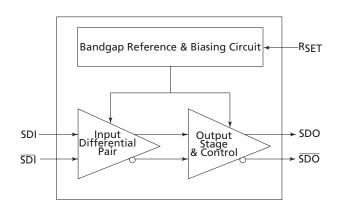


GS9068 SD SDI Cable Driver

Key Features

- SMPTE 259M and SMPTE 344M compliant
- Dual coaxial cable driving outputs
- 50Ω differential PECL input
- Single 3.3V power supply operation
- Space-saving 8-lead SOIC
- Operating temperature range: 0°C to 70°C
- Pin compatible with GS1528 HD-LINX® II multirate SDI dual slew-rate cable driver
- Pb-free and Green

Description


The GS9068 is a second generation high-speed bipolar integrated circuit designed to drive one or two 75 Ω co-axial cables at data rates up to 540Mb/s.

The GS9068 accepts a LVPECL level differential input, which may be AC-coupled. External biasing resistors at the inputs are not required.

Power consumption is typically 160mW using a +3.3V DC power supply.

Applications

• SMPTE 259M Coaxial Cable Serial Digital Interfaces

GS9068 Functional Block Diagram

Contents

1. Pin Out	3
1.1 Pin Assignment	3
1.2 Pin Descriptions	3
2. Electrical Characteristics	4
2.1 Absolute Maximum Ratings	4
2.2 DC Electrical Characteristics	4
2.3 AC Electrical Characteristics	5
3. Detailed Description	6
3.1 Serial Digital Input	6
3.2 Serial Digital Output	6
3.3 Output Return Loss Measurement	7
3.4 Output Amplitude Adjustment	7
4. Application Reference Design	9
4.1 PCB Layout	9
4.2 Typical Application Circuit	9
5. References	9
6. Package and Ordering Information1	0
6.1 Package Dimensions	0
6.2 Ordering Information	0
7. Revision History	0

1. Pin Out

1.1 Pin Assignment

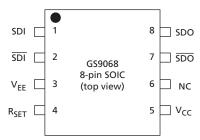


Figure 1-1: Pin Assignment

1.2 Pin Descriptions

Pin Number	Name	Туре	Description	
1, 2	SDI, SDI	Input	Serial digital differential input.	
3	V _{EE}	Input Power	Most negative power supply connection - connect to GND.	
4	R _{SET}	Input	External output amplitude control resistor.	
5	V _{CC}	Input Power	Most positive power supply connection - connect to +3.3V.	
6	NC	_	No Connect.	
7, 8	SDO, SDO	Output	Serial digital differential output.	

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 2-1: Absolute Maximum Ratings

Parameter	Value
Supply Voltage	-0.5V to 3.6 V _{DC}
Input ESD Voltage	500V
Storage Temperature Range	$-50^{\circ}\text{C} < \text{T}_{\text{s}} < 125^{\circ}\text{C}$
Input Voltage Range (any input)	-0.3 to (V $_{\rm CC}$ +0.3)V
Operating Temperature Range	0°C to 70°C
Power Dissipation	300mW
Lead Temperature (soldering, 10 sec)	260°C

2.2 DC Electrical Characteristics

Table 2-2: DC Electrical Characteristics

Parameter	Symbol	Conditions	Min	Typical	Max	Units	Test Level
Supply Voltage	V _{CC}		3.1	3.3	3.5	V	3
Power Consumption	P _D		-	160	-	mW	5
Supply Current	I _s		-	48	-	mA	1
Output Voltage	V _{OC}	Common mode	-	V_{CC} - $\Delta V_{SDO(SE)}$	-	mV	6
Input Voltage	V _{IC}	Common mode	$1.6 + \Delta V_{SDI(DIFF)}/2$	-	V _{CC} - ΔV _{SDI(DIFF)} /2	mV	1

2.3 AC Electrical Characteristics

Table 2-3: AC Electrical Characteristics

Parameter	Symbol	Conditions	Min	Typical	Max	Units	Test Level
Serial input data rate	DR _{SDI}	_	_	_	540	Mb/s	1
Input Voltage Swing	$\Delta V_{SDI(DIFF)}$	Differential	300	_	2200	mV _{p-p}	1
Output Voltage Swing	$\Delta V_{SDO(SE)}$	single-ended into a 75Ω external load	750	800	850	mV _{p-p}	1
		$R_{SET} = 750\Omega$					
Additive jitter	_	-	_	_	30	ps	1
Rise/Fall time	t _r /t _f	20% to 80%	400	_	800	ps	1
Mismatch in rise/fall time	$\Delta t_r / \Delta t_f$	_	_	_	30	ps	1
Duty cycle distortion	_	_	_	_	100	ps	1
Overshoot	_	_	_	_	8	%	1
Output Return Loss	ORL	_	15	_	_	dB	7

TEST LEVELS

- 1. Production test at room temperature and nominal supply voltage with guard bands for supply and temperature ranges.
- 2. Production test at room temperature and nominal supply voltage with guard bands for supply and temperature ranges using correlated test.
- 3. Production test at room temperature and nominal supply voltage.
- 4. QA sample test.
- 5. Calculated result based on Level 1, 2, or 3.
- 6. Not tested. Guaranteed by design simulations.
- 7. Not tested. Based on characterization of nominal parts.
- 8. Not tested. Based on existing design/characterization data of similar product.
- 9. Indirect test.
- 10.Wafer Probe.

3. Detailed Description

3.1 Serial Digital Input

SDI/SDI are high-impedance differential inputs. Several conditions must be observed when interfacing to these inputs:

- 1. The differential input signal amplitude must be between 300 and 2000mVpp.
- 2. For DC-coupling to the device, the common mode voltage must be between $1.6+\Delta V_{SDI(DIFF)}$ and VCC- $\Delta V_{SDI(DIFF)}$.
- 3. For input trace lengths longer than approximately 1cm, the inputs should be terminated as shown in the Typical Application Circuit.

The GS9068 inputs are self-biased, allowing for simple AC-coupling to the device. For serial digital video, a minimum capacitor value of $4.7\mu F$ should be used to allow coupling of pathological test signals. A tantalum capacitor is recommended.

3.2 Serial Digital Output

The GS9068 outputs are current mode, and will drive 800mV into a 75Ω load. These outputs are protected from accidental static damage with internal static protection diodes.

The SMPTE 259M standard requires that the output of a cable driver have a source impedance of 75Ω and a return loss of at least 15dB between 5MHz and 540MHz. In order for an SDI output circuit using the GS9068 to meet this specification, the output circuit shown in the Typical Application Circuit is recommended.

The value of L_{COMP} will vary depending on the PCB layout, with a typical value of 5.6nH. A 4.7 μ F capacitor is used for AC-coupling the output of the GS9068. This value is chosen to ensure that pathological signals can be coupled without a significant DC component occurring (see Section 4. Application Reference Design, for more details).

When measuring return loss at the GS9068 output, it is necessary to take the measurement for both a logic high and a logic low output condition. This is because the output protection diodes act as a varactor (voltage controlled capacitor) as shown in Figure 3-1. Consequently, the output capacitance of the GS9068 is dependent on the logic state of the output.

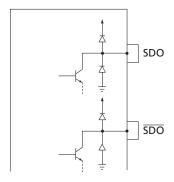


Figure 3-1: Static Protection Diodes

3.3 Output Return Loss Measurement

To perform a practical return loss measurement, it is necessary to force the GS9068 output to a DC high or low condition. The actual return loss will be based on the outputs being static at V_{CC} or V_{CC} -1.6V. Under normal operating conditions, the outputs of the GS9068 swing between V_{CC} -0.4V and V_{CC} -1.2V, hence the measured value of return loss will not represent the actual operating return loss.

A simple method of calculating the values of actual operating return loss is to interpolate the two return loss measurements. In this method, the values of return loss are estimated at V_{CC} -0.4V and V_{CC} -1.2V based on the measurements at V_{CC} and V_{CC} -1.6V.

The two values of return loss (high and low) will typically differ by several decibels. If the measured return loss is R_H for logic high and R_L for logic low, then the two values can be interpolated as follows:

$$R_{IH} = R_{H^-} (R_{H^-} R_{I_-})/4$$
, and

$$R_{\rm IL} = R_{\rm L} + (R_{\rm H} - R_{\rm L})/4$$

Where R_{IH} is the interpolated logic high value and R_{IL} is the interpolated logic low value.

For example: if R_H = -18dB and R_L = -14dB; the interpolated values are R_{IH} = -17dB and R_{IL} = -15dB.

3.4 Output Amplitude Adjustment

The output amplitude of the GS9068 can be adjusted by changing the value of the R_{SET} resistor as shown in Figure 3-2 and Table 3-1 below. For an 800 mVp-p output with a nominal $\pm 7\%$ tolerance, a value of 750Ω is required. A $\pm 1\%$ SMT resistor should be used.

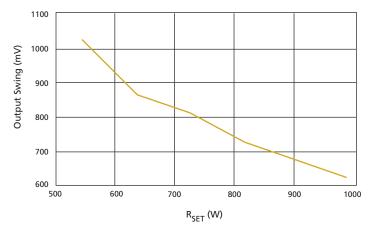


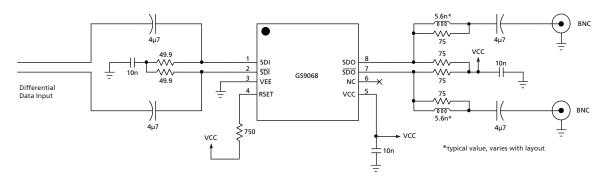
Figure 3-2: Output Amplitude Adjustment

The R_{SET} resistor is part of the high-speed output circuit of the GS9068. The resistor should be placed as close as possible to the R_{SET} pin. In addition, the PCB capacitance should be minimized at this node by removing the PCB ground plane beneath the R_{SET} resistor and the R_{SET} pin.

Table 3-1: R_{SET} vs. V_{OD}

RSET (Ω)	Output Swing
995	608mV
824	734mV
750	800mV
600	884mV
573	1040mV

NOTE: For reliable operation of the GS9068 over the full temperature range, do not use an R_{SET} value below 573 $\Omega.$


4. Application Reference Design

4.1 PCB Layout

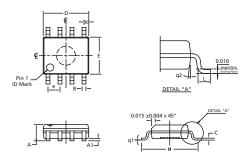
An FR-4 dielectric can be used, however, controlled-impedance transmission lines are required for PCB traces longer than approximately 1cm. Note the following PCB artwork features used to optimize performance:

- The PCB groundplane is removed under the GS9068 output components to minimize parasitic capacitance
- The PCB ground plane is removed under the GS9068 R_{SET} pin and resistor to minimize parasitic capacitance
- Input and output BNC connectors are surface-mounted in-line to eliminate a
 transmission line stub caused by a BNC mounting via high-speed traces, which are
 curved to minimize impedance variations due to change of PCB trace width

4.2 Typical Application Circuit

NOTE: All resistors in Ohms, capacitors in Farads, and inductors in Henrys, unless otherwise noted

Figure 4-1: Typical Application Circuit


5. References

Compliant with SMPTE 259M and SMPTE 344M.

6. Package and Ordering Information

6.1 Package Dimensions

SYMBOL	8 SOIC			
SYM	Min.	Max.		
Α	0.054	0.068		
A1	0.004	0.0098		
В	0.014	0.019		
D	0.189	0.196		
Е	0.150	0.157		
Н	0.229	0.244		
е	0.050 BSC			
С	0.0075	0.0098		
L	0.016	0.034		
Х	0.0215 REF			
q1	0°	8°		
q2	7° BSC			

- NOTES: 1. All dimensions in inches unless otherwise stated.
- Lead coplanarity should be 0 to 0.004" max.
 Package surface finishing: VDI 24-27 (dual).
 Package surface finishing: VDI 12-15 (16) SOICINE materials.
- Package surface finishing: VDI 13~15 (16L SOIC[NB] matrix).

 4. All dimensions exclude mold flashes.

 5. The lead width (R) to be determined at 0.0075"

Figure 6-1: Package Dimensions

6.2 Ordering Information

Part Number	Package	Temperature Range	Pb-free and Green
GS9068-CKAE3	8 pin SOIC	0°C to 70°C	Yes
GS9068-CTAE3	8 pin SOIC Tape	0°C to 70°C	Yes

7. Revision History

Version	ECR	PCN	Date	Changes And/or Modifications
Α	120608	-	July 2002	New document.
В	125775	_	July 2002	Added detailed block descriptions and initial applications information.
0	127024	-	December 2002	Document upgraded to Preliminary Data Sheet and AC/DC Characteristics edited to match current design specification limits.
1	128544	_	March 2003	Document upgraded to Data Sheet.
2	133977	_	June 2004	Added lead-free and green information.
3	139114	38124	January 2006	Corrected Input Differential Swing to 2200mV.
4	154753	-	August 2010	Corrected Package Dimensions and Ordering Information.

DOCUMENT IDENTIFICATION DATA SHEET

The product is in production. Gennum reserves the right to make changes to the product at any time without notice to improve reliability, function or design, in order to provide the best product possible.

CAUTION

Phone: +1 (905) 632-2996

E-mail: corporate@gennum.com

ELECTROSTATIC SENSITIVE DEVICES

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION

GENNUM CORPORATE HEADQUARTERS

4281 Harvester Road, Burlington, Ontario L7L 5M4 Canada

OTTAWA

232 Herzberg Road, Suite 101 Kanata, Ontario K2K 2A1 Canada

Phone: +1 (613) 270-0458 Fax: +1 (613) 270-0429

CALGARY

3553 - 31st St. N.W., Suite 210 Calgary, Alberta T2L 2K7

Phone: +1 (403) 284-2672

UNITED KINGDOM

North Building, Walden Court Parsonage Lane, Bishop's Stortford Hertfordshire, CM23 5DB United Kingdom

Phone: +44 1279 714170 Fax: +44 1279 714171

INDIA

#208(A), Nirmala Plaza, Airport Road, Forest Park Square Bhubaneswar 751009

Phone: +91 (674) 653-4815

Fax: +91 (674) 259-5733

SNOWBUSH IP - A DIVISION OF GENNUM

439 University Ave. Suite 1700 Toronto, Ontario M5G 1Y8

Canada

Phone: +1 (416) 925-5643 Fax: +1 (416) 925-0581 E-mail: sales@snowbush.com

Web Site: http://www.snowbush.com

MEXICO

288-A Paseo de Maravillas Jesus Ma., Aguascalientes

Mexico 20900

Phone: +1 (416) 848-0328

JAPAN KK

Shinjuku Green Tower Building 27F 6-14-1, Nishi Shinjuku Shinjuku-ku, Tokyo, 160-0023 Japan

Phone: +81 (03) 3349-5501 Fax: +81 (03) 3349-5505

E-mail: gennum-japan@gennum.com Web Site: http://www.gennum.co.jp

TAIWAN

6F-4, No.51, Sec.2, Keelung Rd. Sinyi District, Taipei City 11502

Taiwan R.O.C.

Phone: (886) 2-8732-8879 Fax: (886) 2-8732-8870

E-mail: gennum-taiwan@gennum.com

GERMANY

Hainbuchenstraße 2 80935 Muenchen (Munich), Germany

Fax: +1 (905) 632-2055

www.gennum.com

Phone: +49-89-35831696 Fax: +49-89-35804653

E-mail: gennum-germany@gennum.com

NORTH AMERICA WESTERN REGION

691 South Milpitas Blvd., Suite #200 Milpitas, CA 95035

United States

Phone: +1 (408) 934-1301 Fax: +1 (408) 934-1029

E-mail: naw_sales@gennum.com

NORTH AMERICA EASTERN REGION

4281 Harvester Road Burlington, Ontario L7L 5M4

Canada

Phone: +1 (905) 632-2996 Fax: +1 (905) 632-2055

E-mail: nae_sales@gennum.com

KOREA

8F Jinnex Lakeview Bldg. 65-2, Bangidong, Songpagu Seoul, Korea 138-828

Phone: +82-2-414-2991 Fax: +82-2-414-2998

E-mail: gennum-korea@gennum.com

Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent infringement

All other trademarks mentioned are the properties of their respective owners.

GENNUM and the Gennum logo are registered trademarks of Gennum Corporation.

© Copyright 2002 Gennum Corporation. All rights reserved.

www.gennum.com

