ASNT6119A-KMF 32.5Gbps Advanced Driver/Amplifier

- High-speed limiting amplifier with selectable built-in pre-emphasis
- Four pre-emphasis taps with externally controlled weight and inversion
- Adjustable data output amplitude and eye quality
- Single-ended output data eye cross point adjustment
- Optional main clock frequency multiplier by 2
- Main clock duty cycle indicators located before and after the multiplier
- Opposite and parallel adjustment of the main clock and data delays
- Additional clock input
- Fully differential CML input and output data, and clock interfaces
- Selectable main or additional clock at the output with adjustable amplitude
- High-speed CML 3-wire interface for digital controls
- On-chip linear temperature sensor
- Two power supplies: negative -4.3 V and floating positive +3.5 V
- Average power consumption: 4.0 W
- Custom CQFP 64-pin package

DESCRIPTION

Fig. 1. Functional Block Diagram
The ASNT6119A-KMF SiGe IC shown in Fig. 1 is an advanced programmable driver-amplifier (ADA) with built-in 4-tap pre-emphasis. The ADA generates a combination of four delayed copies of its input differential data signal dp/dn with certain user-controlled weights and polarities. The copies are created in a 4-bit shift register activated by the ADA's internal highspeed clock signal (see Sampling Block and Taps). This clock signal is a copy of the main input clock ciOp/ciOn with either matching or doubled (multiplied-by-2) frequency. In the multiply-by- 2 clock mode, the duty cycles of the input and internal clock signals are monitored, and the output duty cycle can be adjusted through the external control port phadj (see Clock Multiplier). For the part's correct operation, the input data rate in Gbps should be equal to the internal clock frequency in GHz .

Input clock and data signals can be delayed in the same or opposite directions to ensure their correct phase relation at the inputs of the shift register and at the chip outputs (see Input Delay Section). The ADA can accept one additional clock signal ci1p/ci1n and deliver it to the output port cop/con instead of the main clock ciOp/ciOn, thus operating as a clock buffer (see Additional Input Clock and Clock Output Buffer).

The part's I/Os support CML logic interface with on-chip 50 Ohm termination to ground. External 50 Ohm termination is also required. DC-coupling for data and clock output ports is
strongly recommended. The input ports can use DC or AC coupling. Differential input clock and data are strongly recommended. Amplitude and peaking in the clock and data output signals can be externally adjusted. Both single-ended data output signals also have controlled DC commonmode levels and eye crossing points (see Data Output Buffer).

All operational modes of the chip are controlled through a high-speed 3-wire serial interface. For more details see 3-Wire Interface Control Block.

The chip operates from one negative power supply (positive pin connected to external Ground, negative pin vee $=-4.3 \mathrm{~V}$) and one floating positive power supply (negative pin connected to vee and positive pin $\mathrm{v} 3 \mathrm{p} 5=3.5 \mathrm{~V}$). It is recommended to keep the relative deviation of v 3 p 5 from Ground within less than $\pm 0.1 \mathrm{~V}$.

Input Delay Section

As shown in Fig. 1, the ADA accepts differential input data dp/dn and clock ciOp/ciOn signals and inserts them both into identical variable delay blocks Delay1 and Delay2 that can be adjusted in parallel or opposite modes depending on the polarity of internal digital signals skwpol and dlypol ("0"=parallel, "1"=opposite) provided by the 3-Wire Interface block. The Delay1 blocks are controlled by the analog voltage skwadj. The Delay2 blocks are controlled by the analog voltage dlyadj.

It should be noted that the delay settings may affect the multiplied-by- 2 clock's duty cycle and should be tuned for each specific case.

Clock Multiplier

The clock doubler Clkx2 uses a "delay and XOR" mechanism to create output clock pulses from each edge of the input clock ciOp/ciOn. The multiplier is intended for operation with input clock signals within a certain frequency range specified in ELECTRICAL CHARACTERISTICS. Analog control voltage phadj performs a dual function of multiplier activation and linear phase control. Voltages within the linear control range activate the multiplication function and are used for tuning the block's internal delay in order to achieve 50% duty cycle of the multiplied clock. Voltages below the switch-off threshold disable the multiplication function and allow for direct passing of the input clock to the multiplier's output.

Two duty cycle control blocks DCycl are used for monitoring the clock pulse shapes before and after the multiplier. The first block is positioned before the multiplier and delivers single-ended analog voltage dcyc0 that indicates the input clock's duty cycle deviation from 50%. The second block is positioned after the multiplier and delivers a similar signal dcyc1 for the output clock. Both generated output voltages can be used in combination with phadj input within external control loops for getting an optimal shape of the multiplied clock.

It should be noted that the duty cycle of the multiplied clock may depend on the delay settings (see Input Delay Section).

Additional Input Clock and Clock Output Buffer

The ADA can also accept an additional input clock signal ci1p/ci1n and deliver it to the clock output. This allows the IC to operate solely as a clock amplifier where the output clock signal's
amplitude supplied by output buffer COB can be adjusted using the analog signal campadj. The amplitude changes from its minimum value (campadj = switch-off threshold) to its maximum value (campadj $=$ maximum). COB can also be completely disabled by applying campadj voltage below the switch-off threshold.

Either ci0 or ci 1 clock signals can be processed by the output buffer COB. Selection of the input clock is accomplished through the digital control signal clock select ("0" - ciO, " 1 " - ci1) delivered by the 3 -wire interface block.

The quality of the output signal's shape can be optimized using the external control vddshc. This voltage controls peaking on the falling edge of the output signal. More positive voltages correspond to higher peaking.

Sampling Block and Taps

Sampling block SB is essentially a 4-bit shift register that generates 4 delayed data streams T1T4 needed for the ADA's 4-tap pre-emphasis capability. As stated above, the analog control voltage dlyadj is used to adjust the phase relationship between clock and data to ensure optimum sampling in SB. The four samples of the data stream with certain weights and polarities are delivered to the output buffer via four identical channels.

The polarity of the data streams can be independently inverted by circuit blocks I under control of four signals inv1/inv2/inv3/inv4 (" 0 "= direct, " 1 " $=$ inverted) provided by the 3 -wire interface.

This version of the ADA has 4 Taps (1, 2, 3, and 4) designed as 11 parallel buffers with a common load that are combined into a single output driver. Each buffer has its maximum amplitude equal to $1 / 8^{\text {th }}$ of the optimal total output amplitude $A_{\text {out. }}$. The first 7 buffers can be assigned to one of 2 Taps or switched off completely using digital signals provided by the 3 -wire interface as shown in Table 1. For detailed interface mapping, see the 3-Wire Interface Control Block section below.

Table 1. Buffer's Assignment to Taps

Buffers	1	2	3	4	5	6	7	8	9	10	11
Taps	$1 / 2$	$1 / 2$	$3 / 2$	$3 / 2$	$3 / 2$	$4 / 2$	$4 / 2$	1	2	3	4
Amplitude	Constant, 0 or $1 / 8^{\text {th }}$ of $A_{\text {out }}$						From 0 to $A_{\text {analog }}=A_{\text {out }} / 8$				
Control	Analog										

The last 4 buffers are assigned to one Tap each and are linearly controlled by four external voltages tune1/tune2/tune3/tune4 from minimum (0) to maximum ($A_{\text {analog }}$) amplitude that is approximately equal to $1 / 8^{\text {th }}$ of $A_{\text {out }}$. The actual value of the amplitude $A_{\text {analog }}$ available for the analog controls can be adjusted through the external control voltage vth. The calibration procedure is described in the Application Notes.

It should be noted that the output amplitude may exceed the optimal value by up to $3 / 8^{\text {th }}$ of $A_{\text {out }}$, if more than one analog buffer is activated. It is recommended to avoid such situations by the appropriate assignment of Tap weights.

For example, if all seven digital buffers are activated, the total value of the analog amplitude should not exceed $1 / 8^{\text {th }}$ of $A_{\text {out. }}$ This means that one analog buffer can be fully switched on while the controls of the three remaining analog buffers should stay at minimum. If two analog buffers are required, then one of them can be assigned a weight of $A_{1} \leq 1 / 8^{\text {th }}$ of $A_{\text {out }}$ and the other one can have a weight of $A_{2} \leq 1 / 8^{\text {th }}-A_{1}$.

The recommended algorithm of the weight assignment is described in the ASNT6119 Application Notes.

Data Output Buffer

Data output buffer DOB includes several features to tune the output data signal generated by the ADA.

The quality of the output signal shape can be optimized using the control voltage vddshd similar to what is described in the Additional Input Clock and Clock Output Buffer section above.

Optimized output eyes with a 625 mV amplitude delivered from one Tap at data rates of $28 \mathrm{~Gb} / \mathrm{s}$ and $32 \mathrm{~Gb} / \mathrm{s}$ are shown in Fig. 2 and Fig. 3 respectively. Fig. 4 to Fig. 6 show this part's capabilities for driving a PAM4 signal.

Differential analog control voltage xadjp/xadjn can be utilized to adjust the crossing points of single-ended output eyes. At the default state of xadjp $=$ xadjn $=0 V$, the crossing points in both direct and inverted eyes should be centered. The crossing points are moving up in the direct eye and down in the inverted eye if xadjp $=-x a d j n>0$, or in the opposite directions if xadjp $=-$ xadjn < 0 .

Fig. 2. 1-Tap Output Eye at 28Gb/s Data Rate

Fig. 3. 1-Tap Output Eye at 32Gb/s Data Rate

Fig. 4. PAM4 Output Eye Diagram at $25.8 G b / s$ Data Rate

Finally, 1.0 KOhm resistors are attached to both data outputs qp and qn to provide DC shifting of the output signals. Access to the resistors is available through control pins dcqp/dcqn.

Temperature Sensor

A linear temperature sensor is included on chip. Its behavior is illustrated in Fig. 7 below. The demonstrated voltage has been generated on the internal 11 KOhm resistor connected to vdd.

Fig. 5. PAM4 Output Eye Diagram at 28Gb/s Data Rate

Fig. 6. PAM4 Output Eye Diagram at 28Gb/s Data Rate

Fig. 7. Temperature Sensor's Characteristic

3-Wire Interface Control Block

To reduce the physical number of digital control inputs to the ADA, a 32-bit shift register with a 3 -wire input interface has been included on chip. The digital control bits applied through 3wdin input are latched in and shifted down the register by negative edges of low-speed clock 3wcin (Bit 0/MSB first). Write enable signal 3wenin must be set to logic " 1 " during the data read-in phase and then set to logic " 0 " to retain the shifted in values after 32 clock periods of 3 wcin . Table 2 below maps the input 32-bit word to the internal digital control signals.

Table 2. 3-Wire Interface Bit Map

Bit \#	Function	State at Bit=" $1 " / י "$
0, MSB	Activation of additional $1 / 2$ pre-buffer current in one of the Taps. Must be ON if the amplitude in the corresponding Tap is more than half of its maximum value (more than $1 / 16^{\text {th }}$ of the full output amplitude, or $A_{\text {out }} / 16$).	ON/OFF in Tap 4
1		ON/OFF in Tap 3
2		ON/OFF in Tap 2
3		ON/OFF in Tap 1
4	Activation of analog-controlled sections of the Taps including the corresponding output drivers and $1 / 2$ pre-buffer currents.	ON/OFF in Tap 4
5		ON/OFF in Tap 3
6		ON/OFF in Tap 2
7		ON/OFF in Tap 1
8	Buffer 7 activation ($A_{\text {out }} / 8$ for Tap 2 or Tap 4 as defined by Bit 16)	ON/OFF
9	Buffer 6 activation ($A_{\text {out }} / 8$ for Tap 2 or Tap 4 as defined by Bit 17)	ON/OFF
10	Buffer 5 activation ($A_{\text {out }} / 8$ for Tap 2 or Tap 3 as defined by Bit 18)	ON/OFF
11	Buffer 4 activation ($A_{\text {out }} / 8$ for Tap 2 or Tap 3 as defined by Bit 19)	ON/OFF
12	Buffer 3 activation ($A_{\text {out }} / 8$ for Tap 2 or Tap 3 as defined by Bit 20)	ON/OFF
13	Buffer 2 activation ($A_{\text {out }} / 8$ for Tap 2 or Tap 1 as defined by Bit 21)	ON/OFF
14	Buffer 1 activation ($A_{\text {out }} / 8$ for Tap 2 or Tap 1 as defined by Bit 22)	ON/OFF
15	Not used	
16	Buffer 7 assignment to Tap 2 or Tap 4	Tap 2 / Tap 4
17	Buffer 6 assignment to Tap 2 or Tap 4	Tap 2 / Tap 4
18	Buffer 5 assignment to Tap 2 or Tap 3	Tap 2 / Tap 3
19	Buffer 4 assignment to Tap 2 or Tap 3	Tap 2 / Tap 3
20	Buffer 3 assignment to Tap 2 or Tap 3	Tap 2 / Tap 3
21	Buffer 2 assignment to Tap 2 or Tap 1	Tap 2 / Tap 1
22	Buffer 1 assignment to Tap 2 or Tap 1	Tap 2 / Tap 1
23	Not used	
24	Selection of the clock (C 0 or C1) to be sent to the output	C1/ C0
25	Selection of the data and clock short delay (opposite or parallel)	Parallel/Opposite
26	Selection of the data and clock long delay (opposite or parallel)	Parallel/Opposite
27	Activation of the Tap 4 data inversion	ON/OFF
28	Activation of the Tap 3 data inversion	ON/OFF
29	Activation of the Tap 2 data inversion	ON/OFF
30	Activation of the Tap 1 data inversion	ON/OFF
31, LSB	Not used	

This chip includes a high-speed 3-wire interface with 50 Ohm terminations to vdd for all interface inputs. This CML configuration allows for the dynamic Tap reconfiguration in accordance with PCI control regulations. The total reconfiguration time does not exceed 100ns from the external assignment of new control signals to the final settling of the output data amplitude.

TERMINAL FUNCTIONS

TERMINAL			Description
Name	No.	Type	
High-Speed I/Os			
dp	19	CML input with internal SE 50Ohm termination to VCC	Differential high-speed data inputs
dn	21		
ci0p	28		Differential high-speed main clock input
ci0n	30		
cilp	35		Differential high-speed additional clock input
ci1n	37		
cop	46	CML output requires external SE 50Ohm termination to VCC	Differential high-speed clock output
con	44		
qp	56		Differential high-speed data output
qn	58		
Low-Speed I/Os			
3wenin	39	CML input with internal SE 50Ohm termination to VCC	Enable input for 3-wire interface
3wcin	40		Clock input for 3-wire interface
3wdin	41		Data input for 3-wire interface
Analog Control Voltage Inputs			
xadjp	5	Analog input with 100 KOhm termination to vdd	Output data eye cross point adjustment, Differential
xadjn	3		
tune4	7		Tap 4 analog weight adjustment, SE
tune3	8		Tap 3 analog weight adjustment, SE
tune2	9		Tap 2 analog weight adjustment, SE
tune1	10		Tap 1 analog weight adjustment, SE
vth	12		Threshold voltage for the analog maximum value adjustment
dlyadj	24		Adjustment of Delay 2 blocks, SE
skwadj	25		Adjustment of Delay 1 blocks, SE
phadj	26		Clock multiplier delay (output duty cycle) adjustment, SE
campadj	51		Clock output amplitude adjustment, SE
dcqp	61	Analog input	Direct data output common-mode DC shift, SE
dcqn	62		Inverted data output common-mode DC shift, SE
Analog Control Indicators			
temp	14	Analog output	Linear temperature-dependent voltage output with internal 11 KOhm termination to vdd.
dcyc1	50		Linear voltage indicating output clock duty cycle
dcyc0	52		Linear voltage indicating main input clock duty cycle

Supply And Termination Voltages						
Name	Description	Pin Number				
vdd	External ground	$2,4,6,11,13,15,18,20,22,27,29,31$,				
		$34,36,38,43,45,47,54,55,57,59,60$	$	$	vee	$-4.3 V$ negative power supply
:---:	:---:					
v3p5	$+3.5 V$ positive power supply Negative pin to vee					
vddshC	Output clock and data peaking adjustment					
vddshD	Positive power supply. Negative pin to vee					

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in Table 3 may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed vdd).

Table 3. Absolute Maximum Ratings

Parameter	Min	Max	Units
Negative Supply Voltage (vee)		-4.8	V
Positive Supply Voltage (v3p5)		3.8	V
Power Consumption		5.0	W
RF Input Voltage Swing (SE)		1.2	V
Case Temperature		+90	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40	+100	${ }^{\circ} \mathrm{C}$
Operational Humidity	10	98	$\%$
Storage Humidity	10	98	$\%$

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN TYP	MAX	UNIT	COMMENTS
General Parameters				
vee	-4.1 -4.3	-4.5	V	
vdd	0.0		V	External ground
v3p5	3.43 .5	3.6	V	"-" pin to vee
I-4.3	120	220	$m A$	Depending on the settings of the clock multiplier and the clock and data amplitudes ${ }^{1)}$
Iv 3 p 5	850	1020	$m A$	
Power	3.54 .0	4.5	W	
Junction temperature	$0 \quad 50$	100	${ }^{\circ} \mathrm{C}$	
Data input (dp/dn)				
Rate	1.0	32.5	Gb/s	
SE Swing	$50 \quad 200$	500	$m V$	Peak-to-peak
CM Level	vdd-(SE sw	ing)/2		
Clock inputs (ciOp/ciOn, ci1p/ci1n)				
Frequency (C0 input)	1.0	17	GHz	Fx1 mode, any skwadj and dlyadj
	4.0	16.25	GHz	Fx2 mode, skwadj and dlyadj need tuning
SE Swing	50200	500	$m V$	Peak-to-peak
CM Level	vdd-(SE sw	ing)/2		
Data output (qp/qn)				
Rate	1.0	32.5	Gbps	
SE Swing	0.0	1250	$m V$	Peak-to-peak
CM Level	vdd-0.1 vdd	dd-0.75	V	Depends on the amplitude ${ }^{2)}$
Rise/Fall Times	$12 \quad 13$	14	ps	20\%-80\%
Clock output (cop/con)				
SE Swing, max	530	920	$m V$	Pk-pk, 1.0-17GHz
	160	400	$m V$	Pk-pk, 18-32GHz
CM Level	vdd-0.05	dd-0.55	V	Depends on the amplitude ${ }^{3)}$
Rise/Fall Times	TBD		$p s$	20\%-80\%
SE tuning ports (tune1/2/3/4, skwadj, dlyadj, phadj, campadj)				
Linear control voltage	vdd-2	vdd	V	
Switch-off threshold	vdd-2		V	
Cross point control (xadjp/xadjn)				
Differential voltage range	vdd-8.0	vdd+8.0	V	$\pm 4 \mathrm{~V}$ at each input
CM Level	vdd			
Current in/out of the pin	+4/-4		$m A$	at $+4 V /-4 V$
Threshold control (vth)				
Voltage range	vdd-2	vdd	V	
DC common mode voltage control (dcqp/dcqn)				
Voltage range	vee	vdd	V	

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Externally Controlled Operational Ranges					
Clock-to-Data skew	-30	+30	$p s$	opposite skwadj control	
Clock and Data delay	0	+30	$p s$	paralllel skwadj control	
Clock-to-Data skew	-45	+45	$p s$	opposite dlyadj control	
Clock and Data delay	0	+45	$p s$	paralllel dlyadj control	
Output eye cross point	-25	+25	$\%$	of the eye amplitude	

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Variable supply voltages (vddshc, vddshd)					
Voltage range	2.8		4.3	V	"-" pin to vee
I_{vddsh}		2.2		$m A$	All 4 taps active
$I_{\text {vddshc }}$		1.1		$m A$	
Duty Cycle Indicator (dcyc0/dcyc1)					
Voltage range	vdd-3.3		vdd-0.8	V	
Temperature Sensor (temp)					
Voltage range	vdd-3.3		vdd-2.3	V	
3-Wire Inputs (3wdin, 3wcin, 3wenin)					
High voltage level	vdd-0.2		vdd	V	
Low voltage level			vdd-0.7	V	
Clock speed		400	1000	MHz	

Power Supply Currents

(Preliminary Data, for Reference Only)

co amplitude	q amplitude	Clock multiplier	$\boldsymbol{I}-\mathbf{4 . 3}, \boldsymbol{m A}$	$\boldsymbol{I}_{\mathbf{v} 3 \mathrm{p} 5, \boldsymbol{m A}}$
min	min	off (Fx1)	120	850
\min	\min	on (Fx2)	120	920
\min	\max	off (Fx1)	180	880
\min	\max	on (Fx2)	180	950
\max	\min	off (Fx1)	160	930
\max	\min	on (Fx2)	160	1000
\max	\max	off (Fx1)	220	950
\max	\max	on (Fx2)	220	1020

Data Output Common Mode Voltage Levels (Preliminary Data, for Reference Only)

Amplitude			$\mathrm{V}_{\mathrm{cm}}, \mathrm{V}$	Amplitude			Vcm, V
Total, $m V$	Digital	Analog, mV		Total, mV	Digital	Analog, $m V$	
150	0	min	vdd-0.089	790	$4 A_{\text {out }} / 8$	min	vdd-0.461
150	$A_{\text {out }} / 8$	max	vdd-0.182	790	$5 A_{\text {out }} / 8$	max	vdd-0.554
310	$A_{\text {out }} / 8$	min	vdd-0.182	950	$5 A_{\text {out }} / 8$	min	vdd-0.554
310	$2 A_{\text {out }} / 8$	max	vdd-0.275	950	$6 A_{\text {out }} / 8$	max	vdd-0.647
470	$2 A_{\text {out }} / 8$	min	vdd-0.275	1100	$6 A_{\text {out }} / 8$	min	vdd-0.647
470	$3 A_{\text {out }} / 8$	max	vdd-0.368	1100	$7 A_{\text {out }} / 8$	max	vdd-0.740
630	$3 A_{\text {out }} / 8$	min	vdd-0.368	1250	$7 A_{\text {out }} / 8$	min	vdd-0.740
630	$4 A_{\text {out }} / 8$	max	vdd-0.461				

Clock Output Common Mode Voltage Levels (Preliminary Data, for Reference Only)

Amplitude, $m V$	100	200	300	400	500	600	700	750
$\mathrm{~V}_{\mathrm{CM}}, V$	vdd- -0.07	vdd- 0.14	vdd- 0.21	vdd- 0.28	vdd- 0.35	vdd- 0.42	vdd- 0.49	vdd- -0.54

PACKAGE INFORMATION

The chip die is housed in a custom 64-pin CQFP package. The dimensioned drawings are shown in Fig. 8.

The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the vdd plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT6119A-KMF. The first 9 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

64-PIN KMF Package All Dimensions are in millimeters

Fig. 8. CQFP 64-Pin Package Drawing (All Dimensions in mm)

Revision	Date	Changes
1.5 .2	$01-2020$	Updated Package Information
1.4 .2	$07-2019$	Updated Letterhead
1.4 .1	$03-2017$	Added PAM4 eye diagrams
1.3 .1	$03-2017$	Corrected 3-wire clock speed
1.2 .1	$07-2016$	Corrected Table 2. Bits 8-14
1.1 .1	$02-2016$	Corrected part description on first page
1.0 .1	$02-2016$	First release

