

# User Manual



# SM-B69

SMARC<sup>®</sup> Rel. 2.1 compliant module with the Intel<sup>®</sup> Atom<sup>™</sup> X Series, Intel<sup>®</sup> Celeron<sup>®</sup> J / N Series and Intel<sup>®</sup> Pentium<sup>®</sup> N Series (formerly Apollo Lake) Processors



www.seco.com

### **REVISION HISTORY**

| Revision | Date                          | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rif     |
|----------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1.0      | 2 <sup>nd</sup> March 2020    | First official release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SB / AR |
| 1.1      | 16 <sup>th</sup> October 2020 | <ul> <li>Second official release</li> <li>Added pull-down resistor to SDIO_PWR_EN signal (par. 3.2.1.7)</li> <li>Removed JTAG signals interface from SMARC MXM Connector</li> <li>Added PCIE_A_CKREQ# and PCIE_B_CKREQ# signals (par. 3.2.1.8)</li> <li>Added GPIO12 and GPIO13 (par. 3.2.1.16)</li> <li>Aligned module to be compliant with SMARC Rel. 2.1 standard</li> <li>Updated BIOS SETUP settings (Chapter 4)</li> <li>Removed Mipi-DSI interface on factory alternatives</li> <li>Added optional TPM 1.2 / 2.0 on board via LPC bus</li> <li>Updated Block Diagram</li> </ul> | AR      |
|          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |

All rights reserved. All information contained in this manual is proprietary and confidential material of SECO S.p.A.

Unauthorised use, duplication, modification or disclosure of the information to a third-party by any means without prior consent of SECO S.p.A. is prohibited.

Every effort has been made to ensure the accuracy of this manual. However, SECO S.p.A. accepts no responsibility for any inaccuracies, errors or omissions herein. SECO S.p.A. reserves the right to change precise specifications without prior notice to supply the best product possible.

For further information on this module or other SECO products, but also to get the required assistance for any and possible issues, please contact us using the dedicated web form available at <u>http://www.seco.com</u> (registration required).

Our team is ready to assist.

# INDEX

| Chapter 1. INTRODUCTION                                                                  | 5  |
|------------------------------------------------------------------------------------------|----|
| 1.1 Warranty                                                                             | 6  |
| 1.2 Information and assistance                                                           | 7  |
| 1.3 RMA number request                                                                   | 7  |
| 1.4 Safety                                                                               |    |
| 1.5 Electrostatic Discharges                                                             |    |
| 1.6 RoHS compliance                                                                      |    |
| 1.7 Terminology and definitions                                                          |    |
| 1.8 Reference specifications                                                             |    |
| Chapter 2. OVERVIEW                                                                      |    |
| 2.1 Introduction                                                                         |    |
| 2.2 Technical Specifications                                                             |    |
| 2.3 Electrical Specifications                                                            |    |
| 2.3.1 Power Consumption                                                                  |    |
| 2.3.2 Power Rails meanings                                                               |    |
| 2.4 Mechanical Specifications                                                            |    |
| 2.5 Supported Operating Systems                                                          |    |
| 2.6 Block Diagram                                                                        |    |
| Chapter 3. CONNECTORS                                                                    |    |
| 3.1 Introduction                                                                         |    |
| 3.2 Connectors description                                                               |    |
| 3.2.1 SMARC Connector                                                                    |    |
| Chapter 4. BIOS SETUP                                                                    |    |
| 4.1 Aptio setup Utility                                                                  |    |
| 4.2 Main setup menu                                                                      |    |
| 4.2.1 System Date / System Time                                                          |    |
| <ul> <li>4.3 Advanced menu</li></ul>                                                     |    |
| <ul> <li>4.3.1 Intel® 1210 Gigabit Network Connection - MAC Address #1 Submenu</li></ul> |    |
| 1.0.2 Husted computing subment                                                           | JZ |

| 4.3.3      | ACPI Settings submenu                                            | 53 |
|------------|------------------------------------------------------------------|----|
| 4.3.4      | ACPI Settings submenu<br>Serial Port Console Redirection submenu | 53 |
| 4.3.5      | CPU Configuration submenu                                        | 54 |
| 4.3.6      | AMI graphic Output Protocol Policy submenu                       |    |
| 4.3.7      | Network Stack configuration submenu<br>CSM configuration submenu | 55 |
| 4.3.8      | CSM configuration submenu                                        | 56 |
| 4.3.9      | NVMe configuration submenu                                       | 57 |
| 4.3.10     | SDIO configuration submenu                                       |    |
| 4.3.11     | LVDS Configuration submenu                                       | 57 |
| 4.3.12     | SuperI/O configuration submenu                                   | 59 |
| 4.3.13     | USB configuration submenu                                        |    |
| 4.3.14     | Platform Trust technology submenu                                |    |
| 4.3.15     | Embedded Controller submenu                                      |    |
| 4.3.16     | Thermal submenu                                                  |    |
| 4.4 Chip   | oset menu                                                        |    |
| 4.4.1      | South Bridge submenu                                             | 62 |
| 4.4.2      | Uncore Configuration submenu                                     | 62 |
| 4.4.3      | South Cluster Configuration submenu                              |    |
| 4.5 Sec    | urity menu                                                       | 68 |
| 4.5.1      | Secure Boot submenu                                              |    |
| 4.6 Boc    | t menu                                                           | 69 |
| 4.7 Sav    | e & Exit menu                                                    | 70 |
| Chapter 5. | Appendices                                                       | 71 |
| 5.1 The    | rmal Design                                                      | 72 |



# Chapter 1. INTRODUCTION

- Warranty
- Information and assistance
- RMA number request
- Safety
- Electrostatic Discharges
- RoHS compliance
- Terminology and definitions
- Reference specifications





## 1.1 Warranty

This product is subject to the Italian Law Decree 24/2002, acting European Directive 1999/44/CE on matters of sale and warranties to consumers.

The warranty on this product lasts for 1 year.

Under the warranty period, the Supplier guarantees the buyer assistance and service for repairing, replacing or credit of the item, at the Supplier's own discretion.

Shipping costs that apply to non-conforming items or items that need replacement are to be paid by the customer.

Items cannot be returned unless previously authorised by the supplier.

The authorisation is released after completing the specific form available on the web-site <u>https://www.seco.com/us/support/online-rma.html</u> (RMA Online). The RMA authorisation number must be put both on the packaging and on the documents shipped with the items, which must include all the accessories in their original packaging, with no signs of damage to, or tampering with, any returned item.

The error analysis form identifying the fault type must be completed by the customer and has must accompany the returned item.

If any of the above-mentioned requirements for RMA is not satisfied, the item will be shipped back and the customer will have to pay any and all shipping costs.

Following a technical analysis, the supplier will verify if all the requirements, for which a warranty service applies, are met. If the warranty cannot be applied, the Supplier will calculate the minimum cost of this initial analysis on the item and the repair costs. Costs for replaced components will be calculated separately.



Warning! All changes or modifications to the equipment not explicitly approved by SECO S.p.A. could impair the equipment's functionality and could void the warranty



### 1.2 Information and assistance

What do I have to do if the product is faulty?

SECO S.p.A. offers the following services:

- SECO website: visit <u>http://www.seco.com</u> to receive the latest information on the product. In most of the cases it is possible to find useful information to solve the problem.
- SECO Sales Representative: the Sales Rep can help to determine the exact cause of the problem and search for the best solution.
- SECO Help-Desk: contact SECO Technical Assistance. A technician is at disposal to understand the exact origin of the problem and suggest the correct solution.

E-mail: technical.service@seco.com

Fax (+39) 0575 350210

- Repair center: it is possible to send the faulty product to the SECO Repair Centre. In this case, follow this procedure:
  - Returned items must be accompanied by a RMA Number. Items sent without the RMA number will be not accepted.
  - Returned items must be shipped in an appropriate package. SECO is not responsible for damages caused by accidental drop, improper usage, or customer neglect.

Note: Please have the following information before asking for technical assistance:

- Name and serial number of the product;
- Description of Customer's peripheral connections;
- Description of Customer's software (operating system, version, application software, etc.);
- A complete description of the problem;
- The exact words of every kind of error message encountered.

# 1.3 RMA number request

To request an RMA number, please visit SECO's web-site. On the home page, please select "RMA Online" and follow the procedure described. An RMA Number will be sent within 1 working day (only for on-line RMA requests).

# 1.4 Safety

The SM-B69 module uses only extremely low voltages.

While handling the board, please use extreme caution to avoid any kind of risk or damages to electronic components.

Always switch the power off, and unplug the power supply unit, before handling the board and/or connecting cables or other boards.

Avoid using metallic components - like paper clips, screws and similar - near the board when connected to a power supply, to avoid short circuits due to unwanted contacts with other board components.

If the board has become wet, never connect it to any external power supply unit or battery.

Check carefully that all cables are correctly connected and that they are not damaged.

### 1.5 Electrostatic Discharges

The SM-B69 module, like any other electronic product, is an electrostatic sensitive device: high voltages caused by static electricity could damage some or all the devices and/or components on-board.

Whenever handling a SM-B69 module, ground yourself through an anti-static wrist strap. Placement of the board on an anti-static surface is also highly recommended.

### 1.6 RoHS compliance

The SM-B69 module is designed using RoHS compliant components and is manufactured on a lead-free production line. It is therefore fully RoHS compliant.



# 1.7 Terminology and definitions

Advanced Configuration and Power Interface, an open industrial standard for the board's devices configuration and power management ACPI Advanced Host Controller Interface, a standard which defines the operation modes of SATA interface AHCI API Application Program Interface, a set of commands and functions that can be used by programmers for writing software for specific Operating Systems AVC Adavanced Video Coding, a video compression standard, also known as H.264 Basic Input / Output System, the Firmware Interface that initializes the board before the OS starts loading BIOS CSI2 MIPI Camera Serial Interface, 2nd generation standard regulating communication between a peripheral device (camera) and a host processor DDC Display Data Channel, a kind of I2C interface for digital communication between displays and graphics processing units (GPU) DDR Double Data Rate, a typology of memory devices which transfer data both on the rising and on the falling edge of the clock. eDP embedded Display Port, a type of digital video display interface developed especially for internal connections between boards and digital displays Gigabit Ethernet GBE Gigabits per second Gbps Ground GND GPI/O General purpose Input/Output HEVC High Efficiency Video Coding, a video compression standard, also known as H.265 High Definition Audio, most recent standard for hardware codecs developed by Intel<sup>®</sup> in 2004 for higher audio quality HD Audio High Definition Multimedia Interface, a digital audio and video interface HDMI I2C Bus Inter-Integrated Circuit Bus, a simple serial bus consisting only of data and clock line, with multi-master capability I2S Inter-Integrated Circuit Sound, an audio serial bus protocol interface developed by Philips (now NXP) in 1986 JTAG Joint Test Action Group, common name of IEEE1149.1 standard for testing printed circuit boards and integrated circuits through the Debug port Joint Photographic Experts Group, standard method for lossy compression of digital images. Motion JPEG is a video compression format JPFG/MJPFG LAN Local Area Network LPC Bus Low Pin Count Bus, a low speed interface based on a very restricted number of signals, deemed to management of legacy peripherals Low-Power Double Data Rate Synchronous Dynamic Random Access Memory, 4<sup>th</sup> generation LPDDR4 I VDS Low Voltage Differential Signalling, a standard for transferring data at very high speed using inexpensive twisted pair copper cables, usually used for video applications Megabits per second Mbps Mobile Industry Processor Interface alliance MIPI

| MMC/eMMC | MultiMedia Card / embedded MMC, a type of memory card, having the same interface as the SD card. The eMMC is the embedded version of the MMC. They are devices that incorporate the flash memories on a single BGA chip. |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPEG2    | Standard for the generic coding of moving pictures and associated audio information                                                                                                                                      |
| MVC      | Multiview Video Coding, a stereoscopic video coding standard for video compression                                                                                                                                       |
| N.A.     | Not Applicable                                                                                                                                                                                                           |
| N.C.     | Not Connected                                                                                                                                                                                                            |
| OpenCL   | Open Computing Language, specifies programming languages for programming different devices and API                                                                                                                       |
| OpenGL   | Open Graphics Library, an Open Source API dedicated to 2D and 3D graphics                                                                                                                                                |
| OpenVG   | Open Vector Graphics, an Open Source API dedicated to hardware accelerated 2D vector graphics                                                                                                                            |
| OTG      | On-the-Go, a specification that allows to USB devices to act indifferently as Host or as a Client, depending on the device connected to the port.                                                                        |
| OS       | Operating System                                                                                                                                                                                                         |
| PCI-e    | Peripheral Component Interface Express                                                                                                                                                                                   |
| PWM      | Pulse Width Modulation                                                                                                                                                                                                   |
| PWR      | Power                                                                                                                                                                                                                    |
| SATA     | Serial Advance Technology Attachment, a differential full duplex serial interface for Hard Disks                                                                                                                         |
| SD       | Secure Digital, a memory card type                                                                                                                                                                                       |
| SDIO     | Secure Digital Input/Output, an evolution of the SD standard that allows the use of the same SD interface to drive different Input/Output devices, like cameras, GPS, Tuners and so on.                                  |
| SGET     | Standardization Group for Embedded Technologies                                                                                                                                                                          |
| SMARC    | Smart Mobility Architecture, a computer Module standard maintained by the SGET                                                                                                                                           |
| SM Bus   | System Management Bus, a subset of the I2C bus dedicated to communication with devices for system management, like a smart battery and other power supply-related devices.                                               |
| SOC      | System-on-a-chip                                                                                                                                                                                                         |
| SPI      | Serial Peripheral Interface, a 4-Wire synchronous full-duplex serial interface which is composed of a master and one or more slaves, individually enabled through a Chip Select line.                                    |
| TBM      | To be measured                                                                                                                                                                                                           |
| UART     | Universal Asynchronous Receiver-Transmitter, is an asynchronous serial interface where data format and transmission speed are configurable                                                                               |
| UEFI     | Unified Extensible Firmware Interface, a specification defining the interface between the OS and the board's firmware. It is meant to replace the                                                                        |
|          | original BIOS interface                                                                                                                                                                                                  |
| USB      | Universal Serial Bus                                                                                                                                                                                                     |
| VP8      | Open video compression format, a traditional block-based transform coding format                                                                                                                                         |

- VP9 Successor to VP8, customized for video greater than 1080p
- WMV9 Series 9 of Windows Media Video, a video compression format inlcuding native support for interlaced video, non-square pixels, and frame interpolation

# 1.8 Reference specifications

Here below it is a list of applicable industry specifications and reference documents.

| Reference                                               | Link                                                                                                                       |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| ACPI                                                    | https://uefi.org/specifications                                                                                            |
| AHCI                                                    | http://www.intel.com/content/www/us/en/io/serial-ata/ahci.html                                                             |
| CSI                                                     | http://www.mipi.org/specifications/camera-interface                                                                        |
| DDC                                                     | http://www.vesa.org                                                                                                        |
| FasEthernet                                             | http://standards.ieee.org/about/get/802/802.3.html                                                                         |
| Gigabit Ethernet                                        | https://standards.ieee.org/standard/802_3-2018.html                                                                        |
| HD Audio                                                | http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/high-definition-audio-specification.pdf |
| HDMI                                                    | http://www.hdmi.org/index.aspx                                                                                             |
| I2C                                                     | http://www.nxp.com/documents/other/UM10204_v5.pdf                                                                          |
| I2S                                                     | https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf                                                              |
| Intel <sup>®</sup> Atom <sup>™</sup> Apollo Lake family | https://ark.intel.com/content/www/us/en/ark/products/codename/80644/apollo-lake.html#@Embedded                             |
| LVDS                                                    | http://www.ti.com/ww/en/analog/interface/lvds.shtml and http://www.ti.com/lit/ml/snla187/snla187.pdf                       |
| MIPI                                                    | http://www.mipi.org                                                                                                        |
| MMC/eMMC                                                | http://www.jedec.org/committees/jc-649                                                                                     |
| OpenGL                                                  | http://www.opengl.org                                                                                                      |
| OpenVG                                                  | http://www.khronos.org/openvg                                                                                              |
| PCI Express                                             | http://www.pcisig.com/specifications/pciexpress                                                                            |
| SATA                                                    | https://www.sata-io.org                                                                                                    |
| SMARC Design Guide 2.0                                  | https://sget.org/wp-content/uploads/2018/09/SMARC_DG_V2.pdf                                                                |
| SMARC Hardware Specification 2.1                        | https://sget.org/wp-content/uploads/2020/05/SMARC_V211.pdf                                                                 |
| SD Card Association                                     | https://www.sdcard.org/home                                                                                                |
| SDIO                                                    | https://www.sdcard.org/developers/overview/sdio                                                                            |

| SM Bus              | http://www.smbus.org/specs                                                           |
|---------------------|--------------------------------------------------------------------------------------|
| UEFI                | http://www.uefi.org                                                                  |
| USB 2.0 and USB OTG | http://www.usb.org/developers/docs/usb_20_070113.zip                                 |
| USB 3.0             | https://usb.org.10-1-108-210.causewaynow.com/sites/default/files/usb_32_20191024.zip |

# Chapter 2. OVERVIEW

- Introduction
- Technical Specifications
- Electrical Specifications
- Mechanical Specifications
- Supported Operating Systems
- Block Diagram



### 2.1 Introduction

The SM-B69 is a SMARC Rel. 2.1 compliant module based on the Intel<sup>®</sup> Atom<sup>™</sup>, Pentium<sup>®</sup> and Celeron<sup>®</sup> family of System-on-Chips (SOCs) formerly coded as Apollo Lake, a series of Single/ Dual / Quad SOCs with 64-bit instruction set.

These SOCs embed all the features usually obtained by combination of CPU + platform Controller hubs, all in one single IC, which allows, therefore, the system minimisation and performance optimisation, which is essential for boards with sizes so reduced as for SMARC ("Smart Mobility ARChitecture") form factor, offering the computing abilities of a standard board, with the possibilities of combining with a ready-to-use carrier board like the SECO CSM-B79 or customised carrier board.

The board is also available in EXTREME configuration, with all the components mounted onboard certified for industrial temperature ranges (this configuration is not available with the Celeron<sup>®</sup> processors).

The embedded memory controller allows the integration of up to 8GB of LPDDR4 Memory directly soldered onboard, speed up to 2400MHz.

All SOCs embed an Intel<sup>®</sup> HD Graphics 500 series controller, which offer high graphical performances, with support for Microsoft<sup>®</sup> DirectX12, OpenGL 4.3, OpenCL 2.0, OGL ES 3.0 and HW acceleration for video encoding and decoding of HEVC (H.265), H.264, MVC, VP8, VP9, JPEG/MJPEG. It is also possible the HW video decoding only of MPEG2, VC-1 and WMV9.

This embedded GPU is able to drive three independent displays, by using the interfaces available on SMARC connector: one DP, one HMDI or DP (factory alternatives) and one eDP + MIPI-DSI or Dual Channel 18/24bit LVDS (factory alternatives).

Mass Storage capabilities of the board include one external S-ATA Gen3 channel, a standard 4-bit SD interface and one optional eMMC 5.0 Drive soldered on board.

Other than the interfaces already discussed previously, on SMARC connector there are the signals necessary for the implementation of GB, up to 4 ports in USB2.0 only and up to 2 Super Speed (SS) ports (i.e. USB 3.0 compliant), 4 x PCI-Express lanes, HD and I<sup>2</sup>S Audio interfaces, I<sup>2</sup>C, SPI, LPC and SM buses, HS-UART and UART interfaces.

Interfacing to the board comes through a single card edge connector, whose pinout is defined by SMARC specifications Rel.2.1. For external interfacing to standard devices, a carrier board with a 230-pin MXM connector is needed. This board will implement all the routing of the interface signals to external standard connectors, as well as integration of other peripherals/devices not already included in SM-B69 CPU module.

Please refer to following chapter for a complete list of all peripherals integrated and characteristics.

### 2.2 Technical Specifications

#### Processors

Intel<sup>®</sup> Atom X Series, Intel<sup>®</sup> Celeron<sup>®</sup> J / N Series and Intel<sup>®</sup> Pentium<sup>®</sup> N Series (formerly code name Apollo Lake) Processors:

- Intel® Atom™ x5-E3930 Dual Core @1.3 GHz (Burst 1.8GHz), 2MB L2 Cache, 6.5W TDP

- Intel® Atom™ x5-E3940 Quad Core @1.6 GHz (Burst 1.8GHz), 2MB L2 Cache, 9.5W TDP
- Intel® Atom™ x7-E3950 Quad Core @1.6 GHz (Burst 2.0GHz), 2MB L2 Cache, 12W TDP
- Intel® Pentium® N4200 Quad Core @1.1GHz (Burst 2.5GHz), 2MB L2 Cache, 6W TDP
- Intel<sup>®</sup> Celeron<sup>®</sup> N3350 Dual Core @1.1GHz (Burst 2.4GHz), 2MB L2 Cache, 6W TDP
- Intel<sup>®</sup> Celeron<sup>®</sup> J3455, Quad Core @1.5GHz (Burst 2.3GHz), 2MB L2Cache, 10W TDP
- Intel® Celeron® J3355, Dual Core @2.0GHz (Burst 2.5GHz), 2MB L2Cache, 10W TDP

#### Memory

Single-/Dual-/Quad- Channel Soldered Down LPDDR4-2400 memory, up to 8GB

#### Graphics

Integrated Intel<sup>®</sup> HD Graphics 500 series controller with up to 18 Execution Units Three Independent displays supported

HW decoding of HEVC (H.265), H.264, MVC, VP8, VP9, MPEG2, VC-1, WMV9, JPEG/MJPEG formats

HW encoding of HEVC (H.265), H.264, MVC, VP8, VP9 and JPEG/MPEG format

#### Video Interfaces

eDP interface or Dual Channel 18/24bit LVDS interface HDMI or DP++ interface DP++ interface 2 x CSI interfaces

#### Video Resolution

HDMI, eDP, resolution up to 3840x2160 (4K) @ 60Hz DP++, resolution up to 4096x2160 @ 60Hz LVDS, resolution up to 1920x1200 @ 60Hz

#### Mass Storage

Optional eMMC 5.0 drive soldered on-board 1 x external S-ATA Gen3 Channel SD interface

#### PCI Express

4 x PCI-e Root Ports

#### Networking

Up to 2 x Gigabit Ethernet interfaces Intel<sup>®</sup> I210 or I211 Controller (MAC + PHY)

#### USB

6 x USB 2.0 Host Ports 2 x USB 3.0 Host Ports

#### Audio

HD Audio interface I2S Audio interface

#### Serial ports

2x 2-wire HS-UARTs 2x 4-wire UARTs

#### Other Interfaces

Up to 14 x GPI/Os I2C Bus SM Bus 2x SPI interfaces FAN Management Optional TPM 1.2 / 2.0 Power Management Signals

#### Power supply voltage: $+5V_{DC}$ and $+3.3V_{RTC}$

Operating temperature:

Commercial version  $0^{\circ}C \div +60^{\circ}C^{**}$ . Industrial version  $-40^{\circ}C \div +85^{\circ}C^{**}$ .

Dimensions: 50 x82 mm (1.97" x 3.23")

\*\* Measured at any point of SECO standard heatspreader for this product, during any and all times (including start-up). Actual temperature will widely depend on application, enclosure and/or environment. Upon customer to consider application-specific cooling solutions for the final system to keep the heatspreader temperature in the range indicated. Please also check paragraph 5.1

## 2.3 Electrical Specifications

According to SMARC specifications, the SM-B69 module needs to be supplied only with an external +5V<sub>DC</sub> power supply.

For Real Time Clock working and CMOS memory data retention, it is also needed a backup battery voltage. All these voltages are supplied directly through card edge fingers (see connector's pinout). All remaining voltages needed for board's working are generated internally from +5V<sub>DC</sub> power rail.

#### 2.3.1 Power Consumption

SM-B69 module, like all SMARC modules, needs a carrier board for its normal working. All connections with the external world come through this carrier board, which provide also the required voltage to the board, deriving it from its power supply source. Anyway, it has been possible to measure power consumption directly on VDD\_IN power rail (5V<sub>DC</sub>) that supplies the board. Power consumption must be intended as average value (30 seconds acquisition).

|                                                      |                                                                                          |                                                                                          | Configuration                                                                         |                                                                                    |                                                                           |
|------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Status                                               | Intel Pentium N4200<br>4GB LPDDR4<br>32GB eMMC<br>LVDS and HDMI<br>2xLAN controller i210 | Intel Celeron N3350<br>2GB LPDDR4<br>32GB eMMC<br>LVDS and HDMI<br>2xLAN controller i210 | Intel Atom E3950<br>8GB LPDDR4<br>32GB eMMC<br>LVDS and HDMI<br>2xLAN controller i210 | Intel Atom E3940<br>4GB LPDDR4<br>32GB eMMC<br>DP and eDP<br>2xLAN controller i210 | Intel Atom E3930<br>2GB LPDDR4<br>8GB eMMC<br>DP<br>1xLAN controller i210 |
| Idle – (Win10) – power saving configuration          | 2.65W                                                                                    | 2.69W                                                                                    | 3.15W                                                                                 | 2.59W                                                                              | 2.33W                                                                     |
| OS Boot – (Win10)                                    | 3.69W                                                                                    | 2.88W                                                                                    | 3.63W                                                                                 | 3.27W                                                                              | 2.6W                                                                      |
| Video reproduction@1080p, power saving configuration | 5.57W                                                                                    | 3.91W                                                                                    | 4.20W                                                                                 | 4.15W                                                                              | 4.13W                                                                     |
| Video reproduction 4K, power saving configuration    | 7.67W                                                                                    | 5.68W                                                                                    | 5.16W                                                                                 | 7.23W                                                                              | 5.04W                                                                     |
| 7.09W                                                | 9.02W                                                                                    | 7.12W                                                                                    | 17.71W                                                                                | 12W                                                                                | 7.09W                                                                     |
| Intel TAT (without power limit)                      | 22.43W                                                                                   | 14.28W                                                                                   | 22.84W                                                                                | 15.88W                                                                             | 11W                                                                       |

Independently by the SOC mounted onboard, the following power consumptions are common to all boards:

| Battery Backup power consumption: | 4.7µA |
|-----------------------------------|-------|
| Soft-Off State power consumption: | TBM   |
| Suspend State power consumption:  | TBM   |

#### 2.3.2 Power Rails meanings

In all the tables contained in this manual, Power rails are named with the following meaning:

VDD\_IN: Module power input voltage. +5V voltage directly coming from the card edge connector. Also named 5V\_DSW.

VDD\_RTC: Low current RTC circuit backup power. 3V coin cell voltage coming from the edge card for supplying the RTC clock on the I.MX 8M

+3.3V\_DSW: +3.3 Always-on voltage, derived internally from 5V\_DSW

+3.3V\_RUN: +3.3 Switched voltage, derived internally from +3.3V\_DSW

+3.3V\_ALW: +3.3 Switched voltage, derived internally from +3.3V\_DSW

+1.8V\_ALW: +1.8 Always-on voltage, derived internally from 5V\_DSW

+1.8V\_RUN: +1.8 switched voltage, derived internally from +1.8V\_ALW

+1.8V\_DSW: +1.8 Always-on voltage, derived internally from +3.3V\_DSW


### 2.4 Mechanical Specifications

According to SMARC<sup>®</sup> specifications, the board dimensions are: 50 x 82 mm (1.97" x 3.23") including the pin numbering and edge finger pattern.

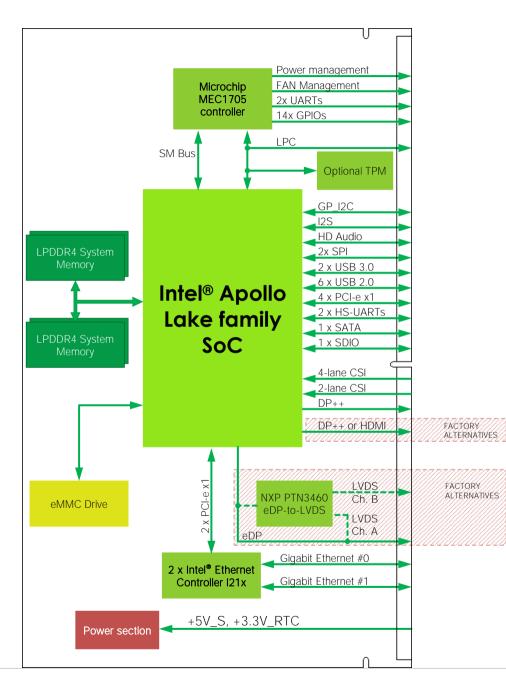
Printed circuit of the board is made of ten layers, some of them are ground planes, for disturbance rejection.

The MXM connector accommodates various connector heights for different carrier board applications needs.

When using different connector heights, please consider that, according to SMARC specifications, components placed on bottom side of SM-B69 will have a maximum height of 1.3mm. Keep this value in mind when choosing the MXM connector's height, if there is the need to place components on the carrier board in the zone below the SMARC module.



### 2.5 Supported Operating Systems


SM-B69 module supports the following operating systems:

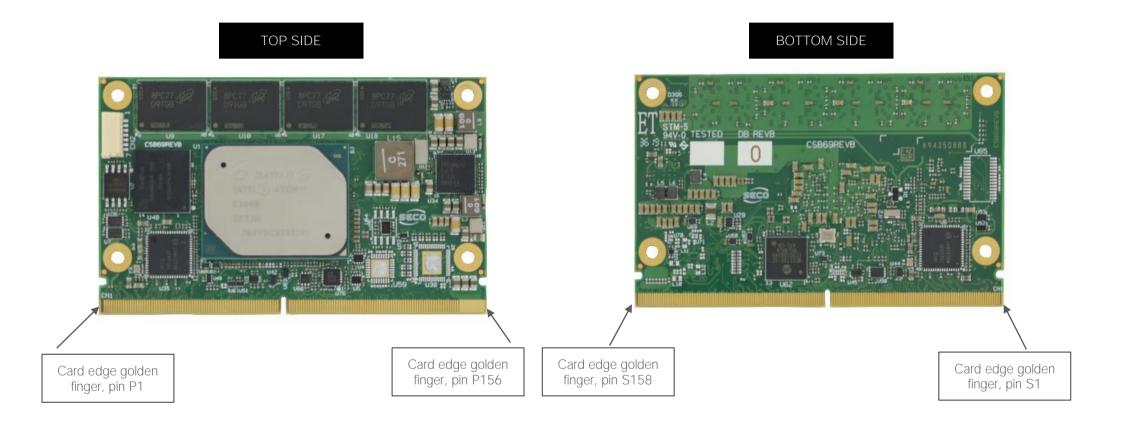
- Microsoft<sup>®</sup> Windows 10 Enterprise (64 bit)
- Microsoft<sup>®</sup> Windows 10 IoT Core
- Linux
- Yocto

SECO will offer the BSP (Board Support Package) for these O.Ss, to reduce at minimum SW development of the board, supplying all the drivers and libraries needed for use both with the SMARC board and the Carrier Board, assuming that the Carrier Board is designed following SECO SMARC Design Guide, with the same IC's.

For further details, please visit <u>https://www.seco.com</u>.

## 2.6 Block Diagram




# Chapter 3. CONNECTORS

- Introduction
- Connectors description



### 3.1 Introduction

According to SMARC specifications, all interfaces to the board are available through a single card edge connector.



# 3.2 Connectors description

#### 3.2.1 SMARC Connector

According to SMARC Rel 2.1 specification, all interface signals are reported on the card edge connector, which is a 314-pin Card Edge that can be inserted into standard low profile 314 pin 0.5mm right pitch angle connector that was originally defined for use with MXM3 graphics cards.

Not all signals contemplated in the SMARC Rel 2.1 are implemented on card edge connector, therefore, please refer to the following table for a list of effective signals reported on the card edge connector.

For accurate signals description, please consult the following paragraphs.

| SMARC Golden Finger Connector - CN4 |      |                |         |         |              |      |              |
|-------------------------------------|------|----------------|---------|---------|--------------|------|--------------|
|                                     | TO   | P SIDE         |         | BO      | TTOM SIDE    |      |              |
| SIGNAL GROUP                        | Туре | Pin name       | Pin nr. | Pin nr. | Pin name     | Туре | SIGNAL GROUP |
|                                     |      |                |         | S1      | I2C_CAM1_CK  | I/O  | CAMERA       |
| MANAGEMENT                          | I    | SMB_ALERT_1V8# | P1      | S2      | I2C_CAM1_DAT | I/O  | CAMERA       |
|                                     |      | GND            | P2      | S3      | GND          |      |              |
| CAMERA                              | I    | CSI1_CK+       | P3      | S4      | RSVD         |      |              |
| CAMERA                              | I    | CSI1_CK-       | P4      | S5      | I2C_CAM0_CK  | I/O  | CAMERA       |
| GBE                                 | I    | GBE1_SD+       | P5      | S6      | CAM_MCK      | 0    | CAMERA       |
| GBE                                 | I    | GBE0_SD+       | P6      | S7      | I2C_CAM0_DAT | I/O  | CAMERA       |
| CAMERA                              | I    | CSI1_RX0+      | P7      | S8      | CSIO_CK+     | I    | CAMERA       |
| CAMERA                              | I    | CSI1_RX0-      | P8      | S9      | CSIO_CK-     | I    | CAMERA       |
|                                     |      | GND            | P9      | S10     | GND          |      |              |
| CAMERA                              | I    | CSI1_RX1+      | P10     | S11     | CSIO_RX0+    | I    | CAMERA       |
| CAMERA                              |      | CSI1_RX1-      | P11     | S12     | CSIO_RXO-    | I    | CAMERA       |
|                                     |      | GND            | P12     | S13     | GND          |      |              |
| CAMERA                              |      | CSI1_RX2+      | P13     | S14     | CSIO_RX1+    | I    | CAMERA       |
| CAMERA                              | I    | CSI1_RX2-      | P14     | S15     | CSIO_RX1-    | I    | CAMERA       |
|                                     |      | GND            | P15     | S16     | GND          |      |              |
| CAMERA                              | I    | CSI1_RX3+      | P16     | S17     | GBE1_MDI0+   |      |              |



| CAMERA        | I   | CSI1_RX3-      | P17 | S18 | GBE1_MDIO-     |     |       |
|---------------|-----|----------------|-----|-----|----------------|-----|-------|
|               |     | GND            | P18 | S19 | GBE1_LINK100#  |     |       |
| GBE           | I/O | GBE0_MDI3-     | P19 | S20 | GBE1_MDI1+     |     |       |
| GBE           | I/O | GBE0_MDI3+     | P20 | S21 | GBE1_MDI1-     |     |       |
| GBE           | 0   | GBE0_LINK100#  | P21 | S22 | GBE1_LINK1000# |     |       |
| GBE           | 0   | GBE0_LINK1000# | P22 | S23 | GBE1_MDI2+     |     |       |
| GBE           | I/O | GBE0_MDI2-     | P23 | S24 | GBE1_MDI2-     |     |       |
| GBE           | I/O | GBE0_MDI2+     | P24 | S25 | GND            |     |       |
| GBE           | 0   | GBE0_LINK_ACT# | P25 | S26 | GBE1_MDI3+     |     |       |
| GBE           | I/O | GBE0_MDI1-     | P26 | S27 | GBE1_MDI3-     |     |       |
| GBE           | I/O | GBE0_MDI1+     | P27 | S28 | N.C.           |     |       |
|               |     | N.C.           | P28 | S29 | PCIE_D_TX+     |     |       |
| GBE           | I/O | GBEO_MDIO-     | P29 | S30 | PCIE_D_TX-     |     |       |
| GBE           | I/O | GBE0_MDI0+     | P30 | S31 | GBE1_LINK_ACT# |     |       |
|               |     | N.C.           | P31 | S32 | PCIE_D_RX+     |     |       |
|               |     | GND            | P32 | S33 | PCIE_D_RX-     |     |       |
| SDIO_CARD     | I   | SDIO_WP        | P33 | S34 | GND            |     |       |
| SDIO_CARD     | I/O | SDIO_CMD       | P34 | S35 | USB4+          | I/O | USB   |
| SDIO_CARD     | I   | SDIO_CD#       | P35 | S36 | USB4-          | I/O | USB   |
| SDIO_CARD     | 0   | SDIO_CK        | P36 | S37 | N.C.           |     |       |
| SDIO_CARD     | 0   | SDIO_PWR_EN    | P37 | S38 | AUDIO_MCK      | 0   | AUDIO |
|               |     | GND            | P38 | S39 | I2SO_LRCK      | I/O | AUDIO |
| SDIO_CARD     | I/O | SDIO_D0        | P39 | S40 | I2S0_SDOUT     | 0   | AUDIO |
| SDIO_CARD     | I/O | SDIO_D1        | P40 | S41 | I2SO_SDIN      | I   | AUDIO |
| SDIO_CARD     | I/O | SDIO_D2        | P41 | S42 | I2S0_CK        | I/O | AUDIO |
| SDIO_CARD     | I/O | SDIO_D3        | P42 | S43 | N.C.           |     |       |
| SPI_INTERFACE | 0   | SPI0_CS0#      | P43 | S44 | N.C.           |     |       |
| SPI_INTERFACE | 0   | SPIO_CK        | P44 | S45 | N.C.           |     |       |
| SPI_INTERFACE |     | SPIO_DIN       | P45 | S46 | N.C.           |     |       |
| SPI_INTERFACE | 0   | SPIO_DO        | P46 | S47 | GND            |     |       |
|               |     |                |     |     |                |     |       |

|               |     | GND           | P47 | S48 | I2C_GP_CK   | I/O | I2C           |
|---------------|-----|---------------|-----|-----|-------------|-----|---------------|
| S-ATA         | I   | SATA_TX+      | P48 | S49 | I2C_GP_DAT  | I/O | 12C           |
| S-ATA         | I   | SATA_TX-      | P49 | S50 | HDA_SYNC    | I/O | AUDIO         |
|               |     | GND           | P50 | S51 | HDA_SDO     | Ο   | AUDIO         |
| S-ATA         | 0   | SATA_RX+      | P51 | S52 | HDA_SDI     | I   | AUDIO         |
| S-ATA         | 0   | SATA_RX-      | P52 | S53 | HDA_CK      | I/O | AUDIO         |
|               |     | GND           | P53 | S54 | SATA_ACT#   | I   | S-ATA         |
| SPI_INTERFACE | 0   | ESPI_CS0#     | P54 | S55 | USB5_EN_OC# | I/O | USB           |
| SPI_INTERFACE | 0   | ESPI_CS1#     | P55 | S56 | ESPI_IO_2   | I/O | SPI_INTERFACE |
| SPI_INTERFACE | 0   | ESPI_CK       | P56 | S57 | ESPI_IO_3   | I/O | SPI_INTERFACE |
| SPI_INTERFACE | I/O | ESPI_IO_0     | P57 | S58 | ESPI_RESET# | О   | SPI_INTERFACE |
| SPI_INTERFACE | I/O | ESPI_IO_1     | P58 | S59 | USB5+       | I/O | USB           |
|               |     | GND           | P59 | S60 | USB-        | I/O | USB           |
| USB           | I/O | USB0+         | P60 | S61 | GND         |     |               |
| USB           | I/O | USBO-         | P61 | S62 | USB3_SSTX+  | 0   | USB           |
| USB           | I/O | USB0_EN_OC#   | P62 | S63 | USB3_SSTX-  | Ο   | USB           |
| USB           | 0   | USB0_VBUS_DET | P63 | S64 | GND         |     |               |
| USB           | I   | USB0_OTG_ID   | P64 | S65 | USB3_SSRX+  | I   | USB           |
| USB           | I/O | USB1+         | P65 | S66 | USB3_SSRX-  | I   | USB           |
| USB           | I/O | USB1-         | P66 | S67 | GND         |     |               |
| USB           | I/O | USB1_EN_OC#   | P67 | S68 | USB3+       | I/O | USB           |
|               |     | GND           | P68 | S69 | USB3-       | I/O | USB           |
| USB           | I/O | USB2+         | P69 | S70 | GND         |     |               |
| USB           | I/O | USB2-         | P70 | S71 | USB2_SSTX+  | Ο   | USB           |
| USB           | I/O | USB2_EN_OC#   | P71 | S72 | USB2_SSTX-  | Ο   | USB           |
|               |     | RSVD          | P72 | S73 | GND         |     |               |
|               |     | RSVD          | P73 | S74 | USB2_SSRX+  | I   | USB           |
| USB           | I/O | USB3_EN_OC#   | P74 | S75 | USB2_SSRX-  | I   | USB           |
| PCI_e         | 0   | PCIE_A_RST#   | P75 | S76 | PCIE_B_RST# | 0   | PCI_e         |
| USB           | I/O | USB4_EN_OC#   | P76 | S77 | PCIE_C_RST# | 0   | PCI_e         |

| PCI_e   | I/O | PCIE_B_CKREQ# | P77  | S78  | PCIE_C_RX+    | I   | PCI_e       |
|---------|-----|---------------|------|------|---------------|-----|-------------|
| PCI_e   | I/O | PCIE_A_CKREQ# | P78  | S79  | PCIE_C_RX-    | I   | PCI_e       |
|         |     | GND           | P79  | S80  | GND           |     |             |
| PCI_e   | 0   | PCIE_C_REFCK+ | P80  | S81  | PCIE_C_TX+    | 0   | PCI_e       |
| PCI_e   | 0   | PCIE_C_REFCK- | P81  | S82  | PCIE_C_TX-    | 0   | PCI_e       |
|         |     | GND           | P82  | S83  | GND           |     |             |
| PCI_e   | 0   | PCIE_A_REFCK+ | P83  | S84  | PCIE_B_REFCK+ | 0   | PCI_e       |
| PCI_e   | 0   | PCIE_A_REFCK- | P84  | S85  | PCIE_B_REFCK- | 0   | PCI_e       |
|         |     | GND           | P85  | S86  | GND           |     |             |
| PCI_e   | I   | PCIE_A_RX+    | P86  | S87  | PCIE_B_RX+    | I   | PCI_e       |
| PCI_e   |     | PCIE_A_RX-    | P87  | S88  | PCIE_B_RX-    |     | PCI_e       |
|         |     | GND           | P88  | S89  | GND           |     |             |
| PCI_e   | 0   | PCIE_A_TX+    | P89  | S90  | PCIE_B_TX+    | 0   | PCI_e       |
| PCI_e   | 0   | PCIE_A_TX-    | P90  | S91  | PCIE_B_TX-    | 0   | PCI_e       |
|         |     | GND           | P91  | S92  | GND           |     |             |
| DISPLAY | 0   | HDMI_D2+      | P92  | S93  | DPO_LANEO+    | 0   | DISPLAY     |
| DISPLAY | 0   | HDMI_D2-      | P93  | S94  | DPO_LANEO-    | 0   | DISPLAY     |
|         |     | GND           | P94  | S95  | DP0_AUX_SEL   | 1   | DISPLAY     |
| DISPLAY | 0   | HDMI_D1+      | P95  | S96  | DPO_LANE1+    | 0   | DISPLAY     |
| DISPLAY | 0   | HDMI_D1-      | P96  | S97  | DPO_LANE1-    | 0   | DISPLAY     |
|         |     | GND           | P97  | S98  | DP0_HPD       | I   | DISPLAY     |
| DISPLAY | 0   | HDMI_D0+      | P98  | S99  | DP0_LANE2+    | 0   | DISPLAY     |
| DISPLAY | 0   | HDMI_D0-      | P99  | S100 | DP0_LANE2-    | 0   | DISPLAY     |
|         |     | GND           | P100 | S101 | GND           |     |             |
| DISPLAY | 0   | HDMI_CK+      | P101 | S102 | DPO_LANE3+    | 0   | DISPLAY     |
| DISPLAY | 0   | HDMI_CK-      | P102 | S103 | DPO_LANE3-    | 0   | DISPLAY     |
|         |     | GND           | P103 | S104 | N.C.          |     |             |
| DISPLAY | 1   | HDMI_HPD      | P104 | S105 | DP0_AUX+      | I/O | DISPLAY     |
| DISPLAY | I/O | HDMI_CTRL_CK  | P105 | S106 | DP0_AUX-      | I/O | DISPLAY     |
| DISPLAY | I/O | HDMI_CTRL_DAT | P106 | S107 | LCD1_BKLT_EN  | 0   | LCD_SUPPORT |

| DISPLAY      | I   | DP1_AUX_SEL       | P107 | S108 | LVDS1_CK+             | 0   | DISPLAY     |
|--------------|-----|-------------------|------|------|-----------------------|-----|-------------|
| GPIO         | I/O | GPIO0 / CAM0_PWR# | P108 | S109 | LVDS1_CK-             | 0   | DISPLAY     |
| GPIO         | I/O | GPIO1 / CAM1_PWR# | P109 | S110 | GND                   |     |             |
| GPIO         | I/O | GPIO2 / CAM0_RST# | P110 | S111 | LVDS1_0+              | 0   | DISPLAY     |
| GPIO         | I/O | GPIO3 / CAM1_RST# | P111 | S112 | LVDS1_0-              | 0   | DISPLAY     |
| GPIO         | I/O | GPIO4 / HDA_RST#  | P112 | S113 | eDP1_HPD              | I   | DISPLAY     |
| GPIO         | I/O | GPIO5 / PWM_OUT   | P113 | S114 | LVDS1_1+              | 0   | DISPLAY     |
| GPIO         | I/O | GPIO6 / TACHIN    | P114 | S115 | LVDS1_1-              | 0   | DISPLAY     |
| GPIO         | I/O | GPIO7             | P115 | S116 | LCD1_VDD_EN           | 0   | LCD_SUPPORT |
| GPIO         | I/O | GPIO8             | P116 | S117 | LVDS1_2+              | 0   | DISPLAY     |
| GPIO         | I/O | GPIO9             | P117 | S118 | LVDS1_2-              | 0   | DISPLAY     |
| GPIO         | I/O | GPIO10            | P118 | S119 | GND                   |     |             |
| GPIO         | I/O | GPIO11            | P119 | S120 | LVDS1_3+              | 0   | DISPLAY     |
|              |     | GND               | P120 | S121 | LVDS1_3-              | 0   | DISPLAY     |
| MANAGEMENT   | I/O | I2C_PM_CK         | P121 | S122 | LCD1_BKLT_PWM         | 0   | LCD_SUPPORT |
| MANAGEMENT   | I/O | I2C_PM_DAT        | P122 | S123 | GPIO13                | I/O | GPIO        |
| BOOT_SEL     |     | BOOT_SEL0#        | P123 | S124 | GND                   |     |             |
| BOOT_SEL     | 1   | BOOT_SEL1#        | P124 | S125 | LVDS0_0+ / eDP0_TX0+  | 0   | DISPLAY     |
| BOOT_SEL     |     | BOOT_SEL2#        | P125 | S126 | LVDS0_0-/eDP0_TX0-    | 0   | DISPLAY     |
| MANAGEMENT   | 0   | RESET_OUT#        | P126 | S127 | LCD0_BKLT_EN          | 0   | LCD_SUPPORT |
| MANAGEMENT   |     | RESET_IN#         | P127 | S128 | LVDS0_1+ / eDP0_TX1+  | 0   | DISPLAY     |
| MANAGEMENT   | 1   | POWER_BTN#        | P128 | S129 | LVDS0_1-/eDP0_TX1-    | 0   | DISPLAY     |
| ASYNC_SERIAL | 0   | SER0_TX           | P129 | S130 | GND                   |     |             |
| ASYNC_SERIAL | 1   | SERO_RX           | P130 | S131 | LVDS0_2+ / eDP0_TX2+  | 0   | DISPLAY     |
| ASYNC_SERIAL | 0   | SERO_RTS#         | P131 | S132 | LVDS0_2-/eDP0_TX2-    | 0   | DISPLAY     |
| ASYNC_SERIAL | I   | SER0_CTS#         | P132 | S133 | LCD0_VDD_EN           | 0   | LCD_SUPPORT |
|              |     | GND               | P133 | S134 | LVDS0_CK+ / eDP0_AUX+ | 0   | DISPLAY     |
| ASYNC_SERIAL | 0   | SER1_TX           | P134 | S135 | LVDS0_CK- / eDP0_AUX- | 0   | DISPLAY     |
| ASYNC_SERIAL |     | SER1_RX           | P135 | S136 | GND                   |     |             |
| ASYNC_SERIAL | 0   | SER2_TX           | P136 | S137 | LVDS0_3+ / eDP0_TX3+  | 0   | DISPLAY     |

| ASYNC_SERIAL |   | SER2_RX   | P137 | S138 | LVDS0_3-/eDP0_TX3- | 0   | DISPLAY     |
|--------------|---|-----------|------|------|--------------------|-----|-------------|
| ASYNC_SERIAL | 0 | SER2_RTS# | P138 | S139 | I2C_LCD_CK         | 0   | LCD_SUPPORT |
| ASYNC_SERIAL |   | SER2_CTS# | P139 | S140 | I2C_LCD_DAT        | I/O | LCD_SUPPORT |
| ASYNC_SERIAL | 0 | SER3_TX   | P140 | S141 | LCD0_BKLT_PWM      | 0   | LCD_SUPPORT |
| ASYNC_SERIAL | l | SER3_RX   | P141 | S142 | GPIO12             | I/O | GPIO        |
|              |   | GND       | P142 | S143 | GND                |     |             |
|              |   | N.C.      | P143 | S144 | eDP0_HPD           | I   | DISPLAY     |
|              |   | N.C.      | P144 | S145 | WDT_TIME_OUT#      | 0   | WATCHDOG    |
|              |   | N.C.      | P145 | S146 | PCIE_WAKE#         | I   | PCI_e       |
|              |   | N.C.      | P146 | S147 | VDD_RTC            |     |             |
|              |   | VDD_IN    | P147 | S148 | LID#               | I   | MANAGEMENT  |
|              |   | VDD_IN    | P148 | S149 | SLEEP#             | 1   | MANAGEMENT  |
|              |   | VDD_IN    | P149 | S150 | VIN_PWR_BAD#       | I   | MANAGEMENT  |
|              |   | VDD_IN    | P150 | S151 | CHARGING#          | I   | MANAGEMENT  |
|              |   | VDD_IN    | P151 | S152 | CHARGER_PRSNT#     | I   | MANAGEMENT  |
|              |   | VDD_IN    | P152 | S153 | CARRIER_STBY#      | 0   | MANAGEMENT  |
|              |   | VDD_IN    | P153 | S154 | CARRIER_PWR_ON     | 0   | MANAGEMENT  |
|              |   | VDD_IN    | P154 | S155 | FORCE_RECOV#       | I   | BOOT_SEL    |
|              |   | VDD_IN    | P155 | S156 | BATLOW#            |     | MANAGEMENT  |
|              |   | VDD_IN    | P156 | S157 | TEST#              | I   | MANAGEMENT  |
|              |   |           |      | S158 | GND                |     |             |

#### 3.2.1.1 LCD Display Support Signals

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake offers signal for direct driving of panels and its display's backlight: enabling signals for both panels (LCD0\_VDD\_EN and LCD1\_VDD\_EN) and both backlights (LCD0\_BKLT\_EN and LCD1\_BKLT\_EN), Backlight Brightness Control signals (LCD0\_BKLT\_PWM and LCD1\_BKLT\_PWM). These signals have an electrical of +1.8V\_RUN, so they will be adapted/level shifted by the carrier board for external use.

There are also the signals necessary for driving I2C Data and Clock lines of LCD EDID EEPROM.

The panel control signals are:

LCD0\_VDD\_EN: Panel #0 Panel enable signal. Set high to enable. +1.8V\_RUN electrical level Output.

LCD0\_BKLT\_EN: Panel #0 Panel Backlight Enable signal. It can be used to turn On/Off the backlight's lamps of a connected LVDS display. +1.8V\_RUN electrical level Output.

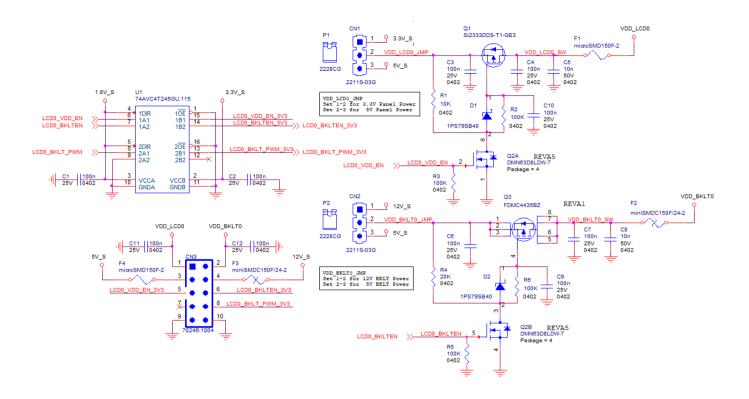
LCD0\_BKLT\_PWM: This signal can be used to adjust the Panel #0 backlight brightness in displays supporting Pulse Width Modulated (PWM) regulations. +1.8V\_RUN electrical level Output.

LCD1\_VDD\_EN: Panel #1 Panel Power signal enable signal. Set high to enable. +1.8V\_RUN electrical level Output

LCD1\_BKLT\_EN: Panel #1 Backlight Enable signal. It can be used to turn On/Off the backlight's lamps of a connected LVDS display. +1.8V\_RUN electrical level Output.

LCD1\_BKLT\_PWM: This signal can be used to adjust the Panel #1 backlight brightness in displays supporting Pulse Width Modulated (PWM) regulations. +1.8V\_RUN electrical level Output.

I2C\_LCD\_DAT: LCD I2C Data. This signal is used to read the LCD display EDID EEPROM.


I2C\_LCD\_CLK: LCD I2C Clock: This signal is used to read the LCD display EDID EEPROM.

Please refer to the following schematics as an example of implementation for LCD and backlight support signals driving connection + voltage level shifters on the carrier board.

All schematics (henceforth also referred to as material) contained in this manual are provided by SECO S.r.l. for the sole purpose of supporting the customers' internal development activities.

The schematics are provided "AS IS". SECO makes no representation regarding the suitability of this material for any purpose or activity and disclaims all warranties and conditions with regard to said material, including but not limited to, all expressed or implied warranties and conditions of merchantability, suitability for a specific purpose, title and non-infringement of any third party intellectual property rights.

The customer acknowledges and agrees to the conditions set forth that these schematics are provided only as an example and that he will conduct an independent analysis and exercise judgment in the use of any and all material. SECO declines all and any liability for use of this or any other material in the customers' product design



#### 3.2.1.2 eDP / Dual Channel LVDS (factory alternatives)

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake offers a wide range of single and multi-purpose Digital Display Interfaces, which allow the implementation of embedded Display Port (eDP) interface or Dual Channel LVDS, HDMI or Display Port (DP), and two Camera Serial Inputs (CSI)

The LVDS interface, which is frequently used in many application fields, is not directly supported by the SOC.

For this reason, considering that LVDS dual channel interfaces can be factory alternative on the same pins with eDP interface, on SM-B69 module can be implemented an eDP to LVDS bridge (NXP PTN3460), which allow the implementation of a Dual Channel LVDS, with a maximum supported resolution of 1920x1200 @ 60Hz (dual channel mode). Such an interface is derived from the SOCs' dedicated eDP Interface.

Please remember that LVDS interface is not native for the Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake, it is derived from an optional eDP-to-LVDS bridge. Depending on the factory option purchased, on the same pins it is possible to have available LVDS or eDP interface.

Please take care of specifying if it is necessary LVDS interface or eDP, before placing an order of SM-B69 module.

ONLY ONE set of signals from the following two sets are present, dependent on the factory board configuration.

EITHER the signals for Channel #0 are LVDS:

LVDS0\_0+/LVDS0\_0-: LVDS Channel #0 differential data pair #0.

LVDS0\_1+/LVDS0\_1-: LVDS Channel #0 differential data pair #1.

LVDS0\_2+/LVDS0\_2-: LVDS Channel #0 differential data pair #2.

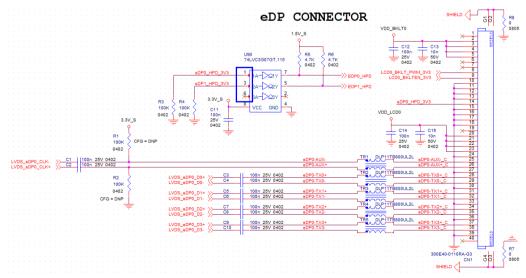
LVDS0\_3+/LVDS0\_3-: LVDS Channel #0 differential data pair #3.

LVDS0\_CK+/LVDS0\_CK-: LVDS Channel #0 differential Clock.

OR the signals for Channel #0 are eDP:

eDP0\_TX0+/ eDP0\_TX0-: eDP Channel #0 differential data pair #0.

eDP0\_TX1+/ eDP0\_TX1-: eDP Channel #0 differential data pair #1.


eDP0\_TX2+/ eDP0\_TX2-: eDP Channel #0 differential data pair #2.

eDP0\_TX3+/ eDP0\_TX3-: eDP Channel #0 differential data pair #3.

eDP0\_AUX+/ eDP0\_AUX-: eDP Channel #0 differential Clock.

eDP0\_HPD: Hot Plug Detect, Active high Input signal of +1.8V\_S electrical level from carrier board with a 100k $\Omega$  pull-down resistor

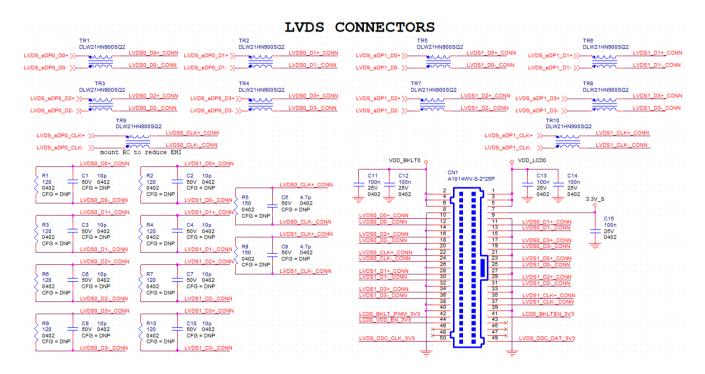
Please refer to the following schematics as an example of connection of eDP interface on the carrier board. Hot Plug Detect signal must be buffered to prevent back feeding of power from the display to the module as well as level translation.





The signals for Channel #1 are LVDS, when this interface is selected in factory board configuration, otherwise these pins will be not connected.

LVDS1\_1+ / LVDS1\_0- : LVDS Channel #1 differential data pair #0


LVDS1\_1+/ LVDS1\_1-: LVDS Channel #1 differential data pair #1

LVDS1\_2+/LVDS1\_2-: LVDS Channel #1 differential data pair #2

LVDS1\_3+/ LVDS1\_3-: LVDS Channel #1 differential data pair #3

LVDS1\_CK+/ LVDS1\_CK-: LVDS Channel #1 differential Clock

Please refer to the following schematics as an example of connection of LVDS interface on the carrier board, with EMI filtering section included.

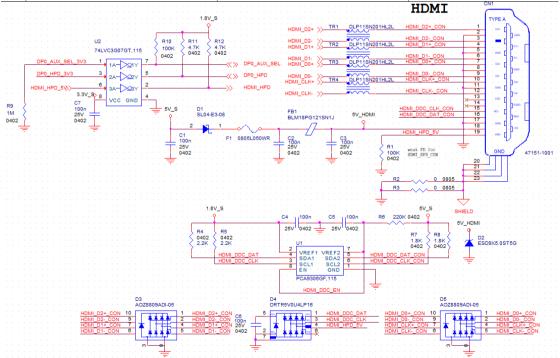


#### 3.2.1.3 HDMI / DP++ (factory alternatives) interface signals

As described in the previous paragraph, the Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake offers a native multimode Digital Display Interface, configurable as a factory alternative to work as Display Port (DP) with a resolution up to 4096 x 2160 @60Hz or HDMI v1.4 with a resolution up to 3840 x 2160 @30Hz.

ONLY ONE set of signals from the following two sets are present, dependent on the factory board configuration.

EITHER the signals for the Channel are HDMI:


HDMI\_D0+/HDMI\_D0-: HDMI Output Differential Pair #0

HDMI\_D1+/HDMI\_D1-: HDMI Output Differential Pair #1

HDMI\_D2+/HDMI\_D2-: HDMI Output Differential Pair #2

HDMI\_CK+/HDMI\_CK-: HDMI Differential Clock

HDMI\_HPD: Hot Plug Detect, Active high Input signal of +1.8V\_S electrical level from carrier board with a 100k $\Omega$  pull-down resistor HDMI\_CTRL\_CK: DDC Clock line for HDMI panel. Bidirectional signal, +1.8V\_RUN electrical level with a 100k $\Omega$  pull-up resistor HDMI\_CTRL\_DAT: DDC Data line for HDMI panel. Bidirectional signal, +1.8V\_RUN electrical level with a 100k $\Omega$  pull-up resistor



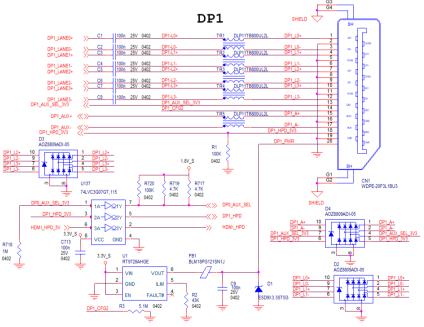
Please refer to the above schematics as an example of connection of HDMI interface on the carrier board, with Voltage clamping diodes highly recommended on all signal lines for ESD suppression, as well as common mode choke inductors for EMI purpose. Voltage level shifters are necessary on Control data/Clock signals, as well as for Hot Plug Detect signal.

OR the signals for the Channel are eDP:

DP1\_LANEO+/ DP1\_LANEO-: DP Channel #1 Output Differential Pair #0

DP1\_LANE1+/ DP1\_LANE1-: DP Channel #1 Output Differential Pair #1

DP1\_LANE2+/ DP1\_LANE2-: DP Channel #1 Output Differential Pair #2


DP1\_LANE3+/ DP1\_LANE3-: DP Channel #1 Output Differential Pair #3

DP1\_AUX+: DDC Clock line for DP Channel #1. Bidirectional signal, +1.8V\_RUN electrical level with a 100kΩ pull-up resistor

DP1\_AUX-: DDC Data line for DP Channel #1. Bidirectional signal, +1.8V\_RUN electrical level with a 100kΩ pull-up resistor

DP1++\_AUX\_SEL: Select input signal to switch between I2C Clock/Data for HDMI (low level) and Display Port Auxiliary Channel for DP/HDMI (high level)

Please refer to the following schematics as an example of connection of DP interface on the carrier board, with Voltage clamping diodes highly recommended on all signal lines for ESD suppression. Hot Plug Detect signal must be buffered to prevent back feeding of power from the display to the module as well as level translation. Switch with settable current limit on power lines are recommended.



#### 3.2.1.4 DP++ interface signals

As described in the previous paragraph, the Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake offers a native Display Port (DP) interface, with a resolution up to 4096 x 2160 @60Hz

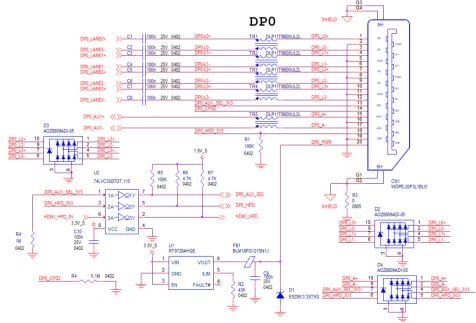
The signals related to DP++ are as follows:

DP0\_LANE0+/ DP0\_LANE0-: DP Channel #0 differential data pair #0.

DP0\_LANE1+/ DP0\_LANE1-: DP Channel #0 differential data pair #1.

DP0\_LANE2+/ DP0\_LANE2-: DP Channel #0 differential data pair #2.

DP0\_LANE3+/ DP0\_LANE3-: DP Channel #0 differential data pair #3.


DP0\_HPD: Hot Plug Detect, Active high Input signal of +1.8V\_S electrical level from carrier board with a 100kp pull-down resistor

DP0\_AUX+: DDC Clock line for DP Channel #0. Bidirectional signal, +1.8V\_RUN electrical level with a 100kΩ pull-up resistor

DP0\_AUX-: DDC Data line for DP Channel #0. Bidirectional signal, +1.8V\_RUN electrical level with a 100kΩ pull-up resistor

DP0++\_AUX\_SEL: Select input signal to switch between I2C Clock/Data for HDMI (low level) and Display Port Auxiliary Channel for DP/HDMI (high level)

Please refer to the following schematics as an example of connection of DP interface on the carrier board, with Voltage clamping diodes highly recommended on all signal lines for ESD suppression. Hot Plug Detect signal must be buffered to prevent back feeding of power from the display to the module as well as level translation. Switch with settable current limit on power lines are recommended.



#### 3.2.1.5 Serial Cameras

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake contains a processing subsystems (PS) which is an advanced Image Signal Processor (ISP) and the Input Subsystems (IS) composed by two MIPI – CSI2 controllers, supporting imaging sensors connected to it.

There are two MIPI-CSI2 interfaces available. The CSI0 interface supports two lanes, the CSI1 interface supports 4 lanes.

CSI0\_CK+/CSI0\_CK-: 2-lane CSI Input Clock Differential Pair

CSI0\_RX0+/CSI0\_RX0-: 2-lane CSI Input Differential Pair 0

CSI0\_RX1+/CSI0\_RX1-: 2-lane CSI Input Differential Pair 1

CSI1\_CK+/CSI1\_CK-: 4-lane CSI Input Clock Differential Pair

CSI1\_RX0+/CSI1\_RX0- 4-lane CSI Input Differential Pair 0

CSI1\_RX1+/CSI1\_RX1-: 4-lane CSI Input Differential Pair 1

CSI1\_RX2+/CSI1\_RX2-: 4-lane CSI Input Differential Pair 2

CSI1\_RX3+/CSI1\_RX3-: 4-lane CSI Input Differential Pair 3

I2C\_CAM0\_CK: I2C control interface clock signal to configure the camera sensor for MIPI-CSI #0. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN.

I2C\_CAM0\_DAT: I2C control interface data signal to configure the camera sensor for MIPI-CSI #0. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN.

I2C\_CAM1\_CK: I2C control interface clock signal to configure the camera sensor for MIPI-CSI #1. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN.

I2C\_CAM1\_DAT: I2C control interface data signal to configure the camera sensor for MIPI-CSI #1. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN.

CAM\_MCK: master clock output for CSI camera support from the SMARC carrier board.

#### 3.2.1.6 SATA interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake offers two S-ATA interfaces, but one of them is internally multiplexed with USB 3.0 and used for this purpose.

The interfaces are Gen3 compliant, with support of 1.5Gbps, 3.0 Gbps and 6.0 Gbps data rates

Here following the signals related to SATA interface:

SATA\_TX+/SATA\_TX-: Serial ATA Channel #1 Transmit differential pair

SATA\_RX+/SATA\_RX-: Serial ATA Channel #1 Receive differential pair

SATA\_ACT#: Serial ATA Activity Led. Active low output signal at +3.3V\_RUN voltage

10nF AC series decoupling capacitors are placed on each line of SATA differential pairs.

On the carrier board, these signals can be carried out directly to a SATA M 7p connector or switched for an M.2 SSD Slot, which allow plugging M.2 Socket 2 Key B Solid State Drives. Please refer to the following schematics as an example of connection of SATA interface on the carrier board to selected connector.

#### 3.2.1.7 SDI/O interface signals

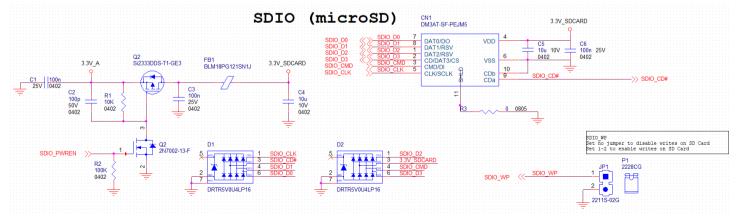
The Intel® family of SOCs formerly coded as Apollo Lake offers one SD Card controller, able to support SD Card 3.0 interface.

Such an SD controller complies with SD Host Controller Standard Specification version 3.01.

The SD port is externally accessible through the SD Card Slot connector, can work in 1-bit and 4-bit mode operation with data rate up to 104MB/s The signals related to SDIO are as follows:

SDIO\_WP: Write Protect input, electrical level +3.3V\_RUN with 10kΩ pull-up resistor. It is used to communicate the status of Write Protect switch of the external SD card. Since microSD cards don't manage this signal, it is important that, when designing carrier boards with microSD slots, this signal must be tied to GND, otherwise the OS will always consider the card as protected from writing.

SDIO\_CMD: Command/Response line. Bidirectional signal, electrical level +3.3V\_RUN, used to send command from Host (Intel processor) to the connected card, and to send the response from the card to the Host.


SDIO\_CD#: Card Detect Input. Active Low Signal, electrical level +3.3V\_RUN with 10kΩ pull-up resistor. This signal must be externally pulled low to signal that a SDIO/MMC Card is present.

SDIO\_CK: Clock Line (output), 50 MHz maximum frequency for SD/SDIO High Speed Mode.

SDIO\_PWR\_EN: SDIO Power Enable output, active high signal, electrical level +3.3V\_RUN with 10k0 pull-down resistor. It is used to enable the power line supplying SD/SDIO/MMC devices.

SDIO\_[D0+D3]: SD Card data bus. SDIO\_D0 signal is used for all communication modes. SDIO\_[D1+D3] signals are required for 4-bit communication mode.

Please refer to the following schematics as an example of connection of SDIO interface on the carrier board, with Voltage clamping diodes highly recommended on all signal lines for ESD suppression.



#### 3.2.1.8 SPI interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake offers also one dedicated controller for Serial Peripheral Interface (SPI), which can be used for connection of EEPROMs and Serial Flash devices.

SPI interface supports master mode only can support speed up to 25Mbps.

The signals related to SPIO are as follows:

SPI0\_CS0#: SPI channel #0 primary Chip select, active low output signal. Electrical level +1.8V\_RUN

SPI0\_CK: SPI channel #0 Clock Output to carrier board's SPI embedded devices. Electrical level +1.8V\_RUN

SPI0\_DIN: SPI0 channel #0 Master Data Input, electrical level +1.8V\_RUN.

SPI0\_DO: SPI0 channel #0 Master Data Output, electrical level +1.8V\_RUN.

The signals related to SPI1 are as follows:

ESPI\_CSO#: SPI channel #1 primary Chip select, active low output signal. Electrical level +1.8V\_RUN

ESPI\_CS1#: SPI channel #1 secondary Chip select, active low output signal. Electrical level +1.8V\_S. This signal must be used only in case there are two SPI devices on the carrier board, and the first chip select signal (ESPI\_CS0#) has already been used. It must not be used in case there is only one SPI device

ESPI\_CK: SPI channel #1 Clock Output to carrier board's SPI embedded devices. Electrical level +1.8V\_RUN

ESPI\_IO\_0: SPI channel #1 Master Data Input, electrical level +1.8V\_RUN.

ESPI\_IO\_1: SPI channel #1 Master Data Output, electrical level +1.8V\_RUN.

#### 3.2.1.9 Audio interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake supports I2S audio format, thanks to native support offered by the processor to this audio codec standard. Here are following the signals related to I2S Audio interface:

AUDIO\_MCK: Master clock output to Audio codec. Output from the module to the Carrier board, electrical level +1.8V\_RUN

I2SO\_LRCK: Left& Right audio synchronization clock. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN

I2S0\_SDOUT: Digital audio Output. Output from the module to the Carrier board, electrical level +1.8V\_RUN

I2SO\_SDIN: Digital audio Input. Input from the module to the Carrier board, electrical level +1.8V\_RUN

I2SO\_CK: Digital audio clock. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN

All these signals have to be connected, on the Carrier Board, to an I2S Audio Codec. Please refer to the chosen Codec's Reference Design Guide for correct implementation of audio section on the carrier board.

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake supports also HD audio format, thanks to native support offered by the processor to this audio codec standard.

Here are following the signals related to HD Audio interface:

HDA\_SYNC: Synchronization clock. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN HDA\_SDO: Digital audio Output. Output from the module to the Carrier board, electrical level +1.8V\_RUN HDA\_SDI: Digital audio Input. Input from the module to the Carrier board, electrical level +1.8V\_RUN HDA\_CK: Digital audio clock. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN HDA\_RST#: Digital Audio Reset. This signal is multiplexed with GPIO4. This pin has to be defined via BIOS so that GPIO4/HDA\_RST# is in HDA\_RST# modality. All these signals have to be connected, on the Carrier Board, to an HD Audio Codec. Please refer to the chosen Codec's Reference Design Guide for correct implementation of audio section on the carrier board.

#### 3.2.1.10 I2C Interface

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake supports GPIO I2C interface.

Here are following the signals related to I2C Audio interface:

I2C\_GP\_CK: I2C General Purpose clock signal. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN I2C\_GP\_DAT: I2C General Purpose data signal. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN

#### 3.2.1.11 Asynchronous Serial Ports (UART) interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake offers in its Low Power Sub System (LPSS) two high speed UART, with a maximum speed of 115,200 kb/s or 3.6864Mb/s depending on Industry standards.

In addition, two additional UART are offered and managed by the Embedded controller MEC1705 from Microchip

SER0\_TX: UART #0 Interface, Serial data Transmit (output) line, 1.8V\_DSW electrical level. It is managed by Microchip MEC1705 controller.

SER0\_RX: UART #0 Interface, Serial data Receive (input) line, 1.8V\_DSW electrical level. It is managed by Microchip MEC1705 controller.

SER0\_RTS#: UART #0 Interface, Handshake signal, Request to Send (output) line, 1.8V\_DSW electrical level

SER0\_CTS#: UART #0 Interface, Handshake signal, Clear to Send (Input) line, 1.8V\_DSW electrical level

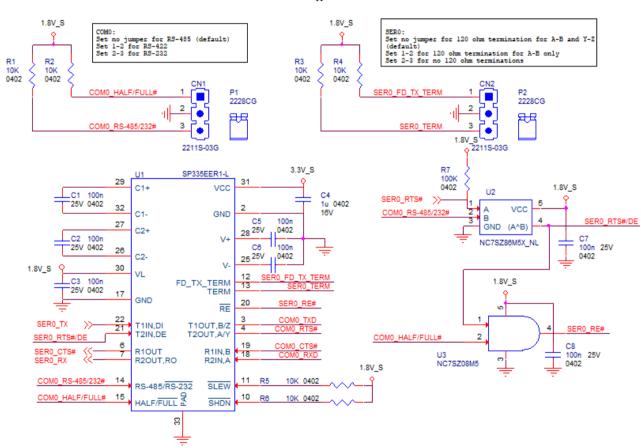
SER1\_TX: HS-UART #0 Interface, Serial data Transmit (output) line, 1.8V\_DSW electrical level. It is directly managed by Intel processor.

SER1\_RX: HS-UART #0 Interface, Serial data Receive (input) line, 1.8V\_DSW electrical level. It is directly managed by Intel processor.

SER2\_TX: UART #1 Interface, Serial data Transmit (output) line, 1.8V\_DSW electrical level. It is managed by Microchip MEC1705 controller.

SER2\_RX: UART #1 Interface, Serial data Receive (input) line, 1.8V\_DSW electrical level. It is managed by Microchip MEC1705 controller.

SER2\_RTS#: UART #1 Interface, Handshake signal, Request to Send (output) line, 1.8V\_DSW electrical level.


SER2\_CTS#: UART #1 Interface, Handshake signal, Clear to Send (Input) line, 1.8V\_DSW electrical level.

SER3\_RX: HS-UART #1 Interface, Serial data Receive (input) line, +1.8V\_RUN electrical level. It is directly managed by Intel processor.

SER3\_TX: HS-UART #1 Interface, Serial data Transmit (output) line, +1.8V\_RUN electrical level. It is directly managed by Intel processor.

Please consider that interface is at +1.8V\_DSW electrical level; therefore, please evaluate well the typical scenario of application. If there isn't any explicit need of interfacing directly at +1.8V\_DSW level, for connection to standard serial ports commonly available (like those offered by common PCs, for example) it is mandatory to include an RS-232 transceiver on the carrier board.

In the following schematic here is an example of UART interface on the carrier board, with a multiprotocol transceiver allowing to support RS485/RS-422/RS-232 serial interfaces.



SER #0

#### 3.2.1.12 USB interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Apollo Lake offers an xHCl controller, which is able to manage up to 6 Superspeed ports (i.e. USB 3.0 compliant) and up to 8 ports in USB 2.0 mode only, one of them also capable of OTG.

In SM-B69, there are up to 4 ports in USB2.0 only and up to 2 Super Speed (SS) ports (i.e. USB 3.0 compliant). One of USB 2.0 port has also OTG capabilities.

All USB 2.0 ports are able to work in High Speed (HS), Full Speed (FS) and Low Speed (LS).

Here following the signals related to USB interfaces.

USB0+/ USB0-: Universal Serial Bus 2.0 Port #0 differential pair (directly managed by Intel processor)

USB0\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10k $\Omega$  pull-up resistor. Refer to SMARC 2.1 Specification for over current operation information.

USB0\_VBUS\_DET: USB Voltage Bus detection from Carrier Board. Input, electrical level +5V.

USB0\_OTG\_ID: USB OTG Input, electrical level +3.3V\_ALW. When USB Port #0 is set to work in Client mode, then this signal shall be used to inform the USB controller when an external USB Host is connected (signal High) or disconnected (Signal Low). It must be tied to GND when USB Port #0 has to be set to work in Host mode. When not driven, USB Port#0 will work in Client mode.

USB1+/ USB1-: Universal Serial Bus Port 2.0 #2 differential pair.

USB1\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10k $\Omega$  pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.

USB2+/USB2-: Universal Serial Bus Port 2.0 #1 differential pair.

USB2\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.

USB3+/USB3-: Universal Serial Bus Port 2.0 #5 differential pair.

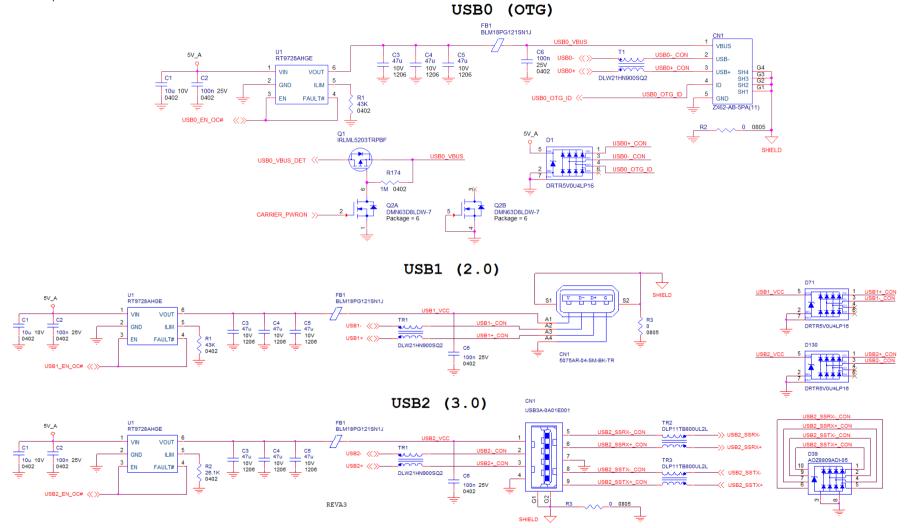
USB3\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.

USB4+/USB4-: Universal Serial Bus Port 2.0 #4 differential pair.

USB4\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.

USB5+/USB5-: Universal Serial Bus Port 2.0 #3 differential pair.

USB5\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.


USB2\_SSTX+/ USB2\_SSTX-: USB 3.0 Port #1 Superspeed Transmit differential pair.

USB2\_SSRX+/ USB2\_SSRX-: USB 3.0 Port #1 Superspeed Receive differential pair.

USB3\_SSTX+/ USB3\_SSTX-: USB 3.0 Port #5 Superspeed Transmit differential pair.

USB3\_SSRX+/ USB3\_SSRX-: USB 3.0 Port #5 Superspeed Receive differential pair.

For EMI/ESD protection, common mode chokes on USB data lines, and clamping diodes on USB data and voltage lines, are also needed. Switch with settable current limit on power lines are recommended.



#### 3.2.1.13 PCI Express interface signals

The SM-B69 module can offer externally four PCI Express lane, which are directly managed by the Intel® family of SOCs formerly coded as Apollo Lake.

PCI express Gen 2.0 (5Gbps) is supported.

Here following the signals involved in PCI express management

PCIE\_A\_RX+/ PCIE\_A\_RX-: PCI Express lane #0, Receiving Input Differential pair

PCIE\_A\_TX+/PCIE\_A\_TX-: PCI Express lane #0, Transmitting Output Differential pair

PCIE\_A\_REFCK+/ PCIE\_A\_REFCK-: PCI Express Reference Clock for lane #0, Differential Pair

PCIE\_A\_RST#: Reset Signal that is sent from SMARC Module to a PCI-e device available on the carrier board. Active Low, +3.3V\_ALW electrical level. it can be used directly to drive externally a single RESET Signal. In case Reset signal is needed for multiple devices, it is recommended to provide for a buffer on the carrier board.

PCIE\_A\_CKREQ#: PCI Express Port A clock request signal, used from a PCI-e device to request the need for PCI Express Reference Clock. Bidirectional signal, +3.3V\_RUN electrical level with a 20k pull-up resistor.

PCIE\_B\_RX+/ PCIE\_B\_RX-: PCI Express lane #1, Receiving Input Differential pair

PCIE\_B\_TX+/PCIE\_B\_TX-: PCI Express lane #1, Transmitting Output Differential pair

PCIE\_B\_REFCK+/ PCIE\_B\_REFCK-: PCI Express Reference Clock for lane #1, Differential Pair

PCIE\_B\_RST#: Reset Signal that is sent from SMARC Module to a PCI-e device available on the carrier board. Active Low, +3.3V\_ALW electrical level. it can be used directly to drive externally a single RESET Signal. In case Reset signal is needed for multiple devices, it is recommended to provide for a buffer on the carrier board. This signal is shared

PCIE\_B\_CKREQ#: PCI Express Port B clock request signal, used from a PCI-e device to request the need for PCI Express Reference Clock. Bidirectional signal, +3.3V\_RUN electrical level with a 20k pull-up resistor.

PCIE\_C\_RX+/ PCIE\_C\_RX-: PCI Express lane #2, Receiving Input Differential pair

PCIE\_C\_TX+/PCIE\_C\_TX-: PCI Express lane #2, Transmitting Output Differential pair

PCIE\_C\_REFCK+/ PCIE\_C\_REFCK-: PCI Express Reference Clock for lane #2, Differential Pair

PCIE\_C\_RST#: Reset Signal that is sent from SMARC Module to a PCI-e device available on the carrier board. Active Low, +3.3V\_ALW electrical level. it can be used directly to drive externally a single RESET Signal. In case Reset signal is needed for multiple devices, it is recommended to provide for a buffer on the carrier board.

PCIE\_D\_RX+/ PCIE\_D\_RX-: PCI Express lane #3, Receiving Input Differential pair

PCIE\_D\_TX+/PCIE\_D\_TX-: PCI Express lane #3, Transmitting Output Differential pair

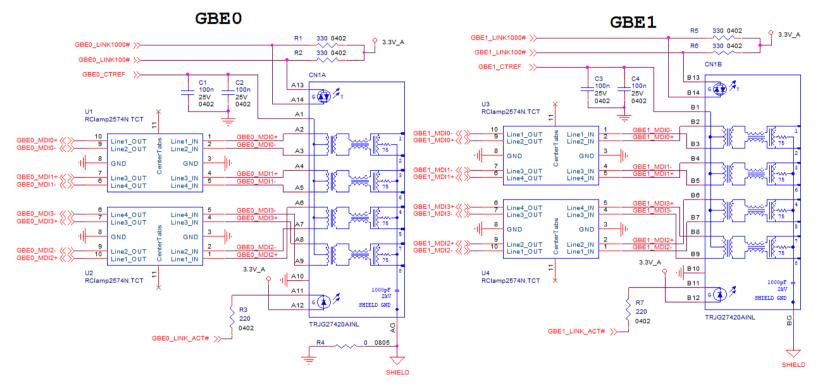
PCIE\_WAKE#: PCIe wake up interrupt to host input signal. Active low, +3.3V\_ALW electrical level with a 10k pull-up resistor.

In the following table are shown the possible groupings allowed of the PCI-e lanes:

| Allowed groupings        | Lane #0      | Lane #1 | Lane #2      | Lane #3 |
|--------------------------|--------------|---------|--------------|---------|
| 1 PCI-e x 4 port         | ١            |         | $\checkmark$ |         |
| 2 PCI- e x2              |              |         | $\checkmark$ |         |
| 1 PCI-e x 2 + 2 PCI-e x1 | $\checkmark$ |         |              |         |
| 4 PCI-e x1               |              |         |              |         |

Please also be aware that this grouping cannot be changed dynamically, it is a fixed feature of the BIOS. The customer in phase of order must select what grouping to have for PCI-e lanes.

#### 3.2.1.14 Gigabit Ethernet signals


Gigabit Ethernet interface is realized on SM-B69 module by using an Intel I210 Ethernet contoller, which is interfaced to Intel processor through a PCI interface. Here following the signals involved in Gigabit Ethernet #0 management: GBE0\_MDI0+/GBE0\_MDI0-: Media Dependent Interface (MDI) Transmit/Receive differential pair GBE0 MDI1+/GBE0 MDI1-: Media Dependent Interface (MDI) Transmit differential pair GBE0 MDI2+/GBE0 MDI2-: Media Dependent Interface (MDI) Transmit differential pair GBE0 MDI3+/GBE0 MDI3-: Media Dependent Interface (MDI) Transmit differential pair GBE0\_LINK\_ACT#: Ethernet controller activity indicator. Active Low Output signal, +3.3V\_ALW electrical level GBE0\_LINK100#: Ethernet controller 100Mbps link indicator. Active Low Output signal, +3.3V\_ALW electrical level GBE0 LINK1000#: Ethernet controller 1Gbps link indicator. Active Low Output signal, +3.3V ALW electrical level GBE0\_SDP: Software defined pin, directly managed by Intel® Ethernet Controller I210 for Gigabit Ethernet #0 Here following the signals involved in Gigabit Ethernet #1 management: GBE1\_MDI0+/GBE1\_MDI0-: Media Dependent Interface (MDI) Transmit/Receive differential pair GBE1\_MDI1+/GBE1\_MDI1-: Media Dependent Interface (MDI) Transmit differential pair GBE1 MDI2+/GBE1 MDI2-: Media Dependent Interface (MDI) Transmit differential pair GBE1\_MDI3+/GBE1\_MDI3-: Media Dependent Interface (MDI) Transmit differential pair GBE1\_LINK\_ACT#: Ethernet controller activity indicator. Active Low Output signal, +3.3V\_ALW electrical level GBE1 LINK100#: Ethernet controller 100Mbps link indicator. Active Low Output signal, +3.3V ALW electrical level



GBE1\_LINK1000#: Ethernet controller 1Gbps link indicator. Active Low Output signal, +3.3V\_ALW electrical level

GBE1\_SDP: Software defined pin, directly managed by Intel® Ethernet Controller I210 for Gigabit Ethernet #1

Please refer to the following schematics as an example of connection of Ethernet interface on the carrier board, with TVS diodes specifically designed to protect sensitive components which are connected to high-speed data and transmission lines from overvoltage caused by ESD. In this example, it is also present GBE\_CTREF signal connected on pin #2 of the RJ-45 connector. Intel® I210x Gigabit Ethernet controller, however, doesn't need the analog powered centre tap, therefore the signal GBE\_CTREF is not available on SMARC connector



Please notice that if just a FastEthernet (i.e. 10/100 Mbps) is needed, then only MDI0 and MDI1 differential lanes are necessary, for both Gigabit Ethernet interfaces

#### 3.2.1.15 Watchdog

WDT\_TIME\_OU: Watchdog timer Output. +1.8V\_DSW electrical level

#### 3.2.1.16 GPIO signals

The Embedded controller MEC1705 GPIO interface provides general purpose input monitoring and output control, as well as many other features for the GPIO described on datasheet.

The signals involved in GPIO management are:

GPIO0 / CAM0\_PWR#: General Purpose I/O #0, +1.8V\_DSW electrical level GPIO1 / CAM1\_PWR#: General Purpose I/O #1, +1.8V\_DSW electrical level GPIO2 / CAM0\_RST#: General Purpose I/O #2, +1.8V\_DSW electrical level GPIO3 / CAM1\_RST#: General Purpose I/O #3, +1.8V\_DSW electrical level GPIO4 / HDA\_RST#: General Purpose I/O #4, +1.8V\_DSW electrical level GPIO5 / PWM\_OUT: General Purpose I/O #5, +1.8V\_DSW electrical level GPIO6 / TACHIN: General Purpose I/O #6, +1.8V\_DSW electrical level GPIO7: General Purpose I/O #7, +1.8V\_DSW electrical level GPIO8: General Purpose I/O #7, +1.8V\_DSW electrical level GPIO9: General Purpose I/O #8, +1.8V\_DSW electrical level GPIO10: General Purpose I/O #10, +1.8V\_DSW electrical level GPIO11: General Purpose I/O #11, +1.8V\_DSW electrical level GPIO12: General Purpose I/O #12, +1.8V\_DSW electrical level

#### 3.2.1.17 Management pins

A set of signals are used by SM-B69 to communicate with carrier board for power management and indication status. Please refer to SMARC hardware specifications ver. 2.1 for more detailed informations.

The signals involved are:

VIN\_PWR\_BAD#: Power Bad indication signal from the Carrier Board, active low signal from a voltage detection circuit

CARRIER\_PWR\_ON: Power On. Command to the Carrier Board. Output is set to +1.8V\_ALW electrical level with a 10k pull-down resistor

CARRIER\_STBY#: Stand By command to the Carrier Board. Output, active low signal, is set to +1.8V\_ALW electrical level with a 10k pull-down resistor

RESET\_OUT#: General Purpose Reset. Output, active low signal, +1.8V\_RUN electrical level

RESET\_IN#: General Purpose Reset. Input, active low signal, +3.3\_ALW electrical level with a 10k pull-up resistor

POWER\_BTN#: Power Button. Input, active low signal, +3.3\_ALW electrical level with a 10k pull-up resistor

SLEEP#: Sleep indicator from Carrier board. Input, active low signal, +3.3\_ALW electrical level with a 10k pull-up resistor

LID#: LID Switch. Input, active low signal, +3.3\_ALW electrical level with a 10k pull-up resistor

BATLOW#: Battery Low indication signal from the Carrier Board. Input, active low signal, +1.8V\_DSW electrical level with a 10k pull-up resistor I2C\_PM\_CK: Power Management I2C Clock. It is managed by Microchip MEC1705 controller. +1.8V\_DSW electrical level with a 2k2 pull-up resistor I2C\_PM\_DAT: Power Management I2C Data. It is managed by Microchip MEC1705 controller. +1.8V\_DSW electrical level with a 2k2 pull-up resistor CHARGING#: Battery Charging Input Signal from the Carrier Board. Input, active low signal, +3.3V\_DSW electrical level with a 10k pull-up resistor CHARGER\_PRSNT#: Battery Charger Present input from the Carrier Board. Input, active low signal, +3.3V\_DSW electrical level with a 2k2 pull-up resistor TEST#: Signals used to invoke from Carrier Board specific test function(s). Input, active low signal, +3.3V\_DSW electrical level with a 10k pull-up resistor. At the moment, this function is not implemented and reserved for its use in the future.

SMB\_ALERT\_1V8#: SM Bus Alert# (interrupt) signal. Input, active low signal, +1.8V\_DSW electrical level with a 2k2 pull-up resistor

#### 3.2.1.18 Boot Select

The following signals are active low and driven by open/ground circuitry on the carrier board. BOOT\_SEL0#: Boot Device Selection #0. Input, +1.8V\_DSW electrical level with a 10k pull-up resistor BOOT\_SEL1#: Boot Device Selection #1. Input, +1.8V\_DSW electrical level with a 10k pull-up resistor BOOT\_SEL2#: Boot Device Selection #2. Input, +1.8V\_DSW electrical level with a 10k pull-up resistor FORCE\_RECOV#: Force recovery Mode. Input, +3.3\_ALW electrical level with a 10k pull-up resistor

# Chapter 4. BIOS SETUP

- Aptio setup Utility
- Main setup menu
- Advanced menu
- Chipset menu
- Security menu
- Boot menu
- Save & Exit menu



# 4.1 Aptio setup Utility

Basic setup of the board can be done using American Megatrends, Inc. "Aptio Setup Utility", that is stored inside an onboard SPI Serial Flash.

It is possible to access to Aptio Setup Utility by pressing the <ESC> key after System power up, during POST phase. On the splash screen that will appear, select "SCU" icon.

On each menu page, on left frame are shown all the options that can be configured.

Grayed-out options are only for information and cannot be configured.

Only options written in blue can be configured. Selected options are highlighted in white.

Right frame shows the key legend.

KEY LEGEND:

- ← / → Navigate between various setup screens (Main, Advanced, Security, Power, Boot...)
- ↑/↓ Select a setup item or a submenu
- + / + and keys allows to change the field value of highlighted menu item
- <F1> The <F1> key allows displaying the General Help screen.
- <F2> Previous Values

<F3> 
<F3> key allows loading Optimised Defaults for the board. After pressing <F3> BIOS Setup utility will request for a confirmation, before loading such default values. By pressing <ESC> key, this function will be aborted

<F4> <F4> key allows save any changes made and exit Setup. After pressing <F10> key, BIOS Setup utility will request for a confirmation, before saving and exiting. By pressing <ESC> key, this function will be aborted

<ESC> <= SC> key allows discarding any changes made and exit the Setup. After pressing <ESC> key, BIOS Setup utility will request for a confirmation, before discarding the changes. By pressing <Cancel> key, this function will be aborted

<ENTER> <Enter> key allows to display or change the setup option listed for a particular setup item. The <Enter> key can also allow displaying the setup sub-screens.



# 4.2 Main setup menu

When entering the Setup Utility, the first screen shown is the Main setup screen. It is always possible to return to the Main setup screen by selecting the Main tab.

In this screen, are shown details regarding BIOS version, Processor type, Bus Speed and memory configuration.

Only two options can be configured:

# 4.2.1 System Date / System Time

Use this option to change the system time and date. Highlight System Time or System Date using the <Arrow> keys. Enter new values directly through the keyboard, or using + / - keys to increase / reduce displayed values. Press the <Enter> key to move between fields. The date must be entered in MM/DD/YY format. The time is entered in HH:MM:SS format.

Note: The time is in 24-hour format. For example, 5:30 A.M. appears as 05:30:00, and 5:30 P.M. as 17:30:00.

The system date is in the format mm/dd/yyyy.

# 4.3 Advanced menu

| Menu Item                                                                                                         | Options     | Description                                                                                         |
|-------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------|
| Intel <sup>®</sup> I210 Gigabit Network Connection - MAC Address #1<br>Other Network Connections - MAC Address #x | See submenu | Configures settings for Boot Phase                                                                  |
| Trusted Computing                                                                                                 | See submenu | Trusted Computing Settings                                                                          |
| ACPI Settings                                                                                                     | See submenu | System ACPI parameters                                                                              |
| Serial Port Console Redirection                                                                                   | See submenu | Serial Port Console Redirection                                                                     |
| CPU Configuration                                                                                                 | See submenu | CPU Configuration Parameters                                                                        |
| AMI Graphic Output Protocol Policy                                                                                | See submenu | User Selected Monitor Output by Graphic Output protocol                                             |
| Network Stack Configuration                                                                                       | See submenu | Network Stack Settings                                                                              |
| CSM Configuration                                                                                                 | See submenu | Compatibility Support Module(CSM) Configuration: Enable/Disable, Option ROM execution Settings, etc |
| NVMe Configuration                                                                                                | See submenu | NVMe Device Options Settings                                                                        |
| SDIO Configuration                                                                                                | See submenu | SDIO Configuration Parameters                                                                       |
| LVDS Configuration                                                                                                | See submenu | LVDS Configuration Parameters                                                                       |
| Super I/O Configuration                                                                                           | See submenu | Super I/O Setup Configuration Utility                                                               |
| USB Configuration                                                                                                 | See submenu | USB Configuration Parameters                                                                        |
| Platform Trust technology                                                                                         | See submenu | Platform Trust Technology Parameters                                                                |
| Embedded Controller                                                                                               | See submenu | Embedded Controller Parameters                                                                      |
| Thermal                                                                                                           | See submenu | Thermal Configuration Parameters                                                                    |

# 4.3.1 Intel® I210 Gigabit Network Connection - MAC Address #1 submenu

| Menu Item         | Options     | Description                                                       |
|-------------------|-------------|-------------------------------------------------------------------|
| NIC Configuration | See submenu | Enter the submenu to configure the network device port            |
| Blink LEDs        | 0 / 1       | Identify the physical network port by blinking the associated LED |

#### 4.3.1.1 NIC configuration submenu

| Menu Item   | Options                                                                           | Description                                                                                                                                                                                                               |
|-------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Link Speed  | Auto Negotiated<br>10 Mbps Half<br>10 Mbps Full<br>100 Mbps Half<br>100 Mbps Full | Specifies the port speed used for the selected boot protocol                                                                                                                                                              |
| Wake On LAN | Disabled / Enabled                                                                | Enables powering on the system via LAN. Note that configuring Wake on LAN in the operating system does not change the value of this setting, but does override the behaviour of Wake on LAN in OS controlled power states |

# 4.3.2 Trusted computing submenu

| Menu Item                      | Options                    | Description                                                                                                                                                                                                                           |
|--------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Security Device Support        | Enabled / Disabled         | Enables or Disables BIOS support for security device. OS will not show the Security Device. TCG EFI protocol and INT1A interface will not be available. When enabled all the following items will be available.                       |
| SHA-1 PCR Bank                 | Enabled / Disabled         | Enables or Disables SHA-1 PCR Bank                                                                                                                                                                                                    |
| SHA256 PCR Bank                | Enabled / Disabled         | Enables or Disables SHA256 PCR Bank                                                                                                                                                                                                   |
| Pending Operation              | None / TPM Clear           | Schedule an Operation for the Security Device. NTE: your Computer will reboot during restart in order to change State of Security Device.                                                                                             |
| Platform Hierarchy             | Enabled / Disabled         | Enables or Disabled the Platform Hierarchy                                                                                                                                                                                            |
| Storage Hierarchy              | Enabled / Disabled         | Enables or Disabled the Storage Hierarchy                                                                                                                                                                                             |
| Endorsement Hierarchy          | Enabled / Disabled         | Enables or Disabled the Endorsement Hierarchy                                                                                                                                                                                         |
| TPM2.0 UEFI Spec Version       | TCG_1_2<br>TCG_2           | Select the TCG Spec Version support. TCG_1_2 is the compatible mode for Windows 8 / Windows 10. TCG 2 supports the new TCG2 protocol and event format for Windows 10 or later.                                                        |
| Physical Presence Spec Version | 1.2 / 1.3                  | Select to tell OS to support PPI Spec Version 1.2 or 1.3. Please note that some HCK tests might not support 1.3                                                                                                                       |
| Device Select                  | Auto<br>TPM 1.2<br>TPM 2.0 | TPM 1.2 will restrict the support to TPM 1.2 devices only, TPM 2.0 will restrict the support to TPM 2.0 devices only, Auto will support both with the default set to TPM 2.0 devices if not found, TPM 1.2 devices will be enumerated |



#### 4.3.3 ACPI Settings submenu

| Menu Item                      | Options                                 | Description                                                                                                                 |
|--------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Enable ACPI Auto Configuration | Disabled / Enabled                      | Enables or Disables BIOS ACPI Auto Configuration. The following menu items will appear only when this menu item is Disabled |
| Enable Hibernation             | Disabled / Enabled                      | Enables or disables system ability to Hybernate (OS/S4 Sleep State). This option may be not effective with some OS.         |
| ACPI Sleep State               | Suspend Disabled<br>S3 (Suspend to RAM) | Select the highest ACPI Sleep state the system will enter when the SUSPEND button is pressed.                               |
| Lock Legacy resources          | Disabled / Enabled                      | Enables or Disables Lock of Legacy resources                                                                                |

#### 4.3.4 Serial Port Console Redirection submenu

| Menu Item                    | Options            | Description                                                                                                                                                             |
|------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Console redirections         | Enabled / Disabled | Enables or Disables the Console redirection. When enabled the following item will appear                                                                                |
| Console Redirection Settings | See Submenu        | The settings specifies how the host and the remote computer (which the user is using) will exchange data.<br>Both computers should have the same or compatible settings |

#### 4.3.4.1 *Console Redirection Settings submenu*

| Menu Item       | Options                                  | Description                                                                                                                                                                                                                                                                                                                                    |
|-----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminal Type   | VT100<br>VT100+<br>VT-UTF8<br>ANSI       | Emulation:<br>ANSI: Extended ASCII Char set.<br>VT100: ASCII Char set.<br>VT100+: extends VT100 to support colour, function keys, etc.<br>VT-UTF8: uses UTF8 encoding to map Unicode chars onto 1 or more bytes                                                                                                                                |
| Bits per second | 9600 / 19200 / 38400 /<br>57600 / 115200 | Select Serial port Transmission Speed. The speed must be matched on the other side. Long or noisy lines may require lower speeds.                                                                                                                                                                                                              |
| Data bits       | 7 / 8                                    | Set Console Redirection data bits                                                                                                                                                                                                                                                                                                              |
| Parity          | None<br>Even<br>Odd<br>Mark<br>Space     | A parity bit can be sent with the data bits to detect some transmission errors.<br>Even: parity bit is 0 if the number of 1s in the data bits is even.<br>Odd: parity bit is 0 if the number of 1s in the data bits is odd.<br>Mark: parity bit is always 1.<br>Space: parity bit is always 0. Mark and Space do not allow for error detection |

| Stop bits                        | 1/2                                                     | Stop bits indicate the end of a serial data packet. (A start bit indicates the beginning). The standard setting is 1 stop bit. Communication with slow devices may require more than 1 stop bit                                                                                                                                 |
|----------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow Control                     | None<br>Hardware RTS/CTS                                | Flow Control can prevent data loss from buffer overflow. When sending data, if the receiving buffers are full, a 'stop' signal can be sent to stop the data flow. Once the buffers are empty, a 'start' signal can be sent to re-start the flow. Hardware flow control uses RTS# / CTS# lines to send the start / stop signals. |
| VT-UTF8 Combo Key Support        | Enabled / Disabled                                      | Enable VT-UTF8 Combination Key Support for ANSI/VT100 terminals                                                                                                                                                                                                                                                                 |
| Recorder Mode                    | Enabled / Disabled                                      | When this mode is enabled, only text will be sent. This is to capture Terminal data.                                                                                                                                                                                                                                            |
| Resolution 100x31                | Enabled / Disabled                                      | Enables or disables extended terminal resolution                                                                                                                                                                                                                                                                                |
| Legacy OS Redirection Resolution | 80x24 / 80x25                                           | On Legacy OS, the number of Columns and Rows supported redirection                                                                                                                                                                                                                                                              |
| Putty Keypad                     | VT100 / Intel Linux /<br>XTERMR6 / SCO / ESCN<br>/VT400 | Select FunctionKey and KeyPad on Putty                                                                                                                                                                                                                                                                                          |
| Redirection after BIOS POST      | Always Enabled<br>BootLoader                            | When BootLoader is selected, then Legacy Console redirection is disabled before booting to Legacy OS. When 'Always Enabled' is selected, then Legacy Console redirection is enabled for Legacy OS. Default setting for this option is set to 'Always Enabled'                                                                   |

# 4.3.5 CPU Configuration submenu

| Menu Item                            | Options              | Description                                                                                                                                                                |
|--------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detailed CPU Information             |                      | Shows board's specific SoC information                                                                                                                                     |
| CPU Power Management                 | See Submenu          | CPU Power Management options                                                                                                                                               |
| Active Processor Cores               | Disabled / Enabled   | Number of Cores to enable in each processor package                                                                                                                        |
| Core 0<br>Core 1<br>Core 2<br>Core 3 | Disabled / Enabled   | Core #x Enable / Disable. Only available when "Active Processor Cores" is enabled                                                                                          |
| Intel Virtualization Technology      | Disabled / Enabled   | When enabled, a VMM can utilize the additional hardware capabilities provided by Vanderpool Technology                                                                     |
| VT-d                                 | Disabled / Enabled   | Enables or disables CPU VT-d                                                                                                                                               |
| Bi-directional PROCHOT               | Disabled / Enabled   | When a processor thermal sensor trips (either core), the PROCHOT# will be driven. If bi-direction is enabled, external agents can drive PROCHOT# to throttle the processor |
| Thermal Monitor                      | Disabled / Enabled   | Enables or disables the Thermal Monitor                                                                                                                                    |
| Monitor Mwait                        | Disabled / Enabled / | Enables or disables Monitor Mwait                                                                                                                                          |

SM-B69 SM-B69 User Manual - Rev. First Edition: 1.0 - Last Edition: 1.1 - Author:A.R - Reviewed by M.B. - Copyright © 2020 SECO S.p.A.

|                      | Auto                        |                                                |
|----------------------|-----------------------------|------------------------------------------------|
| P-STATE Coordination | HW_ALL / SW_ALL /<br>SW_ANY | Change P-STATE Coordination type               |
| DTS                  | Disabled / Enabled          | Enables or disables the Digital Thermal Sensor |
|                      |                             |                                                |

4.3.5.1 CPU Power Management submenu

| Menu Item                  | Options                                                                                                                            | Description                                                                                                                        |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| EIST                       | Disabled / Enabled                                                                                                                 | Enables or disables Intel® SpeedStep                                                                                               |
| Turbo mode                 | Disabled / Enabled                                                                                                                 | Only Available when "EIST" is enabled. Enables or disables the Turbo Mode                                                          |
| Boot Performance mode      | Max performance<br>Max battery                                                                                                     | Select the performance state that the BIOS will set before OS handoff.                                                             |
| Power Limit 1 Enable       | Disabled / Enabled                                                                                                                 | Enables or disables Power Limit 1. When Enabled, the following menu items will appear-                                             |
| Power Limit 1 Clamp Mode   | Disabled / Enabled                                                                                                                 | When Power Limit 1 is Enabled, enables or disables the Clamp Mode                                                                  |
| Power Limit 1 Power        | Auto / 3 / 4 / 5 / 6 / 7 /<br>8 / 9 / 10                                                                                           | Power Limit 1 in Watts. Auto will program Power Limit 1 based on silicon default support value.                                    |
| Power Limit 1 Time Windows | Auto / 1 / 2 / 3 / 4 / 5 /<br>6 / 7 / 8 / 10 / 12 / 14 /<br>16 / 20 / 24 / 28 / 32 /<br>40 / 48 / 56 / 64 / 80 /<br>96 / 112 / 128 | Power Limit 1 Time Window Value in Seconds. Auto will program the Power Limit 1 Time Window based on silicon default support value |

# 4.3.6 AMI graphic Output Protocol Policy submenu

| Menu Item              | Options                                                       | Description                                                                                                                                                   |  |  |
|------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Output Select          | List of available /<br>connected module's<br>video interfaces | Sets the support for USB keyboard / mouse / storage under UEFI and DOS environment. When set to UEFI only, then it will support exclusively UEFI environment. |  |  |
| 4.3.7 Network Stack of |                                                               |                                                                                                                                                               |  |  |
| Menu Item              | Options                                                       | Description                                                                                                                                                   |  |  |
| Network Stack          | Enabled / Disabled                                            | Enables or disables UEFI Network Stack. When enabled, following menu items will appear                                                                        |  |  |
| Ipv4 PXE Support       | Enabled / Disabled                                            | Enables or disables IPV4 PXE Boot Support. If disabled, IPV4 PXE boot option will not be created                                                              |  |  |

| Ipv4 HTTP Support  | Enabled / Disabled | Enables or disables IPV4 HTTP Boot Support. If disabled, IPV4 HTTP boot option will not be created |
|--------------------|--------------------|----------------------------------------------------------------------------------------------------|
| Ipv6 PXE Support   | Enabled / Disabled | Enables or disables IPV6 PXE Boot Support. If disabled, Ipv6 PXE boot option will not be created   |
| Ipv6 HTTP Support  | Enabled / Disabled | Enables or disables IPV6 HTTP Boot Support. If disabled, Ipv6 HTTP boot option will not be created |
| PXE boot wait time | [05]               | Wait time to press ESC key to abort the PXE boot                                                   |
| Media detect count | [150]              | Number of times that the presence of media will be checked                                         |

# 4.3.8 CSM configuration submenu

| Menu Item           | Options                                     | Description                                                                                                                                                         |
|---------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSM Support         | Enabled / Disabled                          | Enables or disables the Compatibility Support Module (CSM) Support. When enabled, the following menu items will appear                                              |
| GateA20 Active      | Upon Request<br>Always                      | Upon Request: GateA20 can be disabled using BIOS services,<br>Always: do not allow disabling GateA20; this option is useful when any RT code is executed above 1MB. |
| INT19 Trap Response | Immediate<br>Postponed                      | BIOS Reaction on INT19 trapping by Option ROM:<br>IMMEDIATE - execute the trap right away;<br>POSTPONED - execute the trap during legacy boot                       |
| Boot option filter  | UEFI and Legacy<br>Legacy only<br>UEFI only | This option controls Legacy / UEFI ROMs priority                                                                                                                    |
| Network Stack       | Do not launch<br>UEFI<br>Legacy             | Controls the execution of UEFI and Legacy PXE OpROM                                                                                                                 |
| Storage Hierarchy   | Do not launch<br>UEFI<br>Legacy             | Controls the execution of UEFI and Legacy Storage OpROM                                                                                                             |
| Video               | Do not launch<br>UEFI<br>Legacy             | Controls the execution of UEFI and Legacy Video OpROM                                                                                                               |
| Other PCI devices   | Do not launch<br>UEFI<br>Legacy             | Determines the OpROM execution policy for devices other than Network, Storage or Video                                                                              |



# 4.3.9 NVMe configuration submenu

# 4.3.10 SDIO configuration submenu

| Menu Item                  | Options                                   | Description                                                                                                                                                                                                                                                   |
|----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDIO Access Mode           | Auto<br>ADMA<br>SDMA<br>PIO               | Auto Option: Access the SD Device in DMA mode if the controller supports it, otherwise in PIO Mode.<br>DMA Option: Access the SD Device in DMA mode<br>ADMA Option: Access the SD Device in Advanced DMA mode<br>PIO Option: Access the SD Device in PIO mode |
| List of SDIO devices found | Auto<br>Floppy<br>Forced FDD<br>Hard Disk | Mass storage device emulation type. 'Auto' enumerates devices less than 530Mb as floppies. Forced FDD option can be used to force HDD formatted drive to boot as FDD.                                                                                         |

# 4.3.11 LVDS Configuration submenu

| Menu Item           | Options                                                                                                                                                     | Description                                                                                                                                                                                    |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LVDS interface      | Enabled / Disabled                                                                                                                                          | Enables or Disables the LVDS interface. When enabled all the following parameters will appear                                                                                                  |
| Edid Mode           | External / Default / Custom                                                                                                                                 | Select the source (EDID, Extended Display Identification Data) to be used for the internal flat panel. Depending on the setting chosen, only some of the following option or none will appear. |
| EDID                | 640x480 / 800x480 / 800x600<br>/ 1024x600 / 1024x768 /<br>1280x720 / 1280x800 /<br>1280x1024 / 1366x768 /<br>1400x900 / 1600x900 /<br>1680x1050 / 1920x1080 | Only available when Edid Mode is set to "default". Select a software resolution (EDID settings) to be used for the internal flat panel.                                                        |
| Pixel Clock / 10000 | [250022400]                                                                                                                                                 | Working Frequency in 10kHz units, e.g 6350 $\rightarrow$ 63.5MHz. Allowed range from 2500 (25MHz) to 22400 (224MHz)                                                                            |
| Horizontal Active   | [14095]                                                                                                                                                     | Horizontal Addressable Video in pixels, a.k.a. Horizontal resolution (e.g. 1024 on a 1024x768 LFP)                                                                                             |
| Horizontal Blank    | [14095]                                                                                                                                                     | Horizontal Blanking in pixels, equals to Horizontal Total (Horizontal Active + Horizontal Front Porch + Horizontal Black Porch)                                                                |
| Vertical Active     | [14095]                                                                                                                                                     | Vertical Addressable Video in pixels, a.k.a. Vertical resolution (e.g. 768 on a 1024x768 LFP)                                                                                                  |
| Vertical Blank      | [14095]                                                                                                                                                     | Vertical Blanking in pixels, equals to Vertical Total (Vertical Active + Vertical Front Porch + Vertical Black Porch)                                                                          |

| Horizontal Offset     | [11023]                              | Horizontal Front Porch in pixels                                                                                                                                                            |
|-----------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Horizontal Pulse      | [11023]                              | Horizontal Sync Pulse Width in pixels                                                                                                                                                       |
| Vertical Offset       | [163]                                | Vertical Front Porch in pixels                                                                                                                                                              |
| Vertical Pulse        | [163]                                | Vertical Sync Pulse Width in pixels                                                                                                                                                         |
| Horizontal Polarity   | Negative / Positive                  | Sync Signal Polarity: Default is Negative (Active Low)                                                                                                                                      |
| Vertical Polarity     | Negative / Positive                  | Sync Signal Polarity: Default is Negative (Active Low)                                                                                                                                      |
| Color Mode            | VESA 24bpp / JEIDA 24bpp /<br>18 bpp | Select the color depth of LVDS interface. For 24-bit color depth, it is possible to choose also the color mapping on LVDS channels, i.e. if it must be VESA-compatible or JEIDA compatible. |
| Interface             | Single Channel / Dual Channel        | Allows configuration of LVDS interface in Single or Dual channel mode                                                                                                                       |
| LVDS Advanced Options | See Submenu                          | LVDS Advanced Options Configurations                                                                                                                                                        |
|                       |                                      |                                                                                                                                                                                             |

#### 4.3.11.1 LVDS Advanced options submenu

| Menu Item            | Options                                                            | Description                                                                                                                         |
|----------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Spreading Depth      | No Spreading / 0.5% /<br>1.0% / 1.5% / 2.0% /<br>2.5%              | Sets percentage of bandwidth of LVDS clock frequency for spreading spectrum                                                         |
| Output Swing         | 150 mV / 200 mV / 250<br>mV / 300 mV / 350 mV /<br>400 mV / 450 mV | Sets the LVDS differential output swing                                                                                             |
| T3 Timing            | 0 ÷ 255                                                            | Minimum T3 timing of panel power sequence to enforce (expressed in units of 50ms). Default is 10 (500ms)                            |
| T4 Timing            | 0 ÷ 255                                                            | Minimum T4 timing of panel power sequence to enforce (expressed in units of 50ms). Default is 2 (100ms)                             |
| T12 Timing           | 0 ÷ 255                                                            | Minimum T12 timing of panel power sequence to enforce (expressed in units of 50ms). Default is 20 (1s)                              |
| T2 Delay             | Enabled / Disabled                                                 | When Enabled, T2 is delayed by 20ms ± 50%                                                                                           |
| T5 Delay             | Enabled / Disabled                                                 | When Enabled, T5 is delayed by 20ms ± 50%                                                                                           |
| P/N Pairs Swapping   | Enabled / Disabled                                                 | Enable or disable LVDS Differential pairs swapping (Positive ⇔ Negative)                                                            |
| Pairs Order Swapping | Enabled / Disabled                                                 | Enable or disable channel differential pairs order swapping (A $\Leftrightarrow$ D, B $\Leftrightarrow$ CLK, C $\Leftrightarrow$ C) |
| LVDS BUS Swapping    | Enabled / Disabled                                                 | Enable or disable Bus swapping (Odd ⇔ Even)                                                                                         |

#### 4.3.12 SuperI/O configuration submenu

| Menu Item                                                        | Options                                                                             | Description                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name of the Superl/O found                                       |                                                                                     | This menu item will show the name of all the Super I/Os that are found on the carrier board. By selecting the adequate SuperI/O, it will be possible to set the serial ports and possibly other parameters as shown in the following menu items. If no Super I/O is available on the Carrier Board, this menu will not be available. |
| Serial Port 1 / Serial Port 2 /<br>Serial Port 3 / Serial Port 4 | Enabled / Disabled                                                                  | Enable or Disable single serial port #1, #2, #3 or #4 (the number of serial ports depends on the Super I/O).                                                                                                                                                                                                                         |
| Address                                                          | 0x3F8 / 0x2F8 / 0x3E8 / 0x2E8<br>/ 0x3E0 / 0x2E0 / 0x338 /<br>0x238 / 0x220 / 0x228 | Select the Base address for each Serial Port, if enabled.                                                                                                                                                                                                                                                                            |
| IRQ                                                              | 3 / 4 / 5 / 6 / 7 / 10 / 11 / 14 /<br>15                                            | Select the IRQ line to assign to each Serial Port, if enabled.                                                                                                                                                                                                                                                                       |

# 4.3.13 USB configuration submenu

| Menu Item                        | Options                              | Description                                                                                                                                                                                                                      |
|----------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legacy USB Support               | Enabled / Disabled /<br>Auto         | Enables Legacy USB Support. AUTO Option disables legacy support if no USB devices are connected. DISABLE option will keep USB devices available only for EFI applications.                                                       |
| XHCI hand-off                    | Enabled/ Disabled                    | This is a workaround for OSes without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.                                                                                                         |
| USB Mass Storage Driver Support  | Enabled/ Disabled                    | Enables or disables USB Mass Storage Driver Support                                                                                                                                                                              |
| USB Transfer time-out            | 1 sec / 5 sec / 10 sec /<br>20 sec   | Sets the time-out value for Control, Bulk and Interrupt transfers                                                                                                                                                                |
| Device reset time-out            | 10 sec / 20 sec / 30<br>sec / 40 sec | USB mass storage device Start Unit command time-out                                                                                                                                                                              |
| Device power-up delay            | Auto / Manual                        | Sets the maximum time that the device will take before it properly reports itself to the Host controller. 'Auto' uses the default vale (for a Root port it is 100ms, for a Hub port the delay is taken from the Hub descriptor). |
| Device power-up delay in seconds | [140]                                | Delay range in seconds, in one second increment                                                                                                                                                                                  |



# 4.3.14 Platform Trust technology submenu

| Menu Item | Options            | Description         |
|-----------|--------------------|---------------------|
| fTPM      | Enabled / Disabled | Enable/Disable fTPM |

#### 4.3.15 Embedded Controller submenu

| Menu Item                         | Options                                                            | Description                                                                                                                                                                      |
|-----------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Watchdog                          | Disabled / Enabled                                                 | Enables or disables the Watchdog. When enabled, the following parameters will appear.                                                                                            |
| Watchdog action                   | System Reset<br>Power Button 1s<br>Power Button 4s<br>(Shutdown)   | Action executed at the firing of the watchdog timeout.                                                                                                                           |
| Delay to Start (Sec.)             | [0600]                                                             | Seconds of delay before the watchdog timer starts counting.                                                                                                                      |
| Timeout (Sec.)                    | [20599]                                                            | Watchdog Timeout.                                                                                                                                                                |
| Watchdog Event                    | Disabled / Enabled                                                 | High Active output watchdog event indicator                                                                                                                                      |
| Ext. PWM Frequency (Hz)           | [165535]                                                           | Sets External PWM Frequency in Hertz                                                                                                                                             |
| Ext. PWM DC (%)                   | [0100]                                                             | Sets external PWM Duty Cycle (%)                                                                                                                                                 |
| Ext. Tacho Configuration          | 3-Wire<br>4-Wire                                                   | Sets External Tachometric FAN Type                                                                                                                                               |
| LID_BTN# Configuration            | Force Open<br>Force Closed<br>Normal Polarity<br>Inverted Polarity | Configures the LID_BTN# signal as always open or closed, no matter the pin level, or configures the pin polarity: High = Open (Normal), Low = Open (Inverted)                    |
| LID_BTN# Wake Configuration       | No Wake<br>Only From S3<br>Wake From S3/S4/S5                      | Configures LID_BTN# wake capability (when not forced to Open or Closed). According to the pin configuration, when the LID is open it can cause a system wake from a sleep state. |
| SMB_ALERT# wake                   | Disabled / Enabled                                                 | Enables or disables SMBUS Alert Wake from Suspend State.                                                                                                                         |
| Int. LAN wake                     | Disabled / Enabled                                                 | Enable wake for internal LAN                                                                                                                                                     |
| External PCIE wake                | Disabled / Enabled                                                 | Enable wake from Q7 edge connector's PCIE_WAKE# pin                                                                                                                              |
| User Non Volatile Storage Content |                                                                    | Open a page showing the user Non Volatile Storage Area Contents                                                                                                                  |

#### 4.3.16 Thermal submenu

| Menu Item                   | Options                                                                                                                        | Description                                                                                                                                                                                                                   |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic Thermal Reporting | Enabled / Disabled                                                                                                             | Configures Critical Trip Point, Passive trip Point and Active Trip Point automatically basing on the values recommended in BWG's Thermal reporting for Thermal Management Settings. Set to Disabled for Manual Configuration. |
| Critical Trip Point         | 15°C / 23°C / 31°C / 39°C /<br>47°C / 55°C / 63°C / 71°C /<br>79°C / 87°C / 95°C / 100°C /<br>103°C / 110°C / 119°C /<br>125°C | This value controls the temperature of the ACPI Critical Trip Point - the point in which the OS will shut the system off.                                                                                                     |
| Passive Trip Point          | Disable / 15°C / 23°C / 31°C /<br>39°C / 47°C / 55°C / 63°C /<br>71°C / 79°C / 87°C / 95°C /<br>103°C / 111°C                  | This value controls the temperature of the ACPI Passive Trip Point - the point in which the OS will begin throttling the processor.                                                                                           |
| Active Trip Point           | 15°C / 23°C / 31°C / 39°C /<br>47°C / 55°C / 60°C / 63°C /<br>71°C / 79°C / 87°C / 95°C /<br>103°C / 110°C                     | This value controls the temperature of the ACPI Active Trip Point - the point in which the OS will turn the FAN on.                                                                                                           |

# 4.4 Chipset menu

| Menu Item                   | Options | Description                            |
|-----------------------------|---------|----------------------------------------|
| South Bridge                |         | South Bridge Parameters                |
| Uncore Configuration        |         | Uncore Configuration Parameters        |
| South Cluster Configuration |         | South Cluster Configuration Parameters |

# 4.4.1 South Bridge submenu

| Menu Item        | Options                                                                | Description                                                                                                                                                                                               |
|------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Serial IRQ Mode  | Quiet Mode<br>Continuous Mode                                          | Select Serial IRQ Mode. In continuous mode, the host will continually check for device interrupts. In Quiet Mode, Host will wait for a SERIRQ slave to generate a request by driving the SERIRQ line low. |
| OS Selection     | Windows / Android /<br>Win7 / Intel Linux                              | Select the Target OS                                                                                                                                                                                      |
| Real Time Option | RT Disabled<br>RT Enabled, Agent IDI1<br>RT Enabled, Agent<br>Disabled | Select Real-Time Enable and IDI Agent Real-Time Traffic Mask Bits                                                                                                                                         |

# 4.4.2 Uncore Configuration submenu

| Menu Item                   | Options                                                 | Description                                                                     |
|-----------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|
| GOP Brightness Level        | 20/40/60/80/100/120/1<br>40/160/180/200/220/2<br>40/255 | Set Graphics Output Protocol (GOP) Brightness Level; value ranges from 0 to 255 |
| DDIO DDC Pull Type          | Pull Up 1K<br>Pull Up 2K<br>Pull Up 5K                  | Sets DDI #0 Pull-up values                                                      |
| DDI1 DDC Pull Type          | Pull Up 1K<br>Pull Up 2K<br>Pull Up 5K                  | Sets DDI #1 Pull-up values                                                      |
| DDI0 Configuration Override | Disabled                                                | Allows to override default DDIO configuration                                   |

|                             | DP++ (Multimode DP)<br>HDMI / DVI                                                                                |                                                                                                                                          |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| DDI1 Configuration          | Disabled<br>DP++ (Multimode DP)<br>HDMI / DVI                                                                    | Allows to override default DDI1 configuration                                                                                            |
| Integrated Graphics Device  | Enabled / Disabled                                                                                               | Enable the Integrated Graphics Device (IGD) when selected as the Primary Video Adaptor, or always disable it.                            |
| Primary Display             | IGD / PCIe / HG                                                                                                  | Select which of IGD / PCIe /HG graphics device should be the Primary Display                                                             |
| HG Delay After Power Enable | [01000]                                                                                                          | Delay in milliseconds after power enable                                                                                                 |
| HG Delay After Hold Reset   | [01000]                                                                                                          | Delay in milliseconds after hold reset                                                                                                   |
| RC6 (Render Standby)        | Enabled / Disabled                                                                                               | Permits to enable the render standby features, which allows the on-board graphics entering in standby mode to decrease power consumption |
| GTT Size                    | 2 MB / 4 MB / 8 MB                                                                                               | Select the GTT (Graphics Translation Table) Size                                                                                         |
| Aperture Size               | 256 MB                                                                                                           | Use this item to set the total size of Memory that must be left to the GFX Engine                                                        |
| DVMT Pre-Allocated          | 64M / 96M / 128M /<br>160M / 192M / 224M /<br>256M / 288M / 320M /<br>352M / 384M / 416M /<br>448M / 480M / 512M | Select DVMT5.0 Pre-Allocated (Fixed) Graphics Memory size used by the Internal Graphic Device                                            |
| DVMT Total Gfx Mem          | 128M / 256M / MAX                                                                                                | Select the size of DVMT (Dynamic Video Memory) 5.0 that the Internal Graphics Device will use                                            |
| Cd Clock Frequency          | 144 MHz / 288 MHz /<br>384 MHz / 576 MHz /<br>624 MHz                                                            | Select the highest CD Clock frequency supported by the platform                                                                          |
| GT PM Support               | Enabled / Disabled                                                                                               | Enable / Disable GT Power Management Support                                                                                             |
| PAVP                        | Enabled / Disabled                                                                                               | Enable / Disable Protected Audio Video Playback (PAVP)                                                                                   |
| Memory Scrambler            | Enabled / Disabled                                                                                               | Enable / Disable the Memory Scrambler Support                                                                                            |
|                             |                                                                                                                  |                                                                                                                                          |

# 4.4.3 South Cluster Configuration submenu

| Menu Item              | Options     | Description                                 |
|------------------------|-------------|---------------------------------------------|
| HD Audio Configuration | See submenu | HD Audio Configuration Settings             |
| LPSS Configuration     | See submenu | Low Power Sub System Configuration Settings |

| PCI Express Configuration   | See submenu | PCI Express Configuration Settings             |
|-----------------------------|-------------|------------------------------------------------|
| SATA Drives                 | See submenu | SATA Devices Configuration Setup options       |
| SCC Configuration           | See submenu | Storage Control Cluster Configuration Settings |
| USB Configuration           | See submenu | USB configuration Settings                     |
| Miscellaneous Configuration | See submenu | Miscellaneous Settings                         |

# 4.4.3.1 HD Audio Configuration submenu

| Menu Item        | Options            | Description                       |
|------------------|--------------------|-----------------------------------|
| HD Audio Support | Enabled / Disabled | Enable / Disable HD Audio Support |
| HD Audio DSP     | Enabled / Disabled | Enable / Disable HD Audio DSP     |

#### 4.4.3.2 LPSS Configuration submenu

| Menu Item             | Options                                      | Description                                                               |
|-----------------------|----------------------------------------------|---------------------------------------------------------------------------|
| I2C #1 (D22:F0)       | Disable<br>PCI Mode<br>ACPI Mode             | Enable/Disable LPSS I2C #1 Support                                        |
| Set LPSS I2C #0 Speed | Standard Mode<br>Fast Mode<br>Fast Plus Mode | Only available when LPSS I2C #1 is not disabled. Select LPSS I2C #0 Speed |
| I2C #3 (D22:F2)       | Disable<br>PCI Mode<br>ACPI Mode             | Enable/Disable LPSS I2C #3 Support                                        |
| Set LPSS I2C #2 Speed | Standard Mode<br>Fast Mode<br>Fast Plus Mode | Only available when LPSS I2C #3 is not disabled. Select LPSS I2C #2 Speed |
| I2C #5 (D23:F0)       | Disable<br>PCI Mode<br>ACPI Mode             | Enable/Disable LPSS I2C #5 Support                                        |
| Set LPSS I2C #4 Speed | Standard Mode<br>Fast Mode<br>Fast Plus Mode | Only available when LPSS I2C #5 is not disabled. Select LPSS I2C #4 Speed |

SM-B69 SM-B69 User Manual - Rev. First Edition: 1.0 - Last Edition: 1.1 - Author:A.R - Reviewed by M.B. - Copyright © 2020 SECO S.p.A.

| HSUART #0 (D24:F0)           | Disable<br>PCI Mode<br>ACPI Mode | Enable/Disable LPSS HSUART #0 Support |
|------------------------------|----------------------------------|---------------------------------------|
| HSUART #2 (D24:F2)           | Disable<br>PCI Mode<br>ACPI Mode | Enable/Disable LPSS HSUART #2 Support |
| LPSS SPI #1 Support (D25:F0) | Disable<br>PCI Mode<br>ACPI Mode | Enable/Disable LPSS SPI #1 Support    |

# 4.4.3.3 PCI Express Configuration submenu

| Menu Item                                                                                                                                                                                                      | Options            | Description                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------|
| Compliance Mode                                                                                                                                                                                                | Enabled / Disabled | Compliance Mode Enable/Disable                      |
| PCIE Root Port 1 - Internal LAN 0<br>PCIE Root Port 2 - Internal LAN 1<br>PCIE Root Port 3 - SMARC PCIE0<br>PCIE Root Port 4 - SMARC PCIE1<br>PCIE Root Port 5 - SMARC PCIE2<br>PCIE Root Port 6 - SMARC PCIE3 |                    | Sets the parameters for each single PCI-e Root Port |

#### 4.4.3.3.1 PCIE Root Port #x submenus

| Menu Item                                                                                                                                                                                                      | Options                     | Description                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCIE Root Port 1 - Internal LAN 0<br>PCIE Root Port 2 - Internal LAN 1<br>PCIE Root Port 3 - SMARC PCIE0<br>PCIE Root Port 4 - SMARC PCIE1<br>PCIE Root Port 5 - SMARC PCIE2<br>PCIE Root Port 6 - SMARC PCIE3 | Auto<br>Enabled<br>Disabled | Controls the PCI Express Root Port.<br>Auto: disable unused root port automatically for the most optimised power saving.<br>Enable: Always enable the PCIe root port.<br>Disable: Always disable the PCIe root port <i>(all the following items will disappear)</i> |
| ASPM                                                                                                                                                                                                           | Disable / LOs               | PCI Express Active State Power Management Settings                                                                                                                                                                                                                  |
| PCIe Speed                                                                                                                                                                                                     | Auto<br>Gen1<br>Gen2        | Configure PCIe Speed                                                                                                                                                                                                                                                |

#### 4.4.3.4 SATA Drives Configuration submenu

| Menu Item        | Options              | Description                                                                                                                       |
|------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| SATA Controller  | Enabled / Disabled   | Enables or Disables the Chipset SATA controller, which supports the 2 black internal SATA ports (up to 3GB/s supported per port). |
| SATA Test Mode   | Enabled / Disabled   | Enable / Disable SATA Test Modes                                                                                                  |
| SATA Speed       | Gen1<br>Gen2<br>Gen3 | Select SATA Speed                                                                                                                 |
| Port 0<br>Port 1 | Enabled / Disabled   | Enable / Disable SATA Port #x                                                                                                     |

# 4.4.3.5 SCC Configuration submenu

| Menu Item           | Options            | Description                             |
|---------------------|--------------------|-----------------------------------------|
| SCC SD Card Support | Enabled / Disabled | Enable or Disable SCC SD Card Support   |
| SCC eMMC Support    | Enabled / Disabled | Enable or Disable SCC eMMC Card Support |

# 4.4.3.6 USB Configuration submenu

| Menu Item                                                                                               | Options          | Description                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xHCl Pre-Boot Driver                                                                                    | Enable / Disable | Enables or Disable the support for XHCI Pre-boot driver                                                                                                                                                                                     |
| xHCI Mode                                                                                               | Enable / Disable | Once Disabled, the xHCI Controller would be function disabled, none of the USB devices will be detectable and usable during the boot and in the OS. Do not disable it unless for debug purposes                                             |
| USB VBUS                                                                                                | Off / ON         | VBUS should be ON in HOST mode. It should be OFF in OTG device mode                                                                                                                                                                         |
| USB Port Disable Override                                                                               | Enable / Disable | Allows enabling or disabling selectively each single USB port from reporting a device connection to the controller.                                                                                                                         |
| USB Port #0<br>USB Port #1<br>USB Port #2<br>USB Port #3<br>USB Port #4<br>USB Port #5<br>USB 3 Port #0 | Enable / Disable | Only available when "USB Port Disable Override" is Enabled.<br>Allows enabling or disabling the single USB Port #x. Once disabled, any USB device connected to the<br>corresponding port will not be detected by the BIOS neither by the OS |

| USB 3 Port #1<br>USB 3 Port #5 |                     |                                                                                                                                    |
|--------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------|
| XDCI Support                   | Disable<br>PCI Mode | Enables or Disables the XDCI (USB Device)                                                                                          |
| XDCI Disable Compliance Mode   | FALSE / TRUE        | Options to disable XHCI Link Compliance Mode. Default is FALSE to not disable Compliance Mode. Set TRUE to disable Compliance Mode |

# 4.4.3.7 Miscellaneous Configuration submenu

| Menu Item                        | Options                                                  | Description                                                                                                                                                                                                                                   |
|----------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State After G3                   | Always ON<br>Always OFF<br>Last State                    | Specify what state to go to when power is re-applied after a power failure (G3 state). In S0 State, the System will boot directly as soon as power is applied. IN S5 State, the System keeps in power-off state until power button is pressed |
| Wake On Lan                      | Enabled / Disabled                                       | Enable or disable the Wake On LAN Feature                                                                                                                                                                                                     |
| BIOS Lock                        | Enabled / Disabled                                       | Enables or disables the SC BIOS Lock enable feature. It is required that it is enabled to ensure SMM protection of flash                                                                                                                      |
| Flash Protection Range Registers | Enabled / Disabled                                       | Enable Flash Protection Range registers                                                                                                                                                                                                       |
| Reset Power Cycle Duration       | 1-2 seconds<br>2-3 seconds<br>3-4 seconds<br>4-5 seconds | The value in this register determines the minimum time a platform will stay in reset during a host partition reset with power cycle or a global reset                                                                                         |

# 4.5 Security menu

| Menu Item                    | Options     | Description                       |
|------------------------------|-------------|-----------------------------------|
| Setup Administrator Password |             | Set Setup Administrator Password  |
| User Password                |             | Set User Password                 |
| Secure Boot                  | See Submenu | Customizable Secure Boot Settings |

#### 4.5.1 Secure Boot submenu

| Menu Item           | Options               |                                                                                                                                                        |
|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attempt Secure Boot | Enabled / Disabled    | Secure Boot is activated when the Platform Key (PK) is enrolled, System Mode is User/Deployed and CSM function is disabled.                            |
| Secure Boot Mode    | Standard / Customized | Set UEFI Secure Boot Mode to STANDARD Mode or CUSTOM mode. This change will be effective after save. And after reset, the mode will return to Standard |
| Key management      | See submenu           | Enable expert users to modify Secure Boot Policy variables without full authentication                                                                 |

#### 4.5.1.1 Key Management submenu

| Menu Item                                                                                                                             | Options                   |                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provision Factory Default keys                                                                                                        | Enabled / Disabled        | Provision factory default keys on next re-boot only when System in Setup Mode                                                                                                                                                                                                                                                                                                                       |
| Install Factory Default Keys                                                                                                          |                           | Force System to User Mode. Configure NVRAM to contain OEM- defined factory default Secure Boot keys                                                                                                                                                                                                                                                                                                 |
| Enroll Efi Image                                                                                                                      | File System Image         | Allow the selected image to run in Secure Boot mode. Enrol SHA256 Hash Certificates of the Image into Authorized Signature Database (db)                                                                                                                                                                                                                                                            |
| Restore DB defaults                                                                                                                   |                           | Restore DB variable to factory defaults                                                                                                                                                                                                                                                                                                                                                             |
| Platform key<br>Key Exchange Keys<br>Authorized Signatures<br>Forbidden Signatures<br>Authorized Timestamps<br>OS Recovery Signatures | Set New Var<br>Append Key | <ul> <li>Enrol factory Defaults or load certificates from a file:</li> <li>1. Public Key Certificate in: <ul> <li>a) EFI_SIGNATURE_LIST</li> <li>b) EFI_CERT_X509 (DER encoded)</li> <li>c) EFI_CERT_RSA2048 (bin)</li> <li>d) EFI_CERT_SHA256,384,512</li> </ul> </li> <li>2. Authenticated UEFI variables</li> <li>3. EFI PE/COFF Image (SHA256), Key Source: Factory, External, Mixed</li> </ul> |

# 4.6 Boot menu

| Menu Item                                                                                                                                    | Options                                                                                               | Description                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Setup Prompt Timeout                                                                                                                         | 065535                                                                                                | Number of seconds to wait for setup activation key. 655535 means indefinite waiting. |
| Bootup NumLock State                                                                                                                         | On / Off                                                                                              | Select the Keyboard NumLock State at boot                                            |
| Quiet Boot                                                                                                                                   | Enabled / Disabled                                                                                    | Enables or Disables Quiet Boot options                                               |
| New Boot Option Policy                                                                                                                       | Default<br>Place First<br>Place Last                                                                  | Controls the placement of newly detected UEFI boot options                           |
| Boot Mode Select                                                                                                                             | LEGACY<br>UEFI                                                                                        | Select the boot mode between Legacy and UEFI                                         |
| Boot Option #1<br>Boot Option #2<br>Boot Option #3<br>Boot Option #4<br>Boot Option #5<br>Boot Option #6<br>Boot Option #7<br>Boot Option #8 | Hard Disk0<br>Hard Disk1<br>eMMC<br>CD/DVD<br>SD<br>USB Device<br>Network<br>Other Device<br>Disabled | Select the system boot order                                                         |
| UEFI EMMC Drive BBS Priorities                                                                                                               | List of UEFI bootable<br>drives                                                                       | Specifies the Boot Device priority sequence from available UEFI EMMC Drives          |
| UEFI Other Drive BBS Priorities                                                                                                              | List of other UEFI drives                                                                             | Specifies the Boot Device priority sequence from available UEFI Other Drives         |



# 4.7 Save & Exit menu

| Menu Item                               | Options  | Description                                                                                          |
|-----------------------------------------|----------|------------------------------------------------------------------------------------------------------|
| Save Changes and Exit                   |          | Exit system setup after saving the changes.                                                          |
| Discard Changes and Exit                |          | Exit system setup without saving any changes.                                                        |
| Save Changes and Reset                  |          | Reset the system after saving the changes.                                                           |
| Discard Changes and Reset               |          | Reset the system without saving any changes.                                                         |
| Save Changes                            |          | Save the changes done so far to any of the setup options.                                            |
| Discard Changes                         |          | Discard the changes done so far to any of the setup options.                                         |
| Restore Defaults                        |          | Restore/Load Default values for all the setup options                                                |
| Save as User Defaults                   |          | Save the changes done so far as User Defaults                                                        |
| Restore User Defaults                   |          | Restore the User Defaults to all the setup options                                                   |
| List of EFI boot options                |          |                                                                                                      |
| Launch EFI Shell from filesystem device | <u>)</u> | Attempt to Launch the EFI Shell application (Shell.efi) from one of the available filesystem devices |



# Chapter 5. Appendices

• Thermal Design



# 5.1 Thermal Design

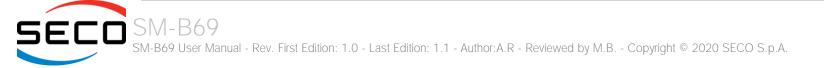
Highly integrated modules like SM-B69 offer very high performance within small dimensions. On the other hand, the miniaturization of ICs and the high operating frequencies of the processors lead to high heat generation that must be dissipated in order to maintain the CPU within its allowed temperature range.

The operating temperature specified in the Technical Features of SM-B69 indicates the temperature range in which any and all parts of the heat spreader / heat sink must remain, in order for SECO to guarantee functionality. Hence, these numbers do not necessarily indicate the suitable environmental temperature.

The heat spreader is not intended to be a guaranteed standalone cooling system, but should be used only as a supplemental means of transferring heat to another dissipation system (i.e. heat sinks, fans, heat pipes etc).

It is the customer's responsibility to design and apply an application-dependent cooling system, capable of ensuring that the heat spreader / heat sink temperature remain within the indicated range of the module.

It is an absolute requirement that the customer, after thorough evaluation of the processor's workload in the actual system application, the system enclosure and consequent air flow/Thermal analysis, accurately study and develop a suitable cooling solution for the assembled system.


SECO can provide SM B69 specific heatspreaders and heatsinks, but please remember that their use must be evaluated accurately inside the final system, and that they should be used only as a part of a more comprehensive ad-hoc cooling solutions.

| Ordering Code  | Description                                                    |
|----------------|----------------------------------------------------------------|
| RB69-DISS-1-PK | SMARC HEAT SPREADER: SM-B69 Heat Spreader (PASSIVE) - Packaged |
| RB69-DISS-2-PK | SMARC HEAT SINK: SM-B69 Heat Sink (PASSIVE) - Packaged         |





SECO S.p.A. - Via A. Grandi, 20 52100 Arezzo - ITALY Ph: +39 0575 26979 - Fax: +39 0575 350210 <u>www.seco.com</u>

