

CMPA0060025F

25 W, 20 MHz - 6000 MHz, GaN MMIC Power Amplifier

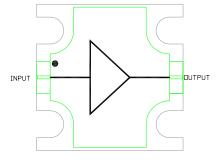
Description

Wolfspeed's CMPA0060025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC enables extremely wide bandwidths to be achieved in a small footprint screw-down package.

PN: CMPA0060025F Package Type: 780019

Typical Performance Over 20 MHz - 6.0 GHz ($T_c = 25^{\circ}C$)

Parameter	20 MHz	0.5 GHz	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	21.4	20.1	19.3	16.7	16.6	16.8	15.7	15.5	dB
Output Power @ P _{IN} = 32 dBm	26.9	30.2	26.3	23.4	24.5	24.0	20.9	18.6	W
Power Gain @ P _{IN} = 32 dBm	12.3	12.8	12.2	11.7	11.9	11.8	11.3	10.7	dB
Efficiency @ P _{IN} = 32 dBm	63	55	40	31	33	31	28	26	%


Note: V_{DD} = 50 V, I_{DO} = 500 mA

Features

- 17 dB Small Signal Gain
- 25 W Typical P_{SAT}
- Operation up to 50 V
- High Breakdown Voltage
- High Temperature Operation
- 0.5" x 0.5" total product size

Applications

- Ultra Broadband Amplifiers
- Test Instrumentation
- EMC Amplifier Drivers

Large Signal Models Available for ADS and MWO

Rev. 4.3, 2022-12-13

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	
Drain-Source Voltage	V _{DSS}	84		
Gate-Source Voltage	V _{GS}	-10, +2	- V _{DC}	
Storage Temperature	T _{stg}	-65, +150	- °C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	4	mA	
Soldering Temperature ¹	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	R _{θJC}	3.3	°C/W	
Case Operating Temperature ^{2,3}	Tc	-40, +150	°C	

Notes:

¹ Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

 2 Measured for the CMPA0060025F at P_{IN} = 32 dBm

Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics				•		•
Gate Threshold Voltage ²	V _{GS(th)}	-3.8	-3.0	-2.3	V	$V_{DS} = 20 \text{ V}, \Delta I_D = 20 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	-	V _{DC}	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 500 \text{ mA}, \text{ P}_{IN} = 32 \text{ dBm}$
Saturated Drain Current	I _{DS}	_	12	-	A	$V_{DS} = 12 V, V_{GS} = 2.0 V$
RF Characteristics ¹						
Power Output at P _{OUT} @ 4.5 GHz			42.8	-		
Power Output at Pout @ 5.0 GHz	Pout	41.0	43.3	-	dBm	
Power Output at P _{OUT} @ 6.0 GHz			42.9	-		1/2 = 50/1 = 500 m/s = 22 dBm
Drain Efficiency at P _{OUT} @ 4.5 GHz			24.1	-		$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 32 \text{ dBm}$
Drain Efficiency at Pour @ 5.0 GHz	η	18.0	28.0	-	%	
Drain Efficiency at P _{out} @ 6.0 GHz			27.2	-		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, $P_{IN} = 32 \text{ dBm}$

Small Signal RF Characteristics

Executors	S21 (dB)		S11 (dB)		S22 (dB)		Conditions	
Frequency	Min. Typ. Max. Typ. Max. Typ.	Тур.	Мах					
0.02 GHz - 0.25 GHz	18.0	19.3	23.7	-4.1	-2.5	-8.5		
0.25 GHz - 0.5 GHz	18.0	19.8		-6.8	-3.5	-8.9	4 5	
0.5 GHz - 1.0 GHz	15.5		22.0 <u>-6.5</u> 18.6 -15.3 -6.7		-6.5	6.7	-4.5	
1.0 GHz - 2.0 GHz	15.5	18.6		$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$				
2.0 GHz - 3.0 GHz	12.0		20.0		-12.5	-6.0	2.5	
3.0 GHz - 6.0 GHz	13.0	16.3	20.0	-14.2 -6.5	-5.3	-2.5		

Notes:

 1 P_{OUT} is defined as P_{IN} = 32 dBm

² The device will draw approximately 55-70 mA at pinch off due to the internal circuit structure.

Rev. 4.3, 2022-12-13

Typical Performance

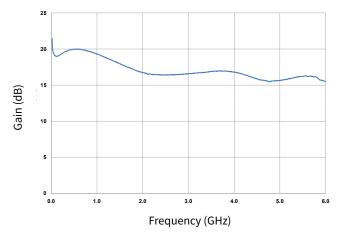


Figure 1. Small Signal Gain vs Frequency at 50 V

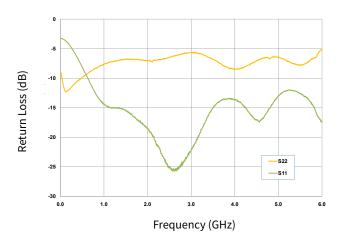


Figure 2. Input & Output Return Losses vs Frequency at 50 V

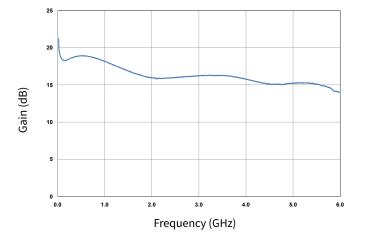
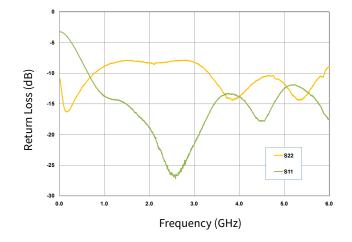
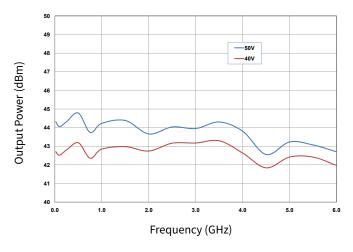
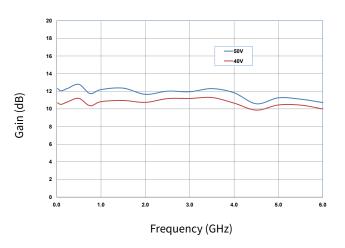
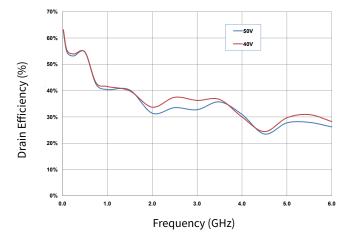
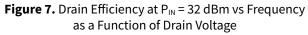


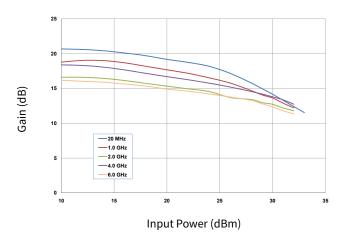
Figure 3. Small Signal Gain vs Frequency at 40 V

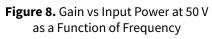



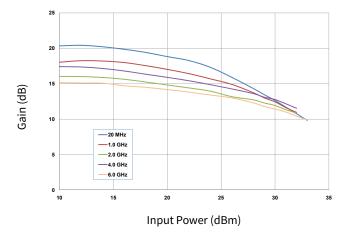


Figure 4. Small Signal Gain vs Frequency at 40 V

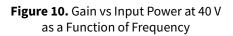

Typical Performance

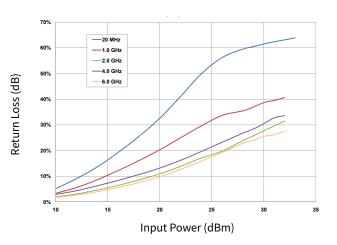


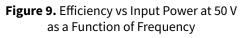

Figure 6. Power Gain at P_{IN} = 32 dBm vs Frequency as a Function of Drain Voltage








Typical Performance



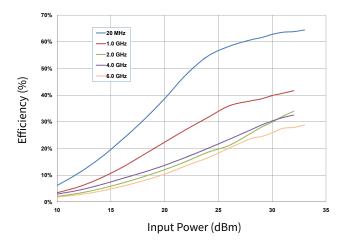


Figure 11. Efficiency vs Input Power at 40 V as a Function of Frequency

Rev. 4.3, 2022-12-13

General Device Information

The CMPA0060025F is a GaN HEMT MMIC Power Amplifier, which operates between 20 MHz - 6.0 GHz. The amplifier typically provides 17 dB of small signal gain and 25 W saturated output power with an associated power added efficiency of better than 20%. The wideband amplifier's input and output are internally matched to 50 Ohm. The amplifier requires bias from appropriate Bias-T's, through the RF input and output ports.

The CMPA0060025F is provided in a flange package format. The input and output connections are gold plated to enable gold bond wire attach at the next level assembly.

The measurements in this data sheet were taken on devices wire-bonded to the test fixture with 2 mil gold bond wires. The CMPA0060025F-AMP1 and the device were then measured using external Bias-T's, (TECDIA: AMP1T-H06M20 or similar), as shown in Figure 2. The Bias-T's were included in the calibration of the test system. All other losses associated with the test fixture are included in the measurements.

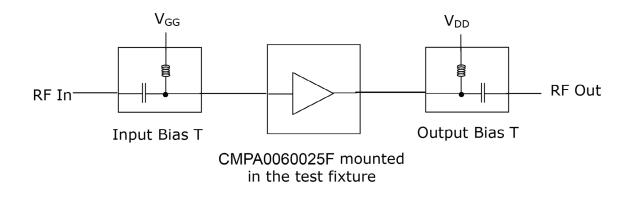
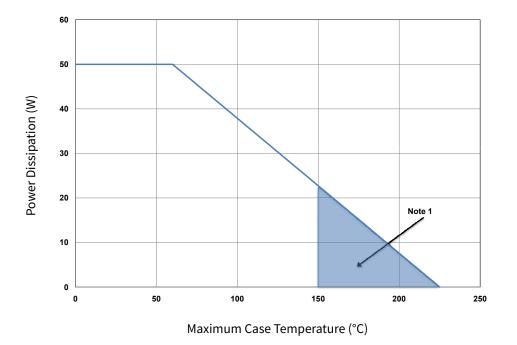
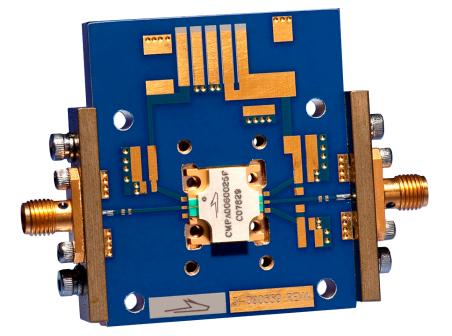
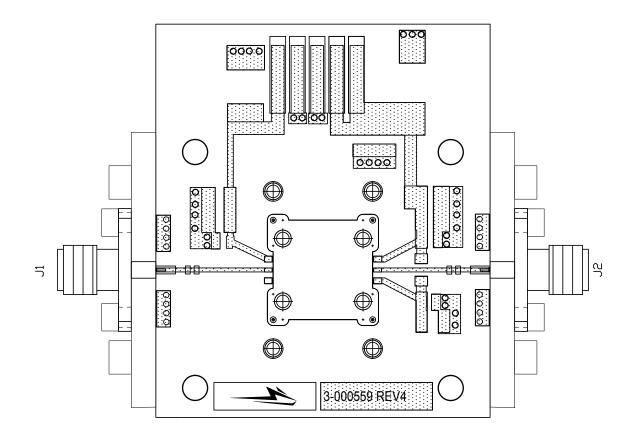



Figure 2. Typical test system setup required for measuring CMPA0060025F1-AMP1



Note: ¹ Area exceeds Maximum Case Operating Temperature (See Page 2).


Electrostatic Discharge (ESD) Classifications

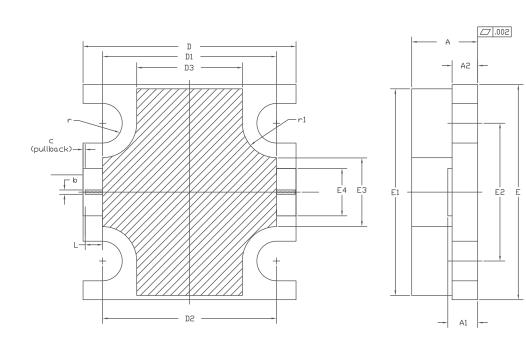
Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

CMPA0060025F-AMP Demonstration Amplifier Circuit

CMPA0060025F-AMP Demonstration Amplifier Circuit Outline

Rev. 4.3, 2022-12-13

CMPA0060025F-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
J1,J2	CONNECTOR, SMA, AMP11052901-1	2
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA0060025F	1

Notes

¹ The CMPA0060025F is connected to the PCB with 2.0 mil Au bond wires.

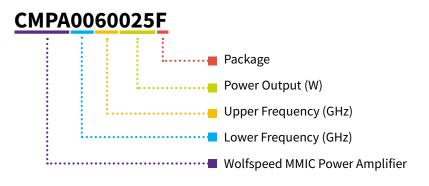
² An external Bias-T is required.

Product Dimensions CMPA0060025F (Package Type - 780019)

NOTES: 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

	INCHES		MILLIM	IETERS	NOTE
DIM	MIN	MAX	MIN	MAX	NOTE
A	0.148	0.162	3.76	4.12	-
A1	0.066	0.076	1.67	1.93	-
A2	0.056	0.064	1.42	1.63	-
b	0.0	09	0.	24	×2
с	0.0	05	0.	13	×2
D	0.495	0.505	12.57	12.83	-
D1	0.403	0.413	10.23	10.49	-
D2	0.4	08	10.36		-
D3	0.243	0.253	6.17	6.43	-
E	0.495	0.505	12.57	12.83	-
E1	0.475	0.485	12.06	12.32	-
E2	0.3	20	8.13		-
E3	0.155	0.165	3.93	4.19	-
E4	0.105	0.115	2.66	2.92	-
L	0.041		1.04		x2
r	R0.046		R1.17		x4
r1	R0.080		R2.03		x4

Rev. 4.3, 2022-12-13

Part Number System

Table 1.

Parameter	Value	Units
Lower Frequency	20	MHz
Upper Frequency	6000	MHZ
Power Output	25	W
Package	Flange	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Rev. 4.3, 2022-12-13

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA0060025F	GaN MMIC	Each	CWP RODOCESE CWP RODOCESE COTECO
CMPA0060025F-AMP	Test board with GaN MMIC installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2009-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 4.3, 2022-12-13