

LM66100-Q1 SLVSGD6A - NOVEMBER 2021 - REVISED MARCH 2022

LM66100-Q1 5.5-V, 1.5-A 79-mΩ, Automotive, Low IQ Ideal Diode with Input Polarity **Protection**

1 Features

- AEC-Q100 qualified for automotive applications:
 - Device temperature grade 1: –40°C to 125°C ambient operating temperature range
- Wide operating voltage range: 1.5 V-5.5 V
- Reverse voltage standoff on VIN:
 - -6-V absolute maximum
- Maximum continuous current (I_{MAX}): 1.5 A
- On-Resistance (R_{ON}):
 - 5-V V_{IN} = 79 m Ω (typical)
 - $-3.6-V V_{IN} = 91 \text{ m}\Omega \text{ (typical)}$
 - 1.8-V V_{IN} = 141 mΩ (typical)
- Comparator chip enable (CE)
- Channel status indication (ST)
- Low current consumption:
 - 3.6-V V_{IN} shutdown current (I_{SD,VIN}): 120 nA
 - 3.6-V V_{IN} quiescent current (I_{Q, VIN}): 150 nA (typical)

2 Applications

- Infotainment and cluster head unit
- Automotive cluster display
- ADAS surround view system ECU
- Body control module and gateway

Typical Application

3 Description

The LM66100-Q1 is a Single-Input, Single-Output (SISO) integrated ideal diode that is well suited for a variety of applications. The device contains a Pchannel MOSFET that can operate over an input voltage range of 1.5 V to 5.5 V and can support a maximum continuous current of 1.5 A.

The chip enable works by comparing the \overline{CE} pin voltage to the input voltage. When the \overline{CE} pin voltage is higher than VIN, the device disables and the MOSFET is off. When the $\overline{\text{CE}}$ pin voltage is lower, the MOSFET is on. The LM66100-Q1 also comes with reverse polarity protection (RPP) that can protect the device from a miswired input, such as a reversed battery.

Two LM66100-Q1 devices can be used in an ORing configuration similar to a dual diode ORing implementation. In this configuration, the devices pass the highest input voltage to the output while blocking reverse current flow into the input supplies. These devices can compare input and output voltages to make sure that reverse current is blocked through an internal voltage comparator.

The LM66100-Q1 is available in a standard SC-70 package characterized for operation over a junction temperature range of -40°C to 150°C.

Device Information(1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM66100-Q1	SC-70 (6)	2.1 mm × 2.0 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 Features1	8.3 Feature Description1
2 Applications1	8.4 Device Functional Modes12
3 Description1	9 Application and Implementation12
4 Revision History2	9.1 Application Information
5 Pin Configuration and Functions3	9.2 Typical Applications12
6 Specifications4	10 Power Supply Recommendations15
6.1 Absolute Maximum Ratings4	11 Layout
6.2 ESD Ratings4	11.1 Layout Guidelines16
6.3 Recommended Operating Conditions4	11.2 Layout Example
6.4 Thermal Information4	12 Device and Documentation Support17
6.5 Electrical Characteristics5	12.1 Receiving Notification of Documentation Updates. 17
6.6 Switching Characteristics6	12.2 Support Resources17
6.7 Typical Characteristics7	12.3 Trademarks17
7 Parameter Measurement Information9	12.4 Electrostatic Discharge Caution17
8 Detailed Description10	12.5 Glossary17
8.1 Overview10	13 Mechanical, Packaging, and Orderable
8.2 Functional Block Diagram10	Information17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision * (November 2021) to Revision A (March 2022)	Page
•	Changed data sheet status from "Advance Information" to "Production Data"	1

5 Pin Configuration and Functions

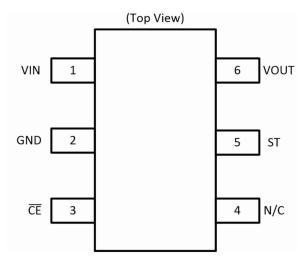


Figure 5-1. DCK Package 6-Pin SC-70 Top View

Table 5-1. Pin Functions

NO. NAME		I/O	DESCRIPTION
		1/0	DESCRIPTION
1	VIN	I	Device input
2	GND	-	Device ground
3	CE	I	Active-low chip enable. Can be connected to VOUT for reverse current protection. Do not leave floating.
4	N/C	_	Not internally connected, can be tied to GND or left floating.
5	ST	0	Active-low open-drain output, pulled low when the chip is disabled. Hi-Z when the chip is enabled. Connect to GND if not required.
6	VOUT	0	Device output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V _{IN}	Maximum Input Voltage Range	-6	6	V
V _{OUT}	Maximum Output Voltage Range	-0.3	6	V
V _{CE}	Maximum CE Pin Voltage	-0.3	6	V
V _{ST}	Maximum ST Pin Voltage	-0.3	6	V
I _{SW, MAX}	Maximum Continuous Switch Current		1.5	Α
I _{SW, PLS}	Maximum Pulsed Switch Current (≤120 ms, 2% Duty Cycle)		2.5	Α
I _{D, PLS}	Maximum Pulsed Body Diode Current (≤0.1 ms, 0.2% Duty Cycle)		2.5	Α
I _{CE}	Maximum CE Pin Current	-1		mA
I _{ST}	Maximum ST Pin Current	-1		mA
TJ	Junction temperature	-40	150	°C
T _{STG}	Storage temperature	-65	150	°C
T _{LEAD}	Maximum Lead Temperature (10 s soldering time)		300	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per AEC Q100- 002 ⁽¹⁾ HBM ESD classification level 2	±2000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per AEC Q100- 011 CDM ESD classification level C4A	±500	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	TYP MAX	UNIT
V _{IN}	Input Voltage Range	1.5	5.5	V
V _{OUT}	Output Voltage Range	1	5.5	V
V _{CE}	CE Pin Voltage Range	0	5.5	V
V _{ST}	ST Pin Voltage Range	0	5.5	V

6.4 Thermal Information

		LM66100	
	THERMAL METRIC(1)	DCK (SC-70)	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	192	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	124	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	52	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	34	°C/W

Product Folder Links: LM66100-Q1

		LM66100	
	THERMAL METRIC ⁽¹⁾	DCK (SC-70)	UNIT
		6 PINS	
Ψ_{JB}	Junction-to-board characterization parameter	52	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

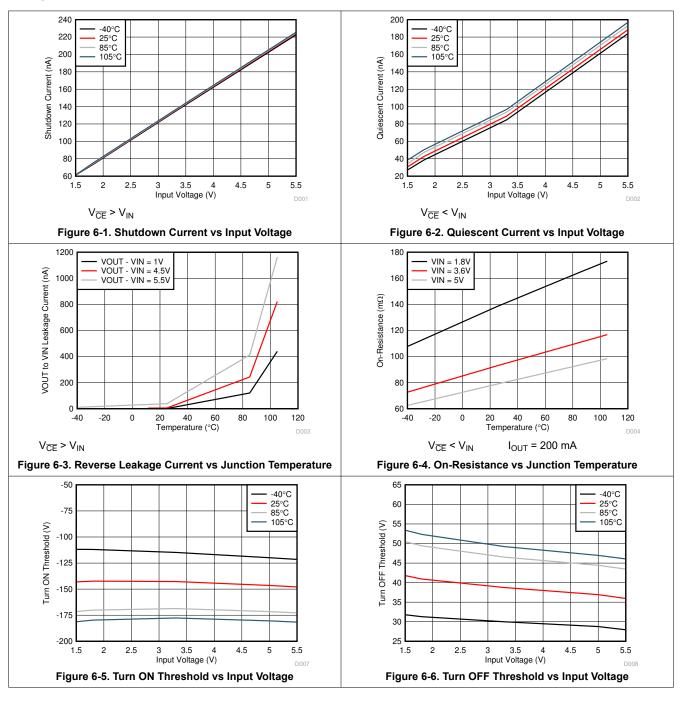
Typical values are at 25°C with an input voltage of 3.6V. Maximum and minimum values are across the entire operating voltage range, from 1.5V to 5.5V. (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	3	MIN TYP	MAX	UNI T
Input Sup	ply (VIN)						
I _{SD,VIN}	VIN Shutdown Current	VOUT = VIN VCE > VIN + 80 mV	non)	25°C -40°C to 125°C	0.12	0.3	· ·
		VOUT = VIN	pen)	25°C	0.15	0.3	•
$I_{Q,VIN}$	VIN Quiescent Current	$ \frac{\text{VOOT} - \text{VIN}}{\text{VCE}} < \text{VIN} - 250 \text{ mV} $ $ I_{\text{OUT}} = 0 \text{ A (VOUT} = 0) $		–40°C to 125°C	0.15	0.3	
				25°C	0.2	0.5	μΑ
	OUT to IN Leakage Current (Current out of VIN)	VOUT – VIN ≤ 5.5 V VCE > VIN + 80 mV		-40°C to 85°C		2.7	μA
		VOE > VIIV + OO IIIV		-40°C to 125°C		8	μA
I _{OUT, OFF}		VOUT – VIN ≤ 4.5 V		-40°C to 85°C		1.7	μΑ
		VCE > VIN + 80 mV		-40°C to 125°C		5.1	μA
		VOUT – VIN ≤ 1.0 V		-40°C to 85°C		0.7	μA
		VCE > VIN + 80 mV		-40°C to 125°C		2.1	μA
ON-Resis	tance (RON)			l			
				25°C	79	95	
R _{ON}	ON-State Resistance	I _{OUT} = -200 mA	VIN = 5 V	-40°C to 85°C		110	- I
				-40°C to 125°C		120	
	ON-State Resistance	I _{OUT} = -200 mA		25°C	91	110	
R _{ON}			VIN = 3.6 V	-40°C to 85°C		125	-
				-40°C to 125°C		140	
				25°C	141	180	
R _{ON}	ON-State Resistance	I _{OUT} = -200 mA	VIN = 1.8 V	-40°C to 85°C		210	mΩ
				-40°C to 125°C		230	1
Comparat	or Chip Enable (CE)			-			
V _{ON}	Turn ON Threshold	VCE – VIN		-40°C to 125°C	-250 -150	-80	mV
V _{OFF}	Turn OFF Threshold	VCE – VIN		-40°C to 125°C	0 35	80	mV
I _{CE}	CE Pin Leakage Current	VCE < VIN - 250 mV		-40°C to 125°C	0 160	300	nA
I _{CE}	CE Pin Leakage Current	VCE > VIN + 80 mV		-40°C to 125°C	0 400	610	nA
Reverse C	Current Blocking (RCB) and Bo	dy Diode Characterist	ics				
I _{RCB}	Reverse Activation Current	VCE = VOUT		-40°C to 125°C	0.5	1	Α
V _{FWD}	Body Diode Forward Voltage	I _{OUT} = 10 mA VCE > VIN + 80 mV		-40°C to 125°C	0.1 0.5	1.1	V
Status Inc	lication (ST)						
V _{OL, ST}	Output Low Voltage	IST = 1 mA		-40°C to 125°C		0.1	V
t _{ST}	Status Delay Time	VCE transitions from	low to high	-40°C to 125°C	1		μs

6.5 Electrical Characteristics (continued)

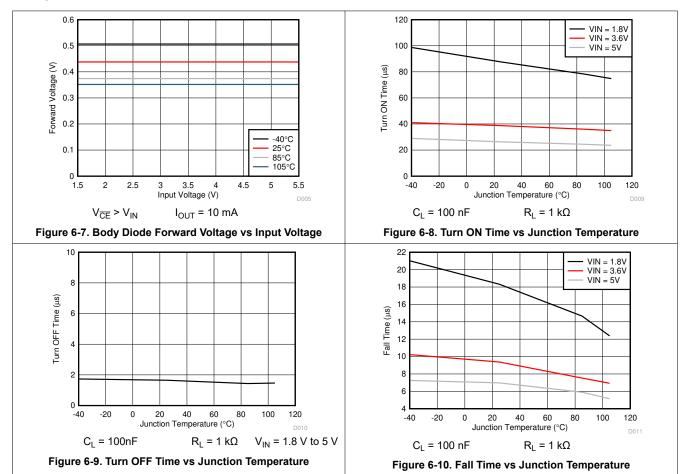
Typical values are at 25°C with an input voltage of 3.6V. Maximum and minimum values are across the entire operating voltage range, from 1.5V to 5.5V. (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP MAX	UNI T
I _{ST}	ST Pin Leakage Current	VCE < VIN – 250 mV	-40°C to 125°C	-20	20	nA


6.6 Switching Characteristics

Unless otherwise noted, the typical characteristics in the following table applies over the entire recommended operating voltage at an ambient temperature of 25°C and a load of C_L = 100 nF and R_L = 1 k Ω

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		VIN = 1.8 V	90		μs
t _{ON}	Turn ON Time	VIN = 3.6 V	40		μs
		VIN = 5 V	27		μs
		VIN = 1.8 V	2		μs
t _{OFF}	Turn OFF Time	VIN = 3.6 V	2		μs
		VIN = 5 V	2		μs
		VIN = 1.8 V	20		μs
t _{FALL}	Output Fall Time	VIN = 3.6 V	10		μs
		VIN = 5 V	7.5		μs


Product Folder Links: LM66100-Q1

6.7 Typical Characteristics

6.7 Typical Characteristics (continued)

7 Parameter Measurement Information

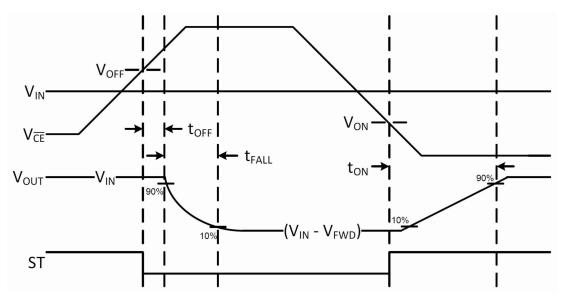
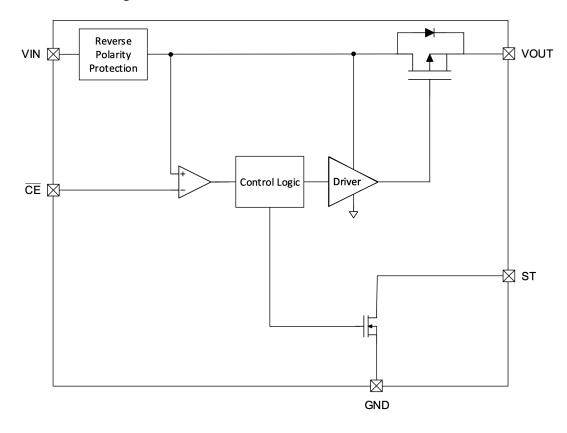


Figure 7-1. Timing Diagram


8 Detailed Description

8.1 Overview

The LM66100-Q1 is a Single-Input, Single-Output (SISO) integrated ideal diode that contains a P-channel MOSFET to minimize the voltage drop from input to output. The LM66100-Q1 can operate over an input voltage range of 1.5 V to 5.5 V and support a maximum continuous current of 1.5 A.

The chip enable works by comparing the $\overline{\text{CE}}$ pin voltage to the input voltage. When the $\overline{\text{CE}}$ pin voltage is higher than VIN by 80 mV, the device is disabled and the MOSFET is off. When the $\overline{\text{CE}}$ pin voltage is lower than V_{IN} by 250 mV, the MOSFET is on. The LM66100-Q1 also comes with reverse polarity protection (RPP) that protects against events where the VIN and GND terminals are swapped.

8.2 Functional Block Diagram

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Reverse Polarity Protection (RPP)

In the event a negative input voltage is applied, the ideal diode stays off and prevent current flow to protect the system load. For a stand-alone, always on application, \overline{CE} can be tied to GND so it does not go negative with respect to GND. See Figure 8-1.

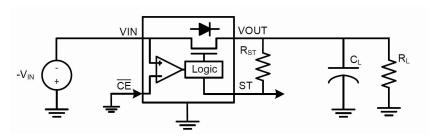


Figure 8-1. RPP Protection Circuit

8.3.2 Always-ON Reverse Current Blocking (RCB)

By connecting the $\overline{\text{CE}}$ pin to VOUT, this allows the comparator to detect reverse current flow through the switch. If the output is forced above the selected input by V_{OFF} , the channel switches off to stop the reverse current I_{RCB} within t_{OFF} . Once the output falls below V_{IN} by V_{ON} , the device turns back on.

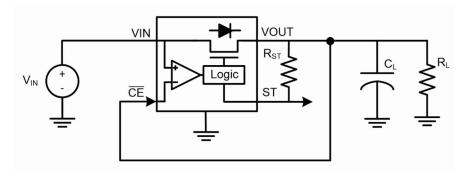


Figure 8-2. RCB Circuit



Figure 8-3. RCB Waveforms

8.4 Device Functional Modes

Table 8-1 summarizes the Device Functional Modes:

Table 8-1. Device Functional Modes

State	IN-to-OUT	Power Dissipation	ST State		
OFF	Diode	$I_{OUT} \times V_{FWD}$	L		
ON	Switch	I _{OUT} ² × R _{ON}	Н		

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The LM66100-Q1 Ideal Diode can be used in a variety of stand-alone and multi-channel applications.

9.2 Typical Applications

9.2.1 Dual Ideal Diode ORing

Two LM66100-Q1 Ideal Diodes can be used together for ORing between two power supplies.

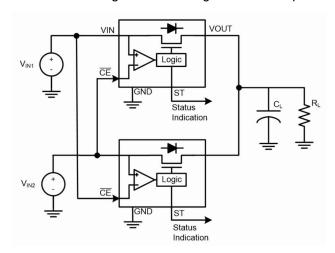


Figure 9-1. Dual Ideal Diode ORing

9.2.1.1 Design Requirements

Design a circuit that allows the highest input voltage to power a downstream system while providing reverse current protection.

9.2.1.2 Detailed Design Procedure

Submit Document Feedback

This circuit ties the $\overline{\text{CE}}$ of each device to the opposite power source. In this configuration, the highest supply is always selected using a make-before-break logic. This selection prevents any reverse current flow between the supplies and avoids the need of a dedicated reverse current blocking comparator. For ORing applications that need RPP, TI recommends to use a series resistor ($R_{\overline{\text{CE}}}$) to limit the current into the $\overline{\text{CE}}$ pin during a negative voltage event.

Product Folder Links: LM66100-Q1

9.2.1.3 Application Curves

The below scope shot shows the output voltage (VOUT) being initially powered by VIN1. When VIN2 is applied, it powers VOUT because it is a higher voltage. When VIN2 is removed, VOUT is once again powered by VIN1.

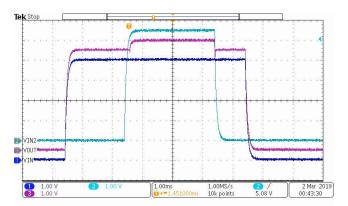


Figure 9-2. Dual Ideal Diode ORing Behavior

9.2.2 Dual Ideal Diode ORing for Continuous Output Power

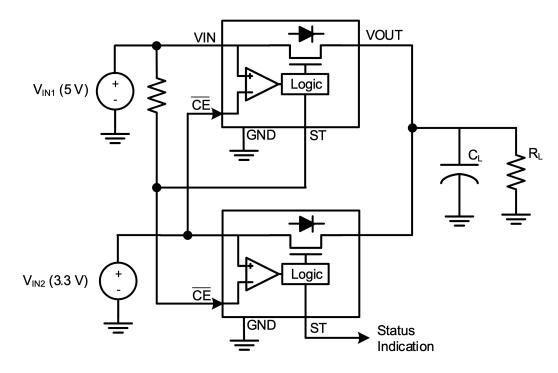
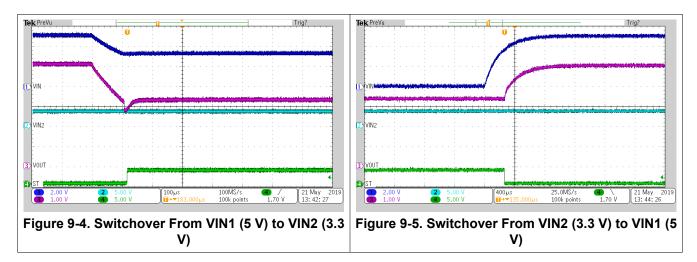


Figure 9-3. Dual Ideal Diode ORing for Continuous Output Power


9.2.2.1 Design Requirements

The shortcoming of the previous implementation happens when both input voltages are the same for a long period of time. Then, both devices completely turn off, powering down the output load. To avoid this case, use the status output from the priority supply and a pullup resistor, causing both devices to switchover at the same time. For ORing applications that need RPP, TI recommends to use a series resistor ($R_{\overline{CE}}$) to limit the current into the \overline{CE} pin during a negative voltage event.

9.2.2.2 Application Curves

The figures below show the switchover performance between VIN1 and VIN2.

9.2.3 ORing with Discrete MOSFET

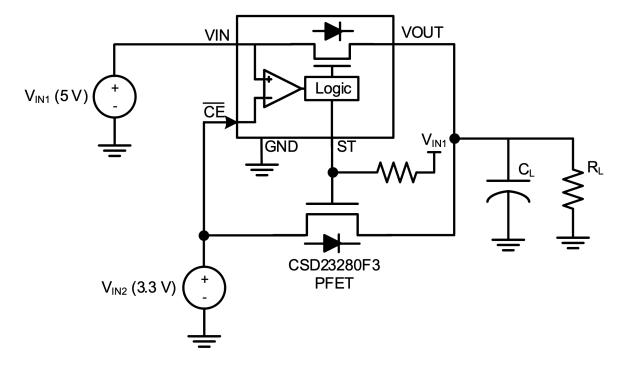
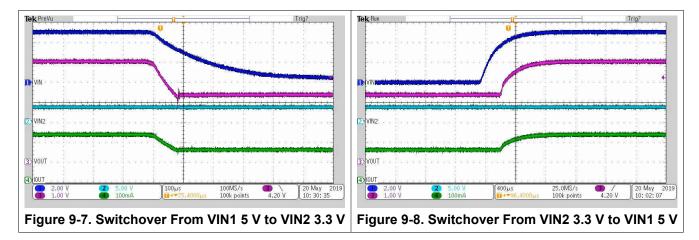


Figure 9-6. ORing with a Discrete MOSFET


9.2.3.1 Design Requirements

Similar to the Dual Ideal Diode circuit, the Status Output can also be used to control a discrete P-Channel MOSFET. This action can be useful in applications that want to minimize the leakage current on the secondary supply, such as battery backup systems. This configuration can also be used on systems that require a lower RON on the secondary rail, useful for higher current applications.

When the Ideal Diode path is enabled, the status is Hi-Z and pulls up the gate of the external PFET to keep it off. When the main supply (VIN1) drops such that backup supply (VIN2) is higher than VIN1, the ideal diode is disabled and pulls the ST pin and the PFET gate low to turn on the discrete MOSFET path.

9.2.3.2 Application Curves

The figures below show the switchover performance between VIN1 and VIN2.

10 Power Supply Recommendations

The device is designed to operate with a VIN range of 1.5 V to 5.5 V. The VIN power supply must be well regulated and placed as close to the device terminal as possible. The power supply must be able to withstand all transient load current steps. In most situations, using an input capacitance (CIN) of 1 μ F is sufficient to prevent the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to respond to a large transient current or large load current step, additional bulk capacitance can be required on the input.

11 Layout

11.1 Layout Guidelines

For best performance, all traces must be as short as possible. To be most effective, place the input and output capacitors close to the device to minimize the effects that parasitic trace inductances can have on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects.

11.2 Layout Example

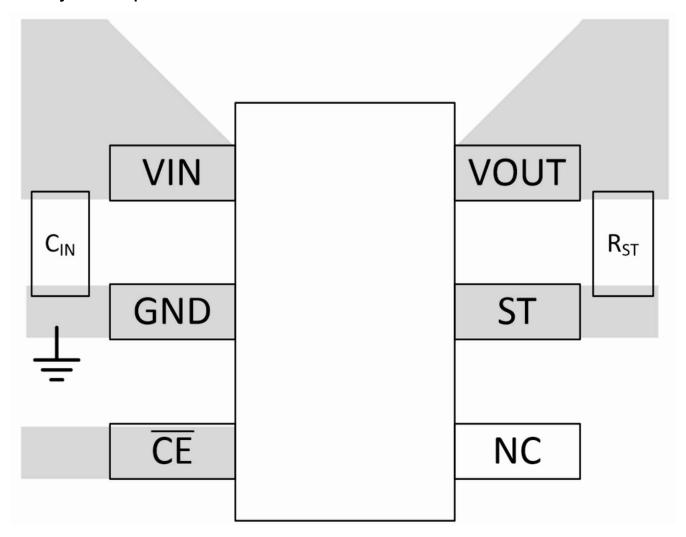


Figure 11-1. LM66100-Q1 Layout Example

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 13-Mar-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM66100QDCKRQ1	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1IW	Samples
PLM66100QDCKRQ1	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	PIW	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

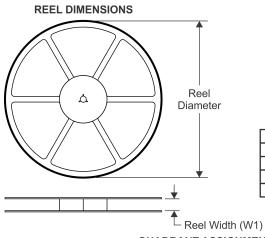
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

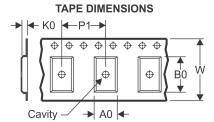
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 13-Mar-2022

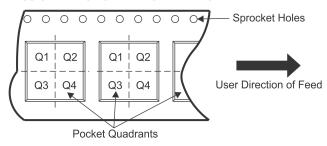
OTHER QUALIFIED VERSIONS OF LM66100-Q1:


NOTE: Qualified Version Definitions:

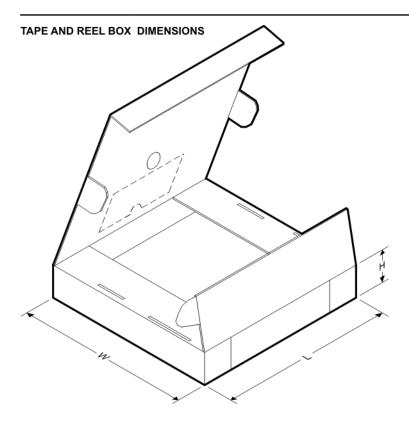

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2022


TAPE AND REEL INFORMATION

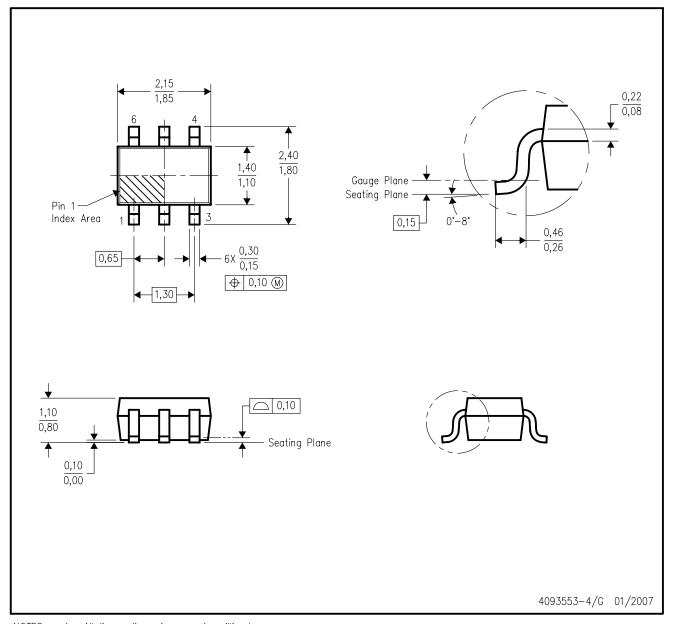
		Dimension designed to accommodate the component width
E	30	Dimension designed to accommodate the component length
K	(0	Dimension designed to accommodate the component thickness
	N	Overall width of the carrier tape
F	21	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM66100QDCKRQ1	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3

www.ti.com 14-Mar-2022

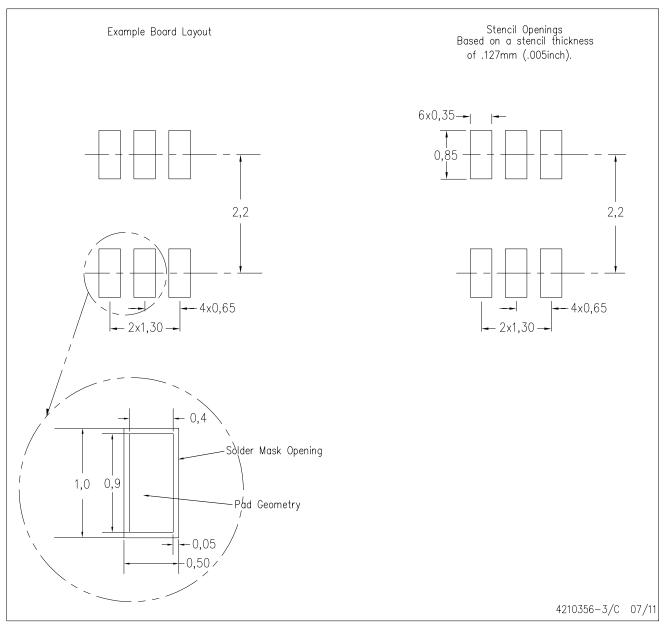


*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
LM66100QDCKRQ1	SC70	DCK	6	3000	180.0	180.0	18.0	

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated