FN6835
Rev 1.00

The Intersil ISL54222 is a single supply dual 2:1 multiplexer that can operate from a single 1.8 V to 3.3 V supply. It contains two SPDT (Single Pole/Double Throw) switches configured as a DPDT. The part was designed for switching or routing of USB High-Speed signals and/or USB Full-speed signals in portable battery powered products.

The 5.5Ω switches can swing rail-to-rail and were specifically designed to pass USB full speed data signals that range from 0 V to 3.3 V and USB high speed data signals that range from 0 V to 400 mV with a single supply as low as 1.8 V . They have high bandwidth and low capacitance to pass USB high speed data signals with minimal distortion.

The part can be used in Personal Media Players and other portable battery powered devices that need to route USB high-speed signals and/or full-speed signals to different transceiver sections of the device while connected to a single USB host (computer).
The digital logic inputs are 1.8 V logic compatible when operated with a 1.8 V to 3.3 V supply. The ISL54222 has an output enable pin to open all the switches. It can be used to facilitate proper bus disconnect and connection when switching between the USB sources.

The ISL54222 is available in $10 \mathrm{Ld} 1.8 \mathrm{mmx} 1.4 \mathrm{~mm} \mu$ TQFN, 10 Ld TDFN and 10 Ld MSOP packages. It operates over a temperature range of -40 to $+85^{\circ} \mathrm{C}$.

Features

- High-Speed (480Mbps) and Full-Speed (12Mbps) Signaling Capability per USB 2.0
- 1.8V Logic Compatible
- Enable Pin to Open all Switches
- Power OFF Protection
- D-/D+ Pins are Overvoltage Tolerant to 5.5V
- -3dB Frequency 782 MHz
- Low ON Capacitance 6.5pF
- Low ON-Resistance 5.5Ω
- Single Supply Operation (V_{DD}) 1.8 V to 3.3 V
- Available in μ TQFN, TDFN, and MSOP Packages
- Pb-Free (RoHS Compliant)
- Compliant with USB 2.0 Short Circuit and Overvoltage Requirements Without Additional External Components

Applications

- MP3 and other Personal Media Players
- Cellular/Mobile Phones
- PDA's
- Digital Cameras and Camcorders
- USB Switching

Application Block Diagram

Pinouts

ISL54222
(10 LD $1.8 \times 1.4 \mu$ TQFN)
TOP VIEW
HSD1- HSD2-

ISL54222
(10 LD MSOP, TDFN)
TOP VIEW

NOTE:

1. Switches Shown for SEL = Logic " 1 " and $\overline{\mathrm{OE}}=$ Logic " 0 ".

Truth Table

$\overline{\mathbf{O E}}$	SEL	HSD1-, HSD1+	HSD2-, HSD2+
0	0	ON	OFF
0	1	OFF	ON
1	X	OFF	OFF

Logic " 0 " when $\leq 0.5 \mathrm{~V}$, Logic " 1 " when $\geq 1.4 \mathrm{~V}$ with a 1.8 V to 3.3 V Supply.

Pin Descriptions

PIN NAME	DESCRIPTION
VDD $^{\text {DND }}$	Power Supply
SEL	Ground Connection
$\overline{\mathrm{OE}}$	Select Logic Control Input
D+, D-, HSDx+, HSDx-	USB Data Port

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL54222IRUZ-T* (Note NOTES:)	J	-40 to +85	10 Ld $1.8 \times 1.4 \mathrm{~mm} \mu$ TQFN (Tape and Reel)	L10.1.8x1.4A
ISL54222IRTZ (Note 3)	4222	-40 to +85	10 Ld 3x3 TDFN	L10.3x3A
ISL54222IRTZ-T* (Note 3)	4222	-40 to +85	10 Ld 3x3 TDFN (Tape and Reel)	L10.3x3A
ISL54222IUZ (Note 3)	54222	-40 to +85	10 Ld MSOP	M10.118
ISL54222IUZ-T* (Note 3)	54222	-40 to +85	10 Ld MSOP (Tape and Reel)	M10.118
ISL54222IRUEVAL1Z	Evaluation Board			

*Please refer to TB347 for details on reel specifications.
NOTES:
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings	
Input Voltages	
HSD2x, HSD1x (Note 4).	-0.3V to 6.0V
SEL, OE (Note 4).	$\left(\left(\mathrm{V}_{\mathrm{DD}}\right)+0.3 \mathrm{~V}\right)$
Output Voltages	
D+, D- (Note 4).	-0.3V to 6.0V
Continuous Current (HSD2x, HSD1x)	$\pm 40 \mathrm{~mA}$
Peak Current (HSD2x, HSD1x)	
ESD Rating:	
Human Body Model	. $>6 \mathrm{kV}$
Machine Model	.>500V
Charged Device Model	.>2kV

Thermal Information

| Thermal Resistance (Typical) | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ | $\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :---: | :---: | :---: | :---: |
| 10 Ld μ TQFN Package (Note 5) $\ldots \ldots$ | 160 | N/A |
| 10 Ld TDFN Package (Notes 6, 7) \ldots. | 55 | 18 |
| 10 Ld MSOP Package (Note 5) | 165 | N/A |
| Maximum Junction Temperature (Plastic Package). | $+150^{\circ} \mathrm{C}$ | |
| Maximum Storage Temperature Range | $-65^{\circ} \mathrm{C}$ | to $+150^{\circ} \mathrm{C}$ |

Operating Conditions

Temperature Range. . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{D D}$ Supply Voltage Range . 1.8 V to 3.3 V
Logic Control Input Voltage OV to V_{DD}
Analog Signal Range

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
4. Signals on HSD1x, HSD2x, D+, D- exceeding GND by specified amount are clamped. Signals on $\overline{\mathrm{OE}}$ and SEL exceeding V_{DD} or GND by specified amount are clamped. Limit current to maximum current ratings.
5. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
6. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.
7. For θ_{Jc}, the "case temp" location is the center of the exposed metal pad on the package underside.

Electrical Specifications -1.8V to 3.3V Supply Test Conditions: $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {SELH }}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SELL}}=0.5 \mathrm{~V}$, $\mathrm{V} \overline{\mathrm{OE}} \mathrm{H}=1.4 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{OE}}=0.5 \mathrm{~V}$, (Note 8), Unless Otherwise Specified.

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	MIN (Notes 9, 10)	TYP	MAX (Notes 9, 10)	UNITS

ANALOG SWITCH CHARACTERISTICS

Analog Signal Range, V ${ }_{\text {ANALOG }}$	$V_{D D}=V_{D D}, S E L=0 V$ or $V_{D D}, \overline{O E}=0 V$	Full	0	-	$V_{D D}$	V
ON-Resistance, ron (High-Speed)	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{SEL}=0.5 \mathrm{~V}$ or $1.4 \mathrm{~V}, \overline{\mathrm{OE}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Dx}}=40 \mathrm{~mA}$, $\mathrm{V}_{\text {HSD1x }}$ or $\mathrm{V}_{\text {HSD2 }}=0 \mathrm{~V}$ to 400 mV (see Figure 3, Note 13)	25	-	5.5	8	Ω
		Full	-	-	10	Ω
ron Matching Between Channels, Δr_{ON} (High-Speed)	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{SEL}=0.5 \mathrm{~V}$ or $1.4 \mathrm{~V}, \overline{\mathrm{OE}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Dx}}=40 \mathrm{~mA}$, $\mathrm{V}_{\text {HSD1x }}$ or $\mathrm{V}_{\text {HSD2 }}=$ Voltage at max r_{ON}, (Notes 12, 13)	25	-	0.072	0.5	Ω
		Full	-	-	0.55	Ω
ron Flatness, R $\mathrm{R}_{\mathrm{FLAT}}$ (ON) (High-Speed)	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{SEL}=0.5 \mathrm{~V}$ or $1.4 \mathrm{~V}, \overline{\mathrm{OE}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Dx}}=40 \mathrm{~mA}$, $\mathrm{V}_{\text {HSD1x }}$ or $\mathrm{V}_{\text {HSD2 }}=0 \mathrm{~V}$ to 400 mV , (Notes 11, 13)	25	-	0.44	1.2	Ω
		Full	-	-	1.3	Ω
OFF Leakage Current, IHSD1x(OFF)	$\begin{aligned} & V_{D D}=3.3 V, S E L=V_{D D} \text { and } \overline{O E}=0 V \text { or } \overline{O E}=V_{D D}, \\ & V_{D x}=0.3 V, 3 V, V_{H S D 1 X}=3 V, 0.3 V, V_{H S D 2 x}=0.3 V, 3 V \end{aligned}$	25	-15	0.35	15	nA
		Full	-20	-	20	nA
ON Leakage Current, IHSD1x(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=\overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Dx}}=0.3 \mathrm{~V}, 3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{HSD} 1 \mathrm{X}}=0.3 \mathrm{~V}, 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{HSD} 2 \mathrm{x}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	25	-20	2.5	20	nA
		Full	-25	-	25	nA
OFF Leakage Current, IHSD2x(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=\overline{\mathrm{OE}}=0 \mathrm{~V} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{Dx}}=3 \mathrm{~V}, 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{HSD} 2 \mathrm{x}}=0.3 \mathrm{~V}, 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{HSD} 1 \mathrm{X}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	25	-15	0.26	15	nA
		Full	-20	-	20	nA
ON Leakage Current, $\mathrm{I}_{\text {HSD2x(ON) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Dx}}=0.3 \mathrm{~V}, 3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{HSD} 2 \mathrm{x}}=0.3 \mathrm{~V}, 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{HSD}} \mathrm{X}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	25	-20	1.65	20	nA
		Full	-25	-	25	nA
Power OFF Leakage Current, IOFF	$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}+}=0 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$ to 5.25 V	25	-	0.005	0.025	$\mu \mathrm{A}$
		Full	-	-	0.5	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS						
Turn-ON Time, toN	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figure 1)	25	-	50	-	ns
Turn-OFF Time, $\mathrm{t}_{\text {OFF }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figure 1)	25	-	33	-	ns

Electrical Specifications -1.8V to 3.3V Supply Test Conditions: $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SELH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SELL}}=0.5 \mathrm{~V}$, $\mathrm{V}_{\overline{\mathrm{OEH}}}=1.4 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{OEL}}}=0.5 \mathrm{~V}$, (Note 8), Unless Otherwise Specified. (Continued)						
PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	MIN (Notes 9, 10)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Notes 9, 10) } \end{gathered}$	UNITS
Break-Before-Make Time Delay, t_{D}	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figure 2)	25	-	12	-	ns
Turn-ON Enable Time, tenable	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Time out of All-Off state	25	-	42	-	ns
Turn-OFF Disable Time, t ${ }^{\text {dISABLE }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Time into All-Off state, Time is highly dependent on the load (R_{L}, C_{L}) time constant.	25	-	75	-	ns
Skew, (tSKEWOUT - ${ }^{\text {SKKEWIN }}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=45 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=500 \mathrm{ps} \text { at } 480 \mathrm{Mbps}, \\ & (\text { Duty Cycle }=50 \%) \text { (see Figure } 6 \text {) } \end{aligned}$	25	-	53	-	ps
Rise/Fall Degradation (Propagation Delay), tpD	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=45 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF},(\text { see Figure } 6) \end{aligned}$	25	-	250	-	ps
Crosstalk	$V_{D D}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$ (see Figure 5)	25	-	-25	-	dB
OFF-Isolation	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \overline{\mathrm{OE}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$	25	-	-27	-	dB
-3dB Bandwidth	Signal $=0 \mathrm{dBm}, 0.2 \mathrm{VDC}$ offset, $\mathrm{R}_{\mathrm{L}}=50 \Omega$	25	-	782	-	MHz
OFF Capacitance, $\mathrm{C}_{\mathrm{HSxOFF}}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=0 \mathrm{~V}, \overline{\mathrm{OE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{HSD1x}} \text { or } \\ & \mathrm{V}_{\mathrm{HSD} 2 \mathrm{x}}=\mathrm{V}_{\mathrm{Dx}}=0 \mathrm{~V}(\text { see Figure } 4) \end{aligned}$	25	-	2.5	-	pF
COM ON Capacitance, $\mathrm{C}_{\mathrm{DX}(\mathrm{ON})}$	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{HSD1x}} \text { or } \mathrm{V}_{\mathrm{HSD} 2 \mathrm{x}}=\mathrm{V}_{\mathrm{Dx}}=0 \mathrm{~V} \text { (see Figure 4) } \end{aligned}$	25	-	6.5	-	pF
POWER SUPPLY CHARACTERISTICS						
Power Supply Range, V_{DD}		Full	1.8		3.3	V
Positive Supply Current, IDD	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{OE}}=0 \mathrm{~V}$ or V_{DD}	25	-	32	40	$\mu \mathrm{A}$
		Full	-	-	50	$\mu \mathrm{A}$
Positive Supply Current, IDD	$V_{D D}=1.8 \mathrm{~V}, \mathrm{SEL}=0 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}$ or V_{DD}	25	-	5.8	7.5	$\mu \mathrm{A}$
		Full	-	-	8	$\mu \mathrm{A}$
DIGITAL INPUT CHARACTERISTICS						
Input Voltage Low, $\mathrm{V}_{\text {SELL }}, \mathrm{V}_{\overline{\text { OEL }}}$	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.3 V	Full	-	-	0.5	V
Input Voltage High, $\mathrm{V}_{\text {SELH }}, \mathrm{V}_{\overline{\mathrm{OE}} \mathrm{H}}$	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 3.3 V	Full	1.4	-	V_{DD}	V
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{SEL}=0 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}$	Full	-	104	-	nA
Input Current, ISELH	$V_{D D}=3.3 \mathrm{~V}, \mathrm{SEL}=3.3 \mathrm{~V}$	Full	-	-1.5	-	nA
Input Current, $\overline{\mathrm{OE}} \mathrm{H}$	$V_{D D}=3.3 \mathrm{~V}, \overline{\mathrm{OE}}=3.3 \mathrm{~V}$	Full	-	-1.6	-	nA

NOTES

8. $\mathrm{V}_{\text {LOGIC }}=$ Input voltage to perform proper function.
9. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
10. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested
11. Flatness is defined as the difference between maximum and minimum value of ON-resistance over the specified analog signal range.
12. $r_{\text {ON }}$ matching between channels is calculated by subtracting the channel with the highest max ron value from the channel with lowest max ron value, between HSD2+ and HSD2- or between HSD1+ and HSD1-.
13. Limits established by characterization and are not production tested.

Test Circuits and Waveforms

Logic input waveform is inverted for switches that have the opposite logic sense.

Repeat test for all switches. C_{L} includes fixture and stray capacitance.

$$
V_{\text {OUT }}=V_{\text {(INPUT) }} \frac{R_{L}}{R_{L}+r_{\text {ON }}}
$$

FIGURE 1B. TEST CIRCUIT
FIGURE 1. SWITCHING TIMES

FIGURE 2A. MEASUREMENT POINTS

Repeat test for all switches. C_{L} includes fixture and stray capacitance.

FIGURE 2B. TEST CIRCUIT
FIGURE 2. BREAK-BEFORE-MAKE TIME

Repeat test for all switches.
FIGURE 3. ron TEST CIRCUIT

Test Circuits and Waveforms (Continued)

Repeat test for all switches.

FIGURE 4. CAPACITANCE TEST CIRCUIT

FIGURE 6A. MEASUREMENT POINTS

Signal direction through switch is reversed, worst case values are recorded. Repeat test for all switches.

FIGURE 5. CROSSTALK TEST CIRCUIT

|tro - tri| Delay Due to Switch for Rising Input and Rising Output Signals.
|tfo - tfi| Delay Due to Switch for Falling Input and Falling Output Signals |tskew_이 Change in Skew through the Switch for Output Signals.
|tskew_i| Change in Skew through the Switch for Input Signals.
FIGURE 6B. TEST CIRCUIT

FIGURE 6. SKEW TEST

Application Block Diagram

Detailed Description

The ISL54222 device is a dual single pole/double throw (SPDT) analog switch configured as a DPDT that operates from a single DC power supply in the range of 1.8 V to 3.3 V .

It was designed to function as a dual 2-to-1 multiplexer to select between two USB high-speed differential data signals in portable battery powered products. It is offered in a TDFN, MSOP, and a small μ TQFN packages for use in MP3 players, cameras, PDAs, cellphones, and other personal media players. The device has an enable pin to open all switches.

The part consists of four 5.5Ω high speed (HSx) switches. These switches have high bandwidth and low capacitance to pass USB high-speed (480Mbps) differential data signals with minimal edge and phase distortion. They can also swing from $0 V$ to $V_{D D}$ to pass USB full speed (12Mbps) differential data signals with minimal distortion.

The ISL54222 was designed for MP3 players, cameras, cellphones, and other personal media player applications that have multiple high-speed or full-speed transceivers sections and need to multiplex between these USB sources to a single USB host (computer). A typical application block diagram of this functionality is previously shown.

A detailed description of the HS switches is provided in the following section.

High-Speed (HSx) Switches

The HSx switches (HSD1-, HSD1+, HSD2-, HSD2+) are bi-directional switches that can pass rail-to-rail signals. When powered with a 1.8 V supply, these switches have a nominal ron of 5.5Ω over the signal range of 0 V to 400 mV with a ron flatness of 0.44Ω. The ron matching between the HSD1 and HSD2 switches over this signal range is only 0.072Ω, ensuring minimal impact by the switches to USB
high speed signal transitions. As the signal level increases, the ron switch resistance increases. At signal level of 1.8 V , the switch resistance is nominally 12Ω. See Figures $7,8,9$, 10, 11, 12 in the "Typical Performance Curves" beginning on page 9.

The HSx switches were specifically designed to pass USB 2.0 high-speed (480Mbps) differential signals in the range of 0 V to 400 mV . They have low capacitance (6.5 pF) and high bandwidth to pass the USB high-speed signals with minimum edge and phase distortion to meet USB 2.0 high speed signal quality specifications. See Figure 13 in the "Typical Performance Curves" on page 10 for USB High-speed Eye Pattern taken with switches in the differential signal paths.

The HSx switches can also pass USB full-speed signals (12Mbps) with minimal distortion and meet all the USB requirements for USB 2.0 full-speed signaling. See Figure 14 and 15 in the "Typical Performance Curves" on page 11 for USB Full-speed Eye Pattern taken with switches in the differential signal paths.

The maximum normal operating signal range for the HSx switches is from $0 V$ to $V_{D D}$. The signal voltage should not be allow to exceed the $V_{D D}$ voltage rail or go below ground by more than -0.3 V for normal operation.

However, in the event that the USB $5.25 \mathrm{~V} \mathrm{~V}_{\mathrm{BUS}}$ voltage gets shorted to one or both of the D-/D+ pins, the ISL54222 has special fault protection circuitry to prevent damage to the ISL54222 part. The fault circuitry allows the signal pins (D-, D+, HSD1-, HSD1+, HSD2-, HSD2+) to be driven up to 5.5 V while the V_{DD} supply voltage is in the range of 0 V to 3.3 V . In this condition the part draws $<300 \mu \mathrm{~A}$ of I_{DD} current and causes no stress to the IC. In addition when $V_{D D}$ is at 0 V (ground) all switches are OFF and the fault voltage is isolated from the other side of the switch. When $V_{D D}$ is in the
range of 1.8 V to 3.3 V the fault voltage will pass through to the output of an active switch channel. During the fault condition normal operation is not guaranteed until the fault is removed. See the "USB 2.0 VBUS Short Requirements" section below.

The HS1 channel switches are active (turned ON) whenever the SEL voltage is Logic " 0 " (Low) and the $\overline{\mathrm{OE}}$ voltage is Logic "0"(Low).
The HS2 channel switches are active (turned ON) whenever the SEL voltage is Logic " 1 " (High) and the $\overline{\mathrm{OE}}$ voltage is Logic "0" (Low).

ISL54222 Operation

The following will discuss using the ISL54222 shown in the "Application Block Diagram" on page 7.

POWER

The power supply connected at the $V_{D D}$ pin provides the $D C$ bias voltage required by the ISL54222 part for proper operation. The ISL54222 can be operated with a V_{DD} voltage in the range of 1.8 V to 3.3 V .
A $0.01 \mu \mathrm{~F}$ or $0.1 \mu \mathrm{~F}$ decoupling capacitor should be connected from the $V_{D D}$ pin to ground to filter out any power supply noise from entering the part. The capacitor should be located as close to the $V_{D D}$ pin as possible.

LOGIC CONTROL

The state of the ISL54222 device is determined by the voltage at the SEL pin and the $\overline{\mathrm{OE}}$ pin. SEL is only active when the $\overline{\mathrm{OE}}$ pin is Logic " 0 " (Low). Refer to the "Truth Table" on page 2.
The ISL54222 logic pins are designed to minimize current consumption when the logic control voltage is lower than the V_{DD} supply voltage. With $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and logic pins at 1.4 V the part typically draws only $35 \mu \mathrm{~A}$ of I_{DD} current. With $V_{D D}=1.8 \mathrm{~V}$ and logic pins at 1.4 V the part typically draws only $6 \mu \mathrm{~A}$ of I_{DD} current. Driving the logic pins to the V_{DD} supply rail minimizes power consumption.
The logic pins must be held High or Low and must not float.

Logic Control Voltage Levels

With V_{DD} supply voltage in the range of 1.8 V to 3.3 V the logic levels are:
$\overline{\overline{\mathrm{OE}}}=$ Logic " 0 " (Low) when $\mathrm{V} \overline{\mathrm{OE}} \leq 0.5 \mathrm{~V}$
$\overline{\mathrm{OE}}=$ Logic " 1 " (High) when $\mathrm{V} \overline{\mathrm{OE}} \geq 1.4 \mathrm{~V}$
SEL = Logic " 0 " (Low) when $\mathrm{V}_{\mathrm{SEL}} \leq 0.5 \mathrm{~V}$
SEL = Logic " 1 " (High) when $\mathrm{V}_{\text {SEL }} \geq 1.4 \mathrm{~V}$

HSD1 USB Channel

If the SEL pin = Logic " 0 " and the $\overline{\mathrm{OE}}$ pin = Logic " 0 ", high-speed Channel 1 will be ON. The HSD1- and HSD1+ switches are ON and the HSD2- and HSD2+ switches are OFF (high impedance).

When a computer or USB hub is plugged into the common USB connector and Channel 1 is active, a link will be established between the USB 1 transceiver section of the media player and the computer. The device will be able to transmit and receive data from the computer.

HSD2 USB Channel

If the SEL pin = Logic " 1 " and the $\overline{\mathrm{OE}}$ pin = Logic " 0 ", high-speed Channel 2 will be ON. The HSD2- and HSD2+ switches are ON and the HSD1- and HSD1+ switches are OFF (high impedance).

When a USB cable from a computer or USB hub is connected at the common USB connector and Channel 2 is active, a link will be established between the USB 2 transceiver section of the media player and the computer. The device will be able to transmit and receive data from the computer.

All Switches OFF Mode

If the SEL pin = Logic " 0 " or Logic " 1 " and the $\overline{\mathrm{OE}}$ pin = Logic "1", all of the switches will turn OFF (high impedance).
The "All OFF" state can be used to switch between the two USB sections of the media player. When switching from one USB transceiver section to the other USB transceiver section, you can momentarily put the ISL54222 switch in the "ALL OFF" state, in order to get the computer to disconnect from the current USB section, so it can properly connect to the other USB transceiver section when that channel is turned ON.

USB 2.0 VBUS Short Requirements

The USB 2.0 specification in chapter 7 , section 7.1 .1 states a USB device must be able to withstand a $V_{B U S}$ short to the $D+$ or D - signal lines when the device is either powered off or powered on for at least 24 hours. The ISL54222 part has special fault protection circuitry to meet these short circuit requirements.

The fault protection circuitry allows the signal pins (D-, D+, HSD1-, HSD1+, HSD2-, HSD2+) to be driven up to 5.5 V while the V_{DD} supply voltage is in the range of 0 V to 3.3 V . In this overvoltage condition the part draws $<300 \mu \mathrm{~A}$ of I_{DD} current and causes no stress/damage to the IC.
In addition when $V_{D D}$ is at $0 V$ (ground), all switches are OFF and the shorted $V_{B U S}$ voltage is isolated from the other side of the switch.

When V_{DD} is in the range of 1.8 V to 3.3 V , the shorted $\mathrm{V}_{\mathrm{BUS}}$ voltage will pass through to the output of an active (turned ON) switch channel but not through a turned OFF channel. Any components connected on the active channel must be able to withstand the overvoltage condition.
Note: During the fault condition normal operation of the USB channel is not guaranteed until the fault condition is removed.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 7. ON-RESISTANCE vs SUPPLY VOLTAGE vs SWITCH VOLTAGE

FIGURE 9. ON-RESISTANCE vs SWITCH VOLTAGE

FIGURE 11. ON-RESISTANCE vs SWITCH VOLTAGE

FIGURE 8. ON-RESISTANCE vs SUPPLY VOLTAGE vs SWITCH VOLTAGE

FIGURE 10. ON-RESISTANCE vs SWITCH VOLTAGE

FIGURE 12. ON-RESISTANCE vs SWITCH VOLTAGE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 13. EYE PATTERN: 480Mbps WITH USB SWITCHES IN THE SIGNAL PATH

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

TIME SCALE (10ns/DIV)
FIGURE 14. EYE PATTERN: 12Mbps WITH USB SWITCHES IN THE SIGNAL PATH

FIGURE 15. EYE PATTERN: 12Mbps WITH USB SWITCHES IN THE SIGNAL PATH

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 16. FREQUENCY RESPONSE

FIGURE 18. CROSSTALK

FIGURE 17. OFF-ISOLATION

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):

GND
TRANSISTOR COUNT:
325
PROCESS:
Submicron CMOS

Ultra Thin Quad Flat No-Lead Plastic Package (UTQFN)

L10.1.8x1.4A
10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE

SYMBOL	MILLIMETERS			NOTES
	MIN	NOMINAL	MAX	
A	0.45	0.50	0.55	-
A1	-	-	0.05	-
A3	0.127 REF			-
b	0.15	0.20	0.25	5
D	1.75	1.80	1.85	-
E	1.35	1.40	1.45	-
e	0.40 BSC			-
L	0.35	0.40	0.45	-
L1	0.45	0.50	0.55	-
N	10			2
Nd	2			3
Ne	3			3
θ	0	-	12	4

NOTES:

1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd and Ne refer to the number of terminals on D and E side, respectively.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.
7. Maximum package warpage is 0.05 mm .
8. Maximum allowable burrs is 0.076 mm in all directions.
9. JEDEC Reference MO-255.
10. For additional information, to assist with the PCB Land Pattern Design effort, see Intersil Technical Brief TB389.

Mini Small Outline Plastic Packages (MSOP)

NOTES:

1. These package dimensions are within allowable dimensions of JEDEC MO-187BA.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. Dimension " D " does not include mold flash, protrusions or gate burrs and are measured at Datum Plane. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E1" does not include interlead flash or protrusions and are measured at Datum Plane. $-\mathrm{H}-\mathrm{Interlead}$ flash and protrusions shall not exceed 0.15 mm (0.006 inch) per side.
5. Formed leads shall be planar with respect to one another within $0.10 \mathrm{~mm}(.004)$ at seating Plane.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm (0.0027 inch).
10. Datums $-\mathrm{A}-$ and $-\mathrm{B}-$ to be determined at Datum plane $-\mathrm{H}-$.
11. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only

M10.118 (JEDEC MO-187BA)
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.037	0.043	0.94	1.10	-
A1	0.002	0.006	0.05	0.15	-
A2	0.030	0.037	0.75	0.95	-
b	0.007	0.011	0.18	0.27	9
c	0.004	0.008	0.09	0.20	-
D	0.116	0.120	2.95	3.05	3
E1	0.116	0.120	2.95	3.05	4
e	0.020 BSC		0.50 BSC		-
E	0.187	0.199	4.75	5.05	-
L	0.016	0.028	0.40	0.70	6
L1	0.037 REF		0.95 REF		-
N	10		10		7
R	0.003	-	0.07	-	-
R1	0.003	-	0.07	-	-
θ	5^{0}	15°	5°	15°	-
α	0^{0}	6^{0}	0°	6^{0}	-

Thin Dual Flat No-Lead Plastic Package (TDFN)

q

FOR ODD TERMINAL/SIDE

© Copyright Intersil Americas LLC 2009. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing IS09001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

