NSR15SDW1T1
 NSR15SDW1T2

Dual RF Schottky Diode

These diodes are designed for analog and digital applications, including DC based signal detection and mixing applications.

Features

- Low Capacitance ($<1 \mathrm{pF}$)
- Low $\mathrm{V}_{\mathrm{F}}(390 \mathrm{mV}$ typical @ 1 mA$)$
- Low $\mathrm{V}_{\mathrm{F} \Delta}$ (1 mV typical @ 1 mA)
- Pins 2 and 5 Shorted
- Pb -Free Packages are Available

Benefits

- Reduced Parasitic Losses
- Accurate Signal Measurement
- Reduced Cross Talk

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Reverse Voltage	V_{R}	15	V
Forward Current	I_{F}	30	mA
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD Rating: Class 1 per Human Body Model Class A per Machine Model			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	500	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

RF SCHOTTKY BARRIER DIODES 15 VOLTS, 30 mA

SC-88
CASE 419B
STYLE 21

MARKING DIAGRAM

R6 = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
NSR15SDW1T1	SC-88	3000/Tape \& Reel
NSR15SDW1T1G	SC-88 (Pb-Free)	3000/Tape \& Reel
NSR15SDW1T2	SC-88	3000/Tape \& Reel
NSR15SDW1T2G	SC-88 (Pb-Free)	3000/Tape \& Reel
NSR15SDW1T4	SC-88	10,000/Tape \& Reel
NSR15SDW1T4G	SC-88 (Pb-Free)	10,000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max
Unit				
Breakdown Voltage $\left(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\right)$	V_{BR}	15	20	-
Reverse Leakage $\left(\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}\right)$	I_{R}	-	2	50
Forward Voltage $\left(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{F} 1}$	-	390	415
Forward Voltage $\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{F} 2}$	-	530	680
Delta $\mathrm{V}_{\mathrm{F}}\left(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\right.$, All Diodes $)$	$\Delta \mathrm{V}_{\mathrm{F}}$	-	1	15 mV
Capacitance $\left(\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	C_{T}	-	0.8	1

Figure 1. Forward Current versus Forward Voltage at Temperatures

Figure 3. Total Capacitance versus Reverse Voltage

Figure 2. Reverse Current versus Reverse Voltage

Figure 4. Dynamic Resistance versus Forward Current

Figure 5. Typical V_{F} Match at Mixer Bias Levels

Figure 6. Typical V_{F} Match at Detector Bias Levels

Figure 7. Typical Output Voltage versus Input Power, Small Signal Detector Operating at 850 MHz

Figure 8. Typical Output Voltage versus Input Power, Large Signal Detector Operating at 915 MHz

Figure 9. Typical Conversion Loss versus L.O. Drive, 2.0 GHz

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND c APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	--	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		
	GENERIC					
	MARKING DIAGRAM*					

XXX $=$ Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0] rights of others.

SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:

CANCELLED
STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAAN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6 : PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

