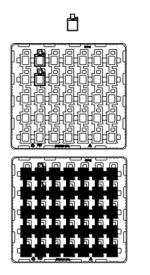

Any defect which is visible under gray pattern or transition process but invisible under black and white is disregarded.

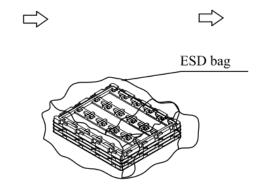
Here is definition of the "Spot" and "Scratch or line defect".

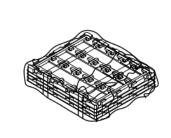
Spot: W > 1/4L Scratch or line defect: $W \le 1/4L$

Definition for L/W and D (major axis)

FPC bonding area pad doesn't allowed visual inspection.

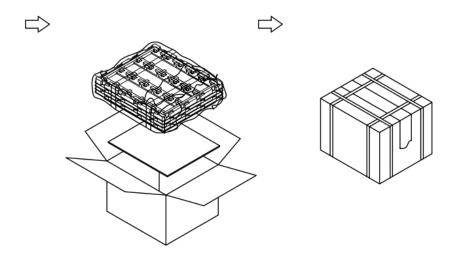



Note: AQL = 0.4


14. Packaging

PACKLING ORDER:

- 1) Putting 35 pcs Modules on each PET tray.And cover a dedicated EPE film.
- 2) Putting 12 pcs PET trays together with 1 empty tray on the top of PET tray. Insert in the ESD bag, add desiccant in the ESD bag.
- 3) the tray together with adhesive tape



4) Putting into one outcarton

5) Packing finished

Note:35 pcs in a tray, 12 trays in a inner carton, 1 inner cartons in a out carton, so 35x12x1=420pcs/Outcarton

Dimension (Out carton): 394*344*255mm