

USER MANUAL

Copyright © 2003-2016 Terasic Inc. All Rights Reserved.

Chapter	1 ADC-SoC Development Kit	3
1.1 Packag	ge Contents	3
1.2 ADC-S	SoC System CD	4
1.3 Getting	ng Help	4
Chapter :	2 Introduction of the ADC-SoC Board	5
2.1 Layout	It and Components	5
2.2 Block	Diagram of the ADC-SoC Board	7
Chapter	3 Using the ADC-SoC Board	10
3.1 Setting	gs of FPGA Configuration Mode	10
3.2 Config	guration of Cyclone V SoC FPGA on ADC-SoC	11
3.3 Board	Status Elements	16
3.4 Board	Reset Elements	17
3.5 Clock	Circuitry	19
3.6 Periphe	nerals Connected to the FPGA	20
3.6.1	User Push-buttons, Switches and LEDs	20
3.6.2	2x20 GPIO Expansion Headers	23
3.6.3	Arduino Uno R3 Expansion Header	24
3.6.4	A/D Converter and Analog Input	26
3.6.5	High-Speed A/D Converter	28
3.7 Periphe	nerals Connected to Hard Processor System (HPS)	31
3.7.1	User Push-buttons and LEDs	31
3.7.2	Gigabit Ethernet	32
3.7.3	UART	33
3.7.4	DDR3 Memory	34
3.7.5	Micro SD Card Socket	36

1

3.7.6	USB 2.0 OTG PHY	
3.7.7	G-sensor	
3.7.8	LTC Connector	
3.7.9	Real-Time Clock	40
Chapter 4	Examples For FPGA	43
4.1 ADC-Sc	oC Factory Configuration	
4.2 LTC230	08 ADC Reading	
4.3 RTL Co	de for High Speed ADC AD9254	
4.4 Nios II (Code for High Speed ADC AD9254	
Chapter 5	Examples for HPS SoC	53
5.1 Users Ll	ED and KEY	53
5.2 I2C Inte	erfaced G-sensor	
Chapter 6	Examples for using both HPS SoC and FGPA	62
•	Examples for using both HPS SoC and FGPA	
6.1 HPS Co		
6.1 HPS Co	ntrol FPGA LED	
6.1 HPS Co 6.2 High Sp Chapter 7	ntrol FPGA LED	62 65
 6.1 HPS Co 6.2 High Sp Chapter 7 7.1 Before F 	eed ADC AD9254	
 6.1 HPS Co 6.2 High Sp Chapter 7 7.1 Before F 7.2 Convert 	eed ADC AD9254 Programming the EPCS Device	
 6.1 HPS Co 6.2 High Sp Chapter 7 7.1 Before F 7.2 Convert 7.3 Write JF 	eed ADC AD9254 Programming the EPCS Device Programming Begins	
 6.1 HPS Co 6.2 High Sp Chapter 7 7.1 Before F 7.2 Convert 7.3 Write JIG 7.4 Erase th 	eed ADC AD9254 Programming the EPCS Device Programming Begins C File to .JIC File C File into the EPCS Device	
 6.1 HPS Co 6.2 High Sp Chapter 7 7.1 Before F 7.2 Convert 7.3 Write JIG 7.4 Erase th 	eed ADC AD9254 Programming the EPCS Device Programming Begins SOF File to .JIC File C File into the EPCS Device e EPCS Device rogramming via nios-2-flash-programmer	
 6.1 HPS Co 6.2 High Sp Chapter 7 7.1 Before F 7.2 Convert 7.3 Write JP 7.4 Erase th 7.5 EPCS P Chapter 8 	eed ADC AD9254 Programming the EPCS Device Programming Begins SOF File to .JIC File C File into the EPCS Device the EPCS Device rogramming via nios-2-flash-programmer	

Chapter 1

Kit

ADC-SoC Development

The ADC-SoC Development Kit presents a robust hardware design platform built around the Intel System-on-Chip (SoC) FPGA, which combines the latest dual-core Cortex-A9 embedded cores with industry-leading programmable logic for ultimate design flexibility. Users can now leverage the power of tremendous re-configurability paired with a high-performance, low-power processor system. Intel's SoC integrates an ARM-based hard processor system (HPS) consisting of processor, peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth interconnect backbone. The ADC-SoC development board is equipped with high-speed DDR3 memory, high-speed and low-speed Analog-to-Digital capabilities, Ethernet networking, and much more that promise many exciting applications.

The ADC-SoC Development Kit contains all the tools needed to use the board in conjunction with a computer that runs the Microsoft Windows XP or later.

1.1 Package Contents

Figure 1-1 shows a photograph of the ADC-SoC package.

Figure 1-1 The ADC-SoC package contents

The ADC-SoC package includes:

- The ADC-SoC development board
- USB cable Type A to Mini-B for FPGA programming or UART control
- USB cable Type A to Micro-B for USB OTG connect to PC
- 5V DC power adapter
- microSD Card (Installed)

1.2 ADC-SoC System CD

The ADC-SoC System CD contains all the documents and supporting materials associated with ADC-SoC, including the user manual, reference designs, and device datasheets. Users can download this system CD from the link: <u>http://ADC-SoC.terasic.com/cd</u>.

1.3 Getting Help

Here is the address where you can get help if you encounter any problems:

- Terasic Technologies
- 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan

Email: support@terasic.com

Tel.: +886-3-575-0880

Website: ADC-SoC.terasic.com

Chapter 2 Introduction of the ADC-SoC Board

This chapter provides an introduction to the features and design characteristics of the board.

2.1 Layout and Components

Figure 2-1 and **Figure 2-2** shows a photograph of the board. It depicts the layout of the board and indicates the location of the connectors and key components.

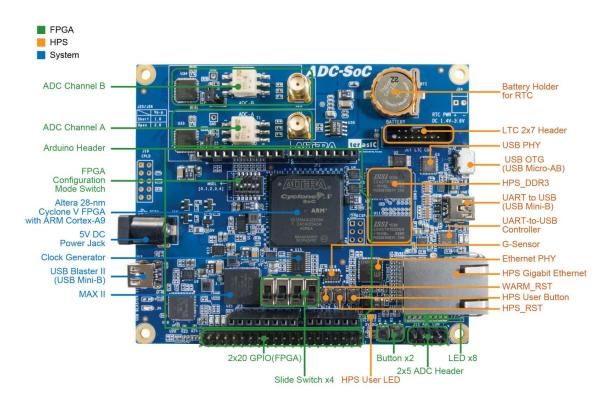


Figure 2-1 ADC-SoC development board (top view)



Figure 2-2 ADC-SoC development board (bottom view)

The ADC-SoC board has many features that allow users to implement a wide range of designed circuits, from simple circuits to various multimedia projects.

The following hardware is provided on the board:

■ FPGA

- Cyclone® V SE 5CSEMA4U23C6N device
- Serial configuration device EPCS128
- USB-Blaster II onboard for programming; JTAG Mode
- 2 push-buttons
- 4 slide switches
- 8 green user LEDs
- Three 50MHz clock sources from the clock generator
- One 40-pin expansion header
- One Arduino expansion header (Uno R3 compatibility), can connect with Arduino shields.
- One 10-pin Analog input expansion header. (shared with Arduino Analog input)
- 500Ksps A/D converter, 4-wire SPI interface with FPGA
- Two high speed 14-bit AD Converter with 150MSPS

HPS (Hard Processor System)

- 925MHz Dual-core ARM Cortex-A9 processor
- 1GB DDR3 SDRAM (32-bit data bus)
- 1 Gigabit Ethernet PHY with RJ45 connector
- USB OTG port, USB Micro-AB connector
- Micro SD card socket
- Accelerometer (I2C interface + interrupt)
- UART to USB, USB Mini-B connector
- Warm reset button and cold reset button
- One user button and one user LED
- LTC 2x7 expansion header
- RTC (Real-time clock)

2.2 Block Diagram of the ADC-SoC Board

Figure 2-3 is the block diagram of the board. All the connections are established through the Cyclone V SoC FPGA device to provide maximum flexibility for users. Users can configure the FPGA to implement any system design.

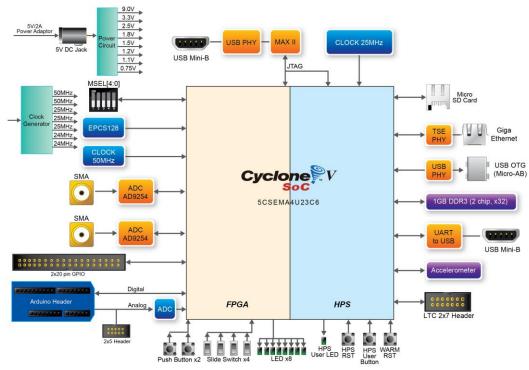


Figure 2-3 Block diagram of ADC-SoC

Detailed information about Figure 2-3 are listed below.

FPGA Device

- Cyclone V SoC 5CSEMA4U23C6N Device
- Dual-core ARM Cortex-A9 (HPS)
- 40K programmable logic elements
- 2,460 Kbits embedded memory
- 5 fractional PLLs
- 2 hard memory controllers

Configuration and Debug

- Serial configuration device EPCS128 on FPGA
- Onboard USB-Blaster II (Mini-B USB connector)

Memory Device

- 1GB (2x256Mx16) DDR3 SDRAM on HPS
- Micro SD card socket on HPS

Communication

- One USB 2.0 OTG (ULPI interface with USB Micro-AB connector)
- UART to USB (USB Mini-B connector)
- 10/100/1000 Ethernet

Connectors

- One 40-pin expansion headers
- Arduino expansion header
- One 10-pin ADC input header
- One LTC connector (one SPI Master, one I2C and one GPIO interface)

ADC

- 12-Bit Resolution, 500Ksps Sampling Rate. SPI Interface.
- 8-Channel Analog Input. Input Range : 0V ~ 4.096V.

High-Speed ADC

- 14-Bit Resolution, 150MSPS Sampling Rate.
- Two channel Input with SMA connector.

Switches, Buttons, and Indicators

- 3 user Keys (FPGA x2, HPS x1)
- 4 user switches (FPGA x4)
- 9 user LEDs (FPGA x8, HPS x 1)
- 2 HPS reset buttons (HPS_RESET_n and HPS_WARM_RST_n)

Sensors

• G-Sensor on HPS

Real-Time Clock

- On-Board Real-Time Clock (RTC).
- On-Board battery holder for RTC.

Power

• 5V DC input

Chapter 3

Using the ADC-SoC Board

This chapter provides an instruction to use the board and describes the peripherals.

3.1 Settings of FPGA Configuration Mode

When the ADC-SoC board is powered on, the FPGA can be configured from EPCS or HPS.

The MSEL[4:0] pins are used to select the configuration scheme. It is implemented as a 6-pin DIP switch **SW10** on the ADC-SoC board, as shown in **Figure 3-1**.

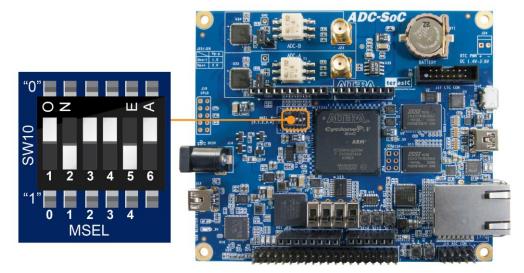


Figure 3-1 DIP switch (SW10) setting of FPP x32 mode

Table 3-1 shows the relation between MSEL[4:0] and DIP switch (SW10).

Board Reference	Signal Name	Description	Default
SW10.1	MSEL0		ON ("0")
SW10.2	MSEL1		OFF ("1")
SW10.3	MSEL2	Use these pins to set the FPGA	ON ("0")
SW10.4	MSEL3	Configuration scheme	ON ("0")
SW10.5	MSEL4		OFF ("1")
SW10.6	N/A	N/A	N/A

 Table 3-1 FPGA Configuration Mode Switch (SW10)

Table 3-2 shows MSEL[4:0] setting for FPGA configure, and default setting is FPPx32 mode on ADC-SoC.

Figure 3-1 shows MSEL[4:0] setting of AS mode, which is also the default setting on ADC-SoC board. When the board is powered on and MSEL[4:0] set to "10010", the FPGA is configured from EPCS, which is pre-programmed with the default code. If developers wish to configure FPGA from an application software running on Linux, the MSEL[4:0] needs to be set to "01010" before the programming process begins. If developers using the "Linux Console with frame buffer" or "Linux LXDE Desktop" SD Card image, the MSEL[4:0] needs to be set to "00000" before the board is powered on.

Configuration	SW10.1 MSEL0	SW10.2 MSEL1		SW10.4 MSEL3			Description
AS	ON	OFF	ON	ON	OFF	N/A	FPGA configured from EPCS
FPPx32 (Default)	ON	OFF	ON	OFF	ON	N/A	FPGA configured from HPS software: Linux (default)
FPPx16	ON	ON	ON	ON	ON	N/A	FPGA configured from HPS software: U-Boot, with image stored on the SD card, like LXDE Desktop or console Linux with frame buffer edition.

 Table 3-2 MSEL Pin Settings for FPGA Configure of ADC-SoC

3.2 Configuration of Cyclone V SoC FPGA on ADC-SoC

There are two types of programming method supported by ADC-SoC:

1. JTAG programming: It is named after the IEEE standards Joint Test Action Group.

The configuration bit stream is downloaded directly into the Cyclone V SoC FPGA. The FPGA will retain its current status as long as the power keeps applying to the board; the configuration information will be lost when the power is off.

2. AS programming: The other programming method is Active Serial configuration.

The configuration bit stream is downloaded into the serial configuration device (EPCS128), which provides non-volatile storage for the bit stream. The information is retained within EPCS128 even if the ADC-SoC board is turned off. When the board is powered on, the configuration data in the EPCS128 device is automatically loaded into the Cyclone V SoC FPGA.

■ JTAG Chain on ADC-SoC Board

The FPGA device can be configured through JTAG interface on ADC-SoC board, but the JTAG chain must form a closed loop, which allows Quartus II programmer to the detect FPGA device. **Figure 3-2** illustrates the JTAG chain on ADC-SoC board.

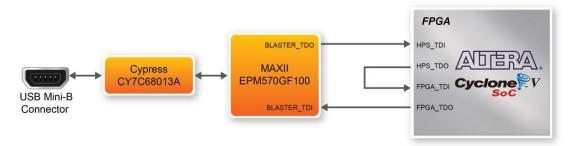


Figure 3-2 Path of the JTAG chain

Configure the FPGA in JTAG Mode

There are two devices (FPGA and HPS) on the JTAG chain. The following shows how the FPGA is programmed in JTAG mode step by step.

Open the Quartus II programmer and click "Auto Detect", as circled in Figure 3-3

Programmer - D:/	system_cd/Demonstration	ns/FPGA/ADC_SO	C_Default/ADC_	SOC_Default -	ADC_SOC_De	fault - [C	hain1.cdf]	*		×
<u>F</u> ile <u>E</u> dit <u>V</u> iew	P <u>r</u> ocessing <u>T</u> ools <u>W</u> ine	dow <u>H</u> elp						Search	altera.com	9
Hardware Setup.	DE-SoC [USB-1] SP to allow background pro	ogramming when av	Mode: vailable	JTAG		▼ Pi	ogress:			
Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	Erase
Stop										
X Delete	•			III						•
Add File										-
Change File										
Save File										_
Add Device										E
1 ¹⁰ Up										
Down										+

Figure 3-3 Detect FPGA device in JTAG mode

Select detected device associated with the board, as circled in Figure 3-4.

V Select Device
Found devices with shared JTAG ID for device 2. Please select your device.
© 5CSEBA4
◎ 5CSEMA4
© 5CSXFC4C6
ОК
UK

Figure 3-4 Select 5CSEMA4 device

Both FPGA and HPS are detected, as shown in Figure 3-5.

dware Setup	DE-SoC [USB-1]		Mode:	JTAG		▼ Pr	ogress:			
le real-time IS	P to allow backgro	und programming when a	available							
rt	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	Eras
	<none></none>	SOCVHPS	00000000	<none></none>						
	<none></none>	5CSEMA4	0000000	<none></none>						
] [•									
		(intel) (in	itel							
	TDI									
]		\rightarrow								

Figure 3-5 FPGA and HPS detected in Quartus programmer

Right click on the FPGA device and open the .sof file to be programmed, as highlighted in **Figure 3-6**.

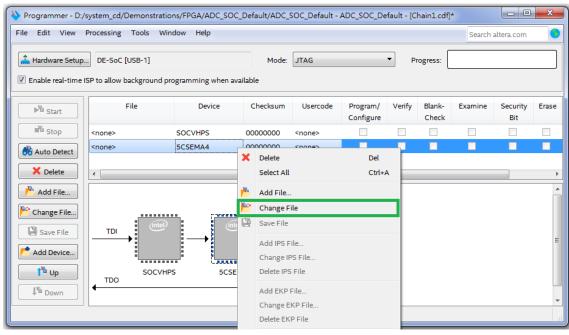


Figure 3-6 Open the .sof file to be programmed into the FPGA device

Select the .sof file to be programmed, as shown in Figure 3-7.

Select Nev	v Programming File	×
Look in:	nputer ADC_SOC_Default.pof	
File <u>n</u> ame: Files of type:	ADC_SOC_Default.sof Programming Files (*.sof *.pof *.jam *.jbc *.ekp *.jic)	Open Cancel

Figure 3-7 Select the .sof file to be programmed into the FPGA device

Click "Program/Configure" check box and then click "Start" button to download the .sof file into the FPGA device, as shown in **Figure 3-8**.

Programmer - D:/system_cd/Demonstrations/FPGA/ADC_SOC_Default/ADC_SOC_Default - ADC_SOC_Default - [Chain1.cdf]* Eile Edit View Processing Tools Window Help										
Hardware Setup	DE-SoC [USB-1] SP to allow background pro	ogramming when a		JTAG		▼ P	rogress: (
Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	Erase
Stop	<none> output_files/ADC_SOC</none>	SOCVHPS 5CSEMA4U23	00000000 004405BF	<none> 004405BF</none>						
X Delete	•			III						
Change File										
Add Device	TDO	5 5CSEM	IA4U23							

Figure 3-8 Program .sof file into the FPGA device

Configure the FPGA in AS Mode

15

The ADC-SoC board uses a serial configuration device (EPCS128) to store configuration data for the Cyclone V SoC FPGA. This configuration data is automatically loaded from the serial configuration device chip into the FPGA when the board is powered up.

Users need to use Serial Flash Loader (SFL) to program the serial configuration device via JTAG interface. The FPGA-based SFL is a soft intellectual property (IP) core within the FPGA that bridge the JTAG and Flash interfaces. The SFL Megafunction is available in Quartus II. **Figure 3-9** shows the programming method when adopting SFL solution.

Please refer to **Chapter 8**: Steps of Programming the Serial Configuration Device for the basic programming instruction on the serial configuration device.

Figure 3-9 Programming a serial configuration device with SFL solution

3.3 Board Status Elements

In addition to the 9 LEDs that FPGA/HPS device can control, there are 6 indicators which can indicate the board status (as shown in **Figure 3-10**), please refer the details in **Table 3-3**.

Figure 3-10 LED Indicators on ADC-SoC

	r	Fable 3-3 LED Indicators
Board Reference	LED Name	Description
LED9	3.3-V Power	Illuminate when 3.3V power is active.
LED10	CONF_DONE	Illuminates when the FPGA is successfully configured.
LED11	JTAG_TX	Illuminate when data is transferred from JTAG to USB Host.
LED12	JTAG_RX	Illuminate when data is transferred from USB Host to JTAG.
ТХD	UART TXD	Illuminate when data is transferred from FT232R to USB Host.
RXD	UART RXD	Illuminate when data is transferred from USB Host to FT232R.

3.4 Board Reset Elements

There are two HPS reset buttons on ADC-SoC, HPS (cold) reset and HPS warm reset, as shown in **Figure 3-11**. **Table 3-4** describes the purpose of these two HPS reset buttons. **Figure 3-12** is the reset tree for ADC-SoC.

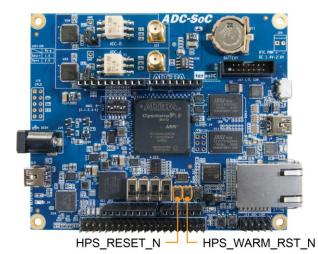


Figure 3-11 HPS cold reset and warm reset buttons on ADC-SoC

Board Reference	Signal Name	Description
KEY4	HPS_RESET_N	Cold reset to the HPS, Ethernet PHY and USB host device.
		Active low input which resets all HPS logics that can be reset.
	HPS WARM RSI NI	Warm reset to the HPS block. Active low input affects the
KEY3		system reset domain for debug purpose.

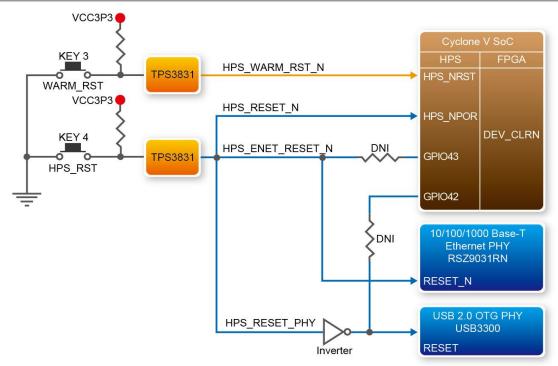


Figure 3-12 HPS reset tree on ADC-SoC board

3.5 Clock Circuitry

Figure 3-13 shows the default frequency of all external clocks to the Cyclone V SoC FPGA. A clock generator is used to distribute clock signals with low jitter. The two 50MHz clock signals connected to the FPGA are used as clock sources for user logic. Three 25MHz clock signal are connected to two HPS clock inputs, and the other one is connected to the clock input of Gigabit Ethernet Transceiver. One 24MHz clock signal is connected to the USB controller for USB Blaster II circuit and FPGA. One 24MHz clock signals are connected to the clock inputs of USB OTG PHY. The associated pin assignment for clock inputs to FPGA I/O pins is listed in **Table 3-5**.

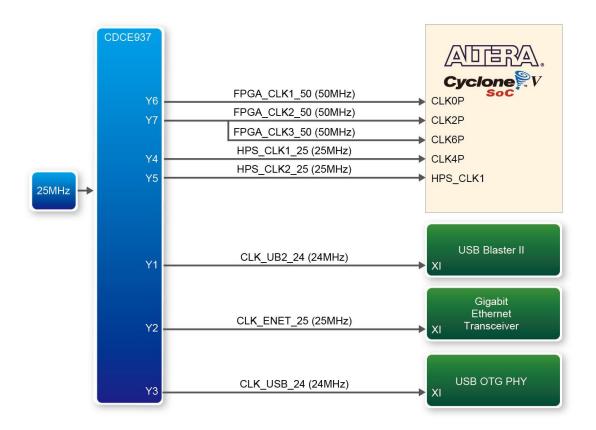


Figure 3-13 Block diagram of the clock distribution on ADC-SoC

Table 5-5 I in Assignment of Clock Inputs					
Signal Name	FPGA Pin No.	Description	I/O Standard		
FPGA_CLK1_50	PIN_V11	50 MHz clock input	3.3V		
FPGA_CLK2_50	PIN_Y13	50 MHz clock input	3.3V		

Table 3-5 Pin Assignment of Clock Inputs

FPGA_CLK3_50	PIN_E11	50 MHz clock input (share with FPGA_CLK1_50)	3.3V
HPS_CLK1_25	PIN_E20	25 MHz clock input	3.3V
HPS_CLK2_25	PIN_D20	25 MHz clock input	3.3V

3.6 Peripherals Connected to the FPGA

This section describes the interfaces connected to the FPGA. Users can control or monitor different interfaces with user logic from the FPGA.

3.6.1 User Push-buttons, Switches and LEDs

The board has two push-buttons connected to the FPGA, as shown in **Figure 3-14**. Schmitt trigger circuit is implemented and act as switch debounce in **Figure 3-15** for the push-buttons connected. The two push-buttons named KEY0 and KEY1 coming out of the Schmitt trigger device are connected directly to the Cyclone V SoC FPGA. The push-button generates a low logic level or high logic level when it is pressed or not, respectively. Since the push-buttons are debounced, they can be used as clock or reset inputs in a circuit.

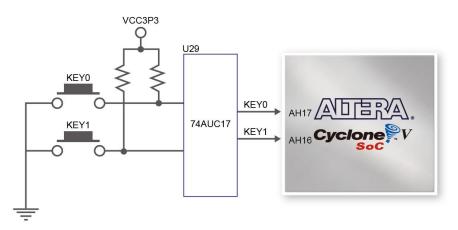


Figure 3-14 Connections between the push-buttons and the Cyclone V SoC FPGA

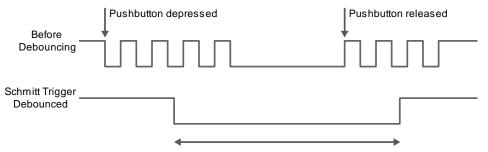


Figure 3-15 Switch debouncing

There are four slide switches connected to the FPGA, as shown in **Figure 3-16**. These switches are not debounced and to be used as level-sensitive data inputs to a circuit. Each switch is connected directly and individually to the FPGA. When the switch is set to the DOWN position (towards the edge of the board), it generates a low logic level to the FPGA. When the switch is set to the UP position, a high logic level is generated to the FPGA.

Figure 3-16 Connections between the slide switches and the Cyclone V SoC FPGA

There are also eight user-controllable LEDs connected to the FPGA. Each LED is driven directly and individually by the Cyclone V SoC FPGA; driving its associated pin to a high logic level or low level to turn the LED on or off, respectively. **Figure 3-17** shows the connections between LEDs and Cyclone V SoC FPGA. **Table 3-6**, **Table 3-7** and **Table 3-8** list the pin assignment of user push-buttons, switches, and LEDs.

Figure 3-17 Connections between the LEDs and the Cyclone V SoC FPGA

Signal Name	FPGA Pin No.	Description	I/O Standard	
SW[0]	PIN_Y11	Slide Switch[0]	3.3V	
SW[1]	PIN_AA11	Slide Switch[1]	3.3V	
SW[2]	PIN_AD5	Slide Switch[2]	3.3V	
SW[3]	PIN_AE6	Slide Switch[3]	3.3V	

Table 3-6 Pin Assignment of Slide Switches

Table 3-7 Pin Assignment of Push-buttons

Signal Name	FPGA Pin No.	Description	I/O Standard
KEY[0]	PIN_AH17	Push-button[0]	3.3V
KEY[1]	PIN_AH16	Push-button[1]	3.3V

Table 3-8 Pin Assignment of LEDs

Signal Name	FPGA Pin No.	Description	I/O Standard
LED[0]	PIN_W15	LED [0]	3.3V
LED[1]	PIN_AA24	LED [1]	3.3V
LED[2]	PIN_V16	LED [2]	3.3V
LED[3]	PIN_V15	LED [3]	3.3V
LED[4]	PIN_AF26	LED [4]	3.3V
LED[5]	PIN_AE26	LED [5]	3.3V
LED[6]	PIN_Y16	LED [6]	3.3V
LED[7]	PIN_AA23	LED [7]	3.3V

3.6.2 2x20 GPIO Expansion Headers

The board has one 40-pin expansion headers. Each header has 36 user pins connected directly to the Cyclone V SoC FPGA. It also comes with DC +5V (VCC5), DC +3.3V (VCC3P3), and two GND pins. **Figure 3-18** shows the I/O distribution of the GPIO connector. The maximum power consumption allowed for a daughter card connected to one or two GPIO ports is shown in **Table 3-9** and **Table 3-10** shows all the pin assignments of the GPIO connector.

	GPIO 1 (JP7)						
	PIN_Y15	GPIO_1[0]	1	0	2	GPIO_1[1]	PIN_AC24
	PIN_AA15	GPIO_1[2]	3	•	4	GPIO_1[3]	PIN_AD23
	PIN_AG28	GPIO_1[4]	5		6	GPIO_1[5]	PIN_AF28
	PIN_AE25	GPIO_1[6]	7		8	GPIO_1[7]	PIN_AF27
	PIN_AG26	GPIO_1[8]	9	0	10	GPIO_1[9]	PIN_AH27
		5V	11	•	12	GND	
	PIN_AG25	GPIO_1[10]	13		14	GPIO_1[11]	PIN_AH26
	PIN_AH24	GPIO_1[12]	15		16	GPIO_1[13]	PIN_AF25
	PIN_AG23	GPIO_1[14]	17		18	GPIO_1[15]	PIN_AF23
	PIN_AG24	GPIO_1[16]	19		20	GPIO_1[17]	PIN_AH22
	PIN_AH21	GPIO_1[18]	21		22	GPIO_1[19]	PIN_AG21
	PIN_AH23	GPIO_1[20]	23		24	GPIO_1[21]	PIN_AA20
	PIN_AF22	GPIO_1[22]	25		26	GPIO_1[23]	PIN_AE22
	PIN_AG20	GPIO_1[24]	27		28	GPIO_1[25]	PIN_AF21
		3.3V	29		30	GND	
	PIN_AG19	GPIO_1[26]	31		32	GPIO_1[27]	PIN_AH19
PIN1	PIN_AG18	GPIO_1[28]	33		34	GPIO_1[29]	PIN_AH18
- PINI	PIN_AF18	GPIO_1[30]	35		36	GPIO_1[31]	PIN_AF20
	PIN_AG15	GPIO_1[32]	37		38	GPIO_1[33]	PIN_AE20
	PIN_AE19	GPIO_1[34]	39		40	GPIO_1[35]	PIN_AE17

Figure 3-18 GPIO Pin Arrangement

Table 3-9 Voltage and Max.	Current Limit of Ex	pansion Header(s)
Tuble e > tortuge und trutte		pullipion lieudei (b)

Supplied Voltage	Max. Current Limit
5V	1A (depend on the power adapter specification.)
3.3V	1.5A

 Table 3-10 Show all Pin Assignment of Expansion Headers

Signal Name	FPGA Pin No.	Description	I/O Standard
GPIO_1[0]	PIN_Y15	GPIO Connection 1[0]	3.3V
GPIO_1[1]	PIN_AC24	GPIO Connection 1[1]	3.3V
GPIO_1[2]	PIN_AA15	GPIO Connection 1[2]	3.3V
GPIO_1[3]	PIN_AD23	GPIO Connection 1[3]	3.3V
GPIO_1[4]	PIN_AG28	GPIO Connection 1[4]	3.3V
GPIO_1[5]	PIN_AF28	GPIO Connection 1[5]	3.3V
GPIO_1[6]	PIN_AE25	GPIO Connection 1[6]	3.3V
GPIO_1[7]	PIN_AF27	GPIO Connection 1[7]	3.3V
GPIO_1[8]	PIN_AG26	GPIO Connection 1[8]	3.3V
GPIO_1[9]	PIN_AH27	GPIO Connection 1[9]	3.3V
GPIO_1[10]	PIN_AG25	GPIO Connection 1[10]	3.3V
GPIO_1[11]	PIN_AH26	GPIO Connection 1[11]	3.3V
GPIO_1[12]	PIN_AH24	GPIO Connection 1[12]	3.3V
GPIO_1[13]	PIN_AF25	GPIO Connection 1[13]	3.3V
GPIO_1[14]	PIN_AG23	GPIO Connection 1[14]	3.3V
GPIO_1[15]	PIN_AF23	GPIO Connection 1[15]	3.3V
GPIO_1[16]	PIN_AG24	GPIO Connection 1[16]	3.3V
GPIO_1[17]	PIN_AH22	GPIO Connection 1[17]	3.3V
GPIO_1[18]	PIN_AH21	GPIO Connection 1[18]	3.3V
GPIO_1[19]	PIN_AG21	GPIO Connection 1[19]	3.3V
GPIO_1[20]	PIN_AH23	GPIO Connection 1[20]	3.3V
GPIO_1[21]	PIN_AA20	GPIO Connection 1[21]	3.3V
GPIO_1[22]	PIN_AF22	GPIO Connection 1[22]	3.3V
GPIO_1[23]	PIN_AE22	GPIO Connection 1[23]	3.3V
GPIO_1[24]	PIN_AG20	GPIO Connection 1[24]	3.3V
GPIO_1[25]	PIN_AF21	GPIO Connection 1[25]	3.3V
GPIO_1[26]	PIN_AG19	GPIO Connection 1[26]	3.3V
GPIO_1[27]	PIN_AH19	GPIO Connection 1[27]	3.3V
GPIO_1[28]	PIN_AG18	GPIO Connection 1[28]	3.3V
GPIO_1[29]	PIN_AH18	GPIO Connection 1[29]	3.3V
GPIO_1[30]	PIN_AF18	GPIO Connection 1[30]	3.3V
GPIO_1[31]	PIN_AF20	GPIO Connection 1[31]	3.3V
GPIO_1[32]	PIN_AG15	GPIO Connection 1[32]	3.3V
GPIO_1[33]	PIN_AE20	GPIO Connection 1[33]	3.3V
GPIO_1[34]	PIN_AE19	GPIO Connection 1[34]	3.3V
GPIO_1[35]	PIN_AE17	GPIO Connection 1[35]	3.3V

3.6.3 Arduino Uno R3 Expansion Header

The board provides Arduino Uno revision 3 compatibility expansion header which comes with four

independent headers. The expansion header has 17 user pins (16pins GPIO and 1pin Reset) connected directly to the Cyclone V SoC FPGA. 6-pins Analog input connects to ADC, and also provides DC +9V (VCC9), DC +5V (VCC5), DC +3.3V (VCC3P3 and IOREF), and three GND pins.

Please refer to **Figure 3-19** for detailed pin-out information. The blue font represents the Arduino Uno R3 board pin-out definition.

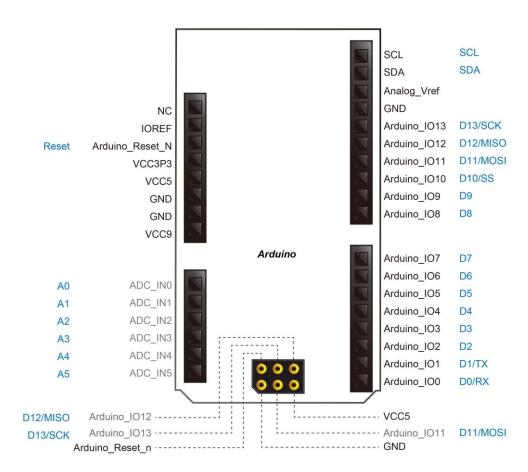


Figure 3-19 lists the all the pin-out signal name of the Arduino Uno connector. The blue font represents the Arduino pin-out definition.

The 16 GPIO pins are provided to the Arduino Header for digital I/O. **Table 3-11** lists the all the pin assignments of the Arduino Uno connector (digital), signal names relative to the Cyclone V SoC FPGA.

Schematic Signal Name	FPGA Pin No.	Description	Specific features For Arduino	I/O Standard
Arduino_IO0	PIN_AG13	Arduino IO0	RXD	3.3-V
Arduino_IO1	PIN_AF13	Arduino IO1	TXD	3.3-V
Arduino_IO2	PIN_AG10	Arduino IO2		3.3-V
Arduino_IO3	PIN_AG9	Arduino IO3		3.3-V
Arduino_IO4	PIN_U14	Arduino IO4		3.3-V
Arduino_IO5	PIN_U13	Arduino IO5		3.3-V
Arduino_IO6	PIN_AG8	Arduino IO6		3.3-V
Arduino_IO7	PIN_AH8	Arduino IO7		3.3-V
Arduino_IO8	PIN_AF17	Arduino IO8		3.3-V
Arduino_IO9	PIN_AE15	Arduino IO9		3.3-V
Arduino_IO10	PIN_AF15	Arduino IO10	SS	3.3-V
Arduino_IO11	PIN_AG16	Arduino IO11	MOSI	3.3-V
Arduino_IO12	PIN_AH11	Arduino IO12	MISO	3.3-V
Arduino_IO13	PIN_AH12	Arduino IO13	SCK	3.3-V
Arduino_IO14	PIN_AH9	Arduino IO14	SDA	3.3-V
Arduino_IO15	PIN_AG11	Arduino IO15	SCL	3.3-V
Arduino_Reset_n	PIN_AH7	Reset signal, low active.		3.3-V

 Table 3-11
 Pin Assignments for Arduino Uno Expansion Header connector

Besides 16 pins for digital GPIO, there are also 6 analog inputs on the Arduino Uno R3 Expansion Header (ADC_IN0 ~ ADC_IN5). Consequently, we use ADC LTC2308 from Linear Technology on the board for possible future analog-to-digital applications. We will introduce in the next section.

3.6.4 A/D Converter and Analog Input

The ADC-SoC has an analog-to-digital converter (LTC2308).

The LTC2308 is a low noise, 500ksps, 8-channel, 12-bit ADC with a SPI/MICROWIRE compatible serial interface. This ADC includes an internal reference and a fully differential sample-and-hold circuit to reduce common mode noise. The internal conversion clock allows the external serial output data clock (SCK) to operate at any frequency up to 40MHz.

It can be configured to accept eight input signals at inputs ADC_IN0 through ADC_IN7. These eight input signals are connected to a 2x5 header, as shown in **Figure 3-20**.

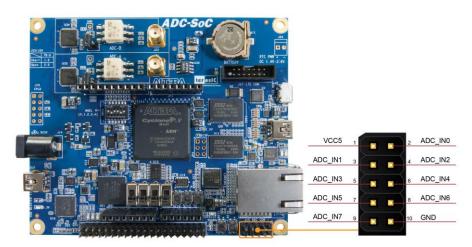


Figure 3-20 Signals of the 2x5 Header

These Analog inputs are shared with the Arduino's analog input pin (ADC_IN0 ~ ADC_IN5), **Figure 3-21** shows the connections between the FPGA, 2x5 header, Arduino Analog input, and the A/D converter.

More information about the A/D converter chip is available in its datasheet. It can be found on manufacturer's website or in the directory \Datasheet\ADC of ADC-SoC system CD.

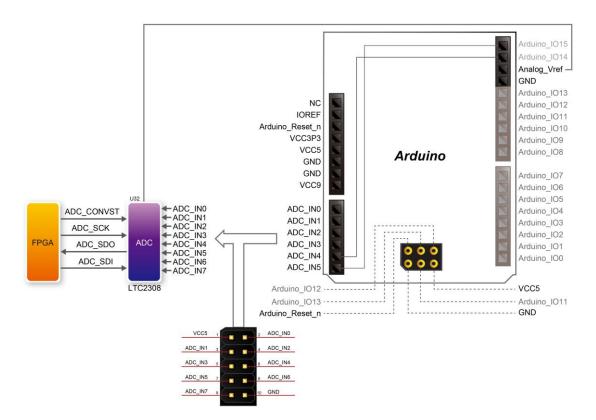


Figure 3-21 Connections between the FPGA, 2x5 header, and the A/D converter

Signal Name	FPGA Pin No.	Description	I/O Standard		
ADC_SCK	PIN_V10	Serial Data Clock	3.3V		
ADC_SDO	PIN_AD4	Serial Data Out (ADC to FPGA)	3.3V		
ADC_SDI	PIN_AC4	Serial Data Input (FPGA to ADC)	3.3V		
ADC_CONVST	PIN_U9	Conversion Start	3.3V		

Table 3-12 Pin Assignment of ADC

3.6.5 High-Speed A/D Converter

This board is populated with two A/D converters, which are ADI AD9254 devices, for high speed and high-performance applications. The device uses a multistage differential pipeline architecture with output error correction logic to provide 14-bit accuracy at 150 MSPS data rate and guarantees no missing codes over the full operating temperature range.

The inputs to these A/D converters are transformer-coupled to create a balanced input. The signal-to-noise ratio for the system is up to 72 dB for input signals from 1 MHz to the Nyquist frequency of the converter. The maximum differential input voltage to the converter is $2V_{pp}$. Usable voltage input to the SMA connector is approximately 512 mV when it's driven from a 50 Ohm source.

Figure 3-22 shows the connections between the FPGA, High-Speed ADC, and SMA connector. **Table 3-13** lists the pin assignment of ADC interface connected to the FPGA.

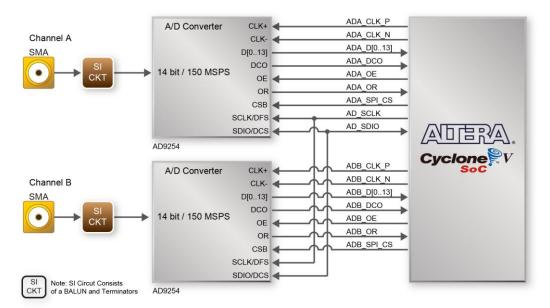


Figure 3-22 Connections between the FPGA and High-Speed ADC.

Table 3-13 Pin Assignment of High-Speed ADC AD9254 devices.

		sent of High-Speed ADC AD7254 de	
Signal Name	FPGA Pin No.	Description	I/O Standard
ADA_CLK_P	PIN_AG5	Clock Input (+)	3.3V
ADA_CLK_N	PIN_AH4	Clock Input (-)	3.3V
ADA_D0	PIN_AC22	Data Output Bit 0	3.3V
ADA_D1	PIN_AC23	Data Output Bit 1	3.3V
ADA_D2	PIN_AD17	Data Output Bit 2	3.3V
ADA_D3	PIN_AH3	Data Output Bit 3	3.3V
ADA_D4	PIN_AF7	Data Output Bit 4	3.3V
ADA_D5	PIN_AH13	Data Output Bit 5	3.3V
ADA_D6	PIN_AF4	Data Output Bit 6	3.3V
ADA_D7	PIN_AH14	Data Output Bit 7	3.3V
ADA_D8	PIN_AE9	Data Output Bit 8	3.3V
ADA_D9	PIN_AE7	Data Output Bit 9	3.3V
ADA_D10	PIN_AE8	Data Output Bit 10	3.3V
ADA_D11	PIN_AE4	Data Output Bit 11	3.3V
ADA_D12	PIN_AE23	Data Output Bit 12	3.3V
ADA_D13	PIN_AE24	Data Output Bit 13	3.3V
ADA_DCO	PIN_V12	Data Clock Output	3.3V
ADA OE	PIN_Y17	Output Enable (Active Low)	3.3V
ADA_OR	PIN_AG14	Out-of-Range Indicator	3.3V
ADA_SPI_CS	PIN AA19	Serial Port Interface Chip Select	3.3V
		(Active Low)	
ADA_PWDN	PIN_Y18	Power-Down (Not Connection)	3.3V
ADB_CLK_P	PIN_E8	Clock Input (+)	3.3V
ADB_CLK_N	PIN_D8	Clock Input (-)	3.3V
ADB_D0	PIN_AH2	Data Output Bit 0	3.3V
ADB_D1	PIN_AH5	Data Output Bit 1	3.3V
ADB_D2	PIN_AF5	Data Output Bit 2	3.3V
ADB_D3	PIN_AG6	Data Output Bit 3	3.3V
ADB_D4	PIN_AF6	Data Output Bit 4	3.3V
ADB_D5	PIN_AH6	Data Output Bit 5	3.3V
ADB_D6	PIN_AF8	Data Output Bit 6	3.3V
ADB_D7	PIN_AF9	Data Output Bit 7	3.3V
ADB_D8	PIN_AF10	Data Output Bit 8	3.3V
ADB_D9	PIN_AF11	Data Output Bit 9	3.3V
ADB_D10	PIN AD10	Data Output Bit 10	3.3V
ADB_D11	PIN AE11	Data Output Bit 11	3.3V
ADB_D12	PIN_AD11	Data Output Bit 12	3.3V
ADB_D13	PIN AE12	Data Output Bit 13	3.3V
ADB_DCO	PIN_D12	Data Clock Output	3.3V
ADB_OE	PIN_T12	Output Enable (Active Low)	3.3V
ADB_OR	PIN_AD12	Out-of-Range Indicator	3.3V
ADB_SPI_CS	PIN_AD19	Serial Port Interface Chip Select	3.3V
		(Active Low)	
	1		

ADB_PWDN	PIN_T13	Power-Down (Not Connection)	3.3V
AD_SCLK	PIN_T11	Serial Port Interface (SPI) Clock	3.3V
		(Serial Port Mode)	
AD_SDIO	PIN_U11	Serial Port Interface (SPI) Data	3.3V
		Input/output (Serial Port Mode)	

J21 (Channel A) and J23 (Channel B) are standard through-hole SMA connectors used to interface the AD9254 A/D converter input with SMA cables, as shown in **Figure 3-23**. Users can connect the input signal through the SMA connector via a 50 ohm coaxial cable.

J25 (Channel A) and J26 (Channel B) are 2-pin jumpers for the selection of input range, as shown in **Figure 3-23**. The input range is adjustable by varying the reference voltage applied to the AD9254, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly.

When the jumper is open, the SENSE pin is connected to ground through a 1K resistor and the reference amplifier switch is connected to the internal resistor divider. This would set the VREF to 1.0V and Differential Span to $2.0V_{pp}$.

When the jumper is shorted, the SENSE pin is connected to the VREF and this would switch the reference amplifier input to the SENSE pin. The completed loop will provide a 0.5V reference output and set the Differential Span to $1.0V_{pp}$.

 Table 3-14 lists the details of each combination for the jumper settings.

The datasheet of ADI AD9254 contains more information about the A/D converter chip. It is available from the manufacturer's website or in the directory \Datasheet\ADC of ADC-SoC system CD.

Part reference	Jumper Status	Description	Input range
J25	Open	Set VREF = 1.0 V Differential Span to 2.0 V _{pp}	2.0 V _{pp}
	Short	Set VREF = 0.5 V Differential Span to 1.0 V _{pp}	1.0 V _{pp}
J26	Open	Set VREF = 1.0 V Differential Span to 2.0 V _{pp}	2.0 V _{pp}
	Short	Set VREF = 0.5 V Differential Span to 1.0 V _{pp}	1.0 V _{pp}

Table 3-14 Jumper settings for the selection of input range

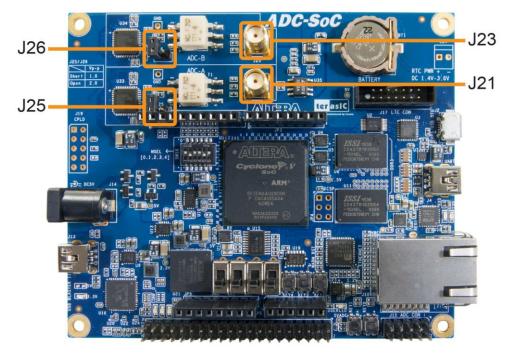


Figure 3-23 SMA connectors and jumper locations on the board.

3.7 Peripherals Connected to Hard Processor System (HPS)

This section introduces the interfaces connected to the HPS section of the Cyclone V SoC FPGA. Users can access these interfaces via the HPS processor.

3.7.1 User Push-buttons and LEDs

Similar to the FPGA, the HPS also has its set of switches, buttons, LEDs, and other interfaces connected exclusively. Users can control these interfaces to monitor the status of HPS.

 Table 3-15 gives the pin assignment of all the LEDs, switches, and push-buttons.

Table 5-15 I in Assignment of LEDS, Switches and I usit-buttons				
Signal Name	FPGA Pin No.	HPS GPIO	Register/bit	Function
HPS_KEY	PIN_J18	GPIO54	GPIO1[25]	I/O

Table 3-15 Pin Assignment of LEDs, Switches and Push-buttons

HPS_LED P		GPIO53	GPIO1[24]	I/O
-----------	--	--------	-----------	-----

3.7.2 Gigabit Ethernet

The board supports Gigabit Ethernet transfer by an external Micrel KSZ9031RN PHY chip and HPS Ethernet MAC function. The KSZ9031RN chip with integrated 10/100/1000 Mbps Gigabit Ethernet transceiver also supports RGMII MAC interface. **Figure 3-24** shows the connections between the HPS, Gigabit Ethernet PHY, and RJ-45 connector.

The pin assignment associated to Gigabit Ethernet interface is listed in **Table 3-16**. More information about the KSZ9031RN PHY chip and its datasheet, as well as the application notes, which are available on the manufacturer's website.

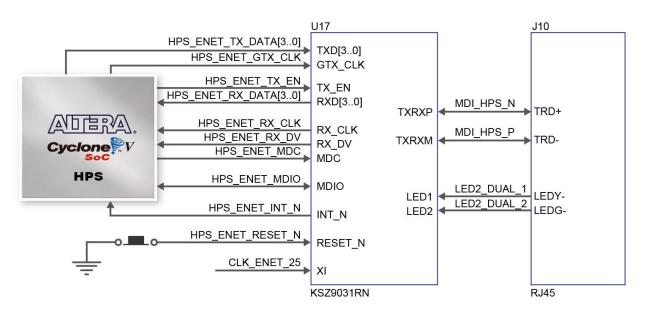


Figure 3-24 Connections between the HPS and Gigabit Ethernet

Signal Name	FPGA Pin No.	Description	I/O Standard	
HPS_ENET_TX_EN	PIN_A12	GMII and MII transmit enable	3.3V	
HPS_ENET_TX_DATA[0]	PIN_A16	MII transmit data[0]	3.3V	
HPS_ENET_TX_DATA[1]	PIN_J14	MII transmit data[1]	3.3V	
HPS_ENET_TX_DATA[2]	PIN_A15	MII transmit data[2]	3.3V	
HPS_ENET_TX_DATA[3]	PIN_D17	MII transmit data[3]	3.3V	
HPS_ENET_RX_DV	PIN_J13	GMII and MII receive data valid	3.3V	

Table 3-16 Pin Assignment of Gigabit Ethernet PHY

HPS_ENET_RX_DATA[0]	PIN_A14	GMII and MII receive data[0]	3.3V
HPS_ENET_RX_DATA[1]	PIN_A11	GMII and MII receive data[1]	3.3V
HPS_ENET_RX_DATA[2]	PIN_C15	GMII and MII receive data[2]	3.3V
HPS_ENET_RX_DATA[3]	PIN_A9	GMII and MII receive data[3]	3.3V
HPS_ENET_RX_CLK	PIN_J12	GMII and MII receive clock	3.3V
HPS_ENET_RESET_N	PIN_B14	Hardware Reset Signal	3.3V
HPS_ENET_MDIO	PIN_E16	Management Data	3.3V
HPS_ENET_MDC	PIN_A13	Management Data Clock Reference	3.3V
HPS_ENET_INT_N	PIN_B14	Interrupt Open Drain Output	3.3V
HPS_ENET_GTX_CLK	PIN_J15	GMII Transmit Clock	3.3V

There are two LEDs, green LED (LEDG) and yellow LED (LEDY), which represent the status of Ethernet PHY (KSZ9031RN). The LED control signals are connected to the LEDs on the RJ45 connector. The state and definition of LEDG and LEDY are listed in **Table 3-17**. For instance, the connection from board to Gigabit Ethernet is established once the LEDG lights on.

LED (State)		LED (Defini	tion)	Link /Activity
LEDG	LEDY	LEDG	LEDY	
Н	Н	OFF	OFF	Link off
L	Н	ON	OFF	1000 Link / No Activity
Toggle	Н	Blinking	OFF	1000 Link / Activity (RX, TX)
н	L	OFF	ON	100 Link / No Activity
н	Toggle	OFF	Blinking	100 Link / Activity (RX, TX)
L	L	ON	ON	10 Link/ No Activity
Toggle	Toggle	Blinking	Blinking	10 Link / Activity (RX, TX)

Table 3-17 State and Definition of LED Mode Pins

3.7.3 UART

The board has one UART interface connected for communication with the HPS. This interface doesn't support HW flow control signals. The physical interface is implemented by UART-USB onboard bridge from a FT232R chip to the host with an USB Mini-B connector. More information about the chip is available on the manufacturer's website, or in the directory \Datasheets\UART_TO_USB of ADC-SoC system CD. **Figure 3-25** shows the connections between the HPS, FT232R chip, and the USB Mini-B connector. **Table 3-18** lists the pin assignment of UART interface connected to the HPS.

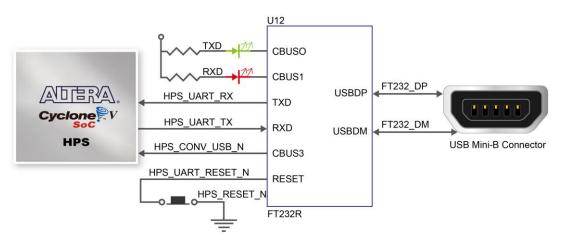


Figure 3-25 Connections between the HPS and FT232R Chip

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_UART_RX	PIN_A22	HPS UART Receiver	3.3V
HPS_UART_TX	PIN_B21	HPS UART Transmitter	3.3V
HPS_CONV_USB_N	PIN_C6	Reserve	3.3V

Table 3-18 Pin Assignment of UART Interface

3.7.4 DDR3 Memory

The DDR3 devices connected to the HPS are the exact same model as the ones connected to the FPGA. The capacity is 1GB and the data bandwidth is in 32-bit, comprised of two x16 devices with a single address/command bus. The signals are connected to the dedicated Hard Memory Controller for HPS I/O banks and the target speed is 400 MHz. **Table 3-19** lists the pin assignment of DDR3 and its description with I/O standard.

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_DDR3_A[0]	PIN_C28	HPS DDR3 Address[0]	SSTL-15 Class I
HPS_DDR3_A[1]	PIN_B28	HPS DDR3 Address[1]	SSTL-15 Class I
HPS_DDR3_A[2]	PIN_E26	HPS DDR3 Address[2]	SSTL-15 Class I
HPS_DDR3_A[3]	PIN_D26	HPS DDR3 Address[3]	SSTL-15 Class I
HPS_DDR3_A[4]	PIN_J21	HPS DDR3 Address[4]	SSTL-15 Class I
HPS_DDR3_A[5]	PIN_J20	HPS DDR3 Address[5]	SSTL-15 Class I

Table 3-19 Pin Assignment of DDR3 Memory

HPS_DDR3_A[6]	PIN_C26	HPS DDR3 Address[6]	SSTL-15 Class I
HPS_DDR3_A[7]	PIN_B26	HPS DDR3 Address[7]	SSTL-15 Class I
HPS_DDR3_A[8]	PIN_F26	HPS DDR3 Address[8]	SSTL-15 Class I
HPS_DDR3_A[9]	PIN_F25	HPS DDR3 Address[9]	SSTL-15 Class I
HPS_DDR3_A[10]	PIN_A24	HPS DDR3 Address[10]	SSTL-15 Class I
HPS_DDR3_A[11]	PIN_B24	HPS DDR3 Address[11]	SSTL-15 Class I
HPS_DDR3_A[12]	PIN_D24	HPS DDR3 Address[12]	SSTL-15 Class I
HPS_DDR3_A[13]	PIN_C24	HPS DDR3 Address[13]	SSTL-15 Class I
HPS_DDR3_A[14]	PIN_G23	HPS DDR3 Address[14]	SSTL-15 Class I
HPS_DDR3_BA[0]	PIN_A27	HPS DDR3 Bank Address[0]	SSTL-15 Class I
HPS_DDR3_BA[1]	PIN_H25	HPS DDR3 Bank Address[1]	SSTL-15 Class I
HPS_DDR3_BA[2]	PIN_G25	HPS DDR3 Bank Address[2]	SSTL-15 Class I
HPS_DDR3_CAS_n	PIN_A26	DDR3 Column Address Strobe	SSTL-15 Class I
HPS_DDR3_CKE	PIN_L28	HPS DDR3 Clock Enable	SSTL-15 Class I
HPS_DDR3_CK_n	PIN_N20	HPS DDR3 Clock	Differential 1.5-V SSTL Class I
HPS_DDR3_CK_p	PIN_N21	HPS DDR3 Clock p	Differential 1.5-V SSTL Class I
HPS_DDR3_CS_n	PIN_L21	HPS DDR3 Chip Select	SSTL-15 Class I
HPS_DDR3_DM[0]	PIN_G28	HPS DDR3 Data Mask[0]	SSTL-15 Class I
HPS_DDR3_DM[1]	PIN_P28	HPS DDR3 Data Mask[1]	SSTL-15 Class I
HPS_DDR3_DM[2]	PIN_W28	HPS DDR3 Data Mask[2]	SSTL-15 Class I
HPS_DDR3_DM[3]	PIN_AB28	HPS DDR3 Data Mask[3]	SSTL-15 Class I
HPS_DDR3_DQ[0]	PIN_J25	HPS DDR3 Data[0]	SSTL-15 Class I
HPS_DDR3_DQ[1]	PIN_J24	HPS DDR3 Data[1]	SSTL-15 Class I
HPS_DDR3_DQ[2]	PIN_E28	HPS DDR3 Data[2]	SSTL-15 Class I
HPS_DDR3_DQ[3]	PIN_D27	HPS DDR3 Data[3]	SSTL-15 Class I
HPS_DDR3_DQ[4]	PIN_J26	HPS DDR3 Data[4]	SSTL-15 Class I
HPS_DDR3_DQ[5]	PIN_K26	HPS DDR3 Data[5]	SSTL-15 Class I
HPS_DDR3_DQ[6]	PIN_G27	HPS DDR3 Data[6]	SSTL-15 Class I
HPS_DDR3_DQ[7]	PIN_F28	HPS DDR3 Data[7]	SSTL-15 Class I
HPS_DDR3_DQ[8]	PIN_K25	HPS DDR3 Data[8]	SSTL-15 Class I
HPS_DDR3_DQ[9]	PIN_L25	HPS DDR3 Data[9]	SSTL-15 Class I
HPS_DDR3_DQ[10]	PIN_J27	HPS DDR3 Data[10]	SSTL-15 Class I
HPS_DDR3_DQ[11]	PIN_J28	HPS DDR3 Data[11]	SSTL-15 Class I
HPS_DDR3_DQ[12]	PIN_M27	HPS DDR3 Data[12]	SSTL-15 Class I
HPS_DDR3_DQ[13]	PIN_M26	HPS DDR3 Data[13]	SSTL-15 Class I
HPS_DDR3_DQ[14]	PIN_M28	HPS DDR3 Data[14]	SSTL-15 Class I
HPS_DDR3_DQ[15]	PIN_N28	HPS DDR3 Data[15]	SSTL-15 Class I
HPS_DDR3_DQ[16]	PIN_N24	HPS DDR3 Data[16]	SSTL-15 Class I
HPS_DDR3_DQ[17]	PIN_N25	HPS DDR3 Data[17]	SSTL-15 Class I
HPS_DDR3_DQ[18]	PIN_T28	HPS DDR3 Data[18]	SSTL-15 Class I
HPS_DDR3_DQ[19]	PIN_U28	HPS DDR3 Data[19]	SSTL-15 Class I
HPS_DDR3_DQ[20]	PIN_N26	HPS DDR3 Data[20]	SSTL-15 Class I
HPS_DDR3_DQ[21]	PIN_N27	HPS DDR3 Data[21]	SSTL-15 Class I
HPS_DDR3_DQ[22]	PIN_R27	HPS DDR3 Data[22]	SSTL-15 Class I
HPS_DDR3_DQ[23]	PIN_V27	HPS DDR3 Data[23]	SSTL-15 Class I

HPS_DDR3_DQ[24]	PIN_R26	HPS DDR3 Data[24]	SSTL-15 Class I
HPS_DDR3_DQ[25]	PIN_R25	HPS DDR3 Data[25]	SSTL-15 Class I
HPS_DDR3_DQ[26]	PIN_AA28	HPS DDR3 Data[26]	SSTL-15 Class I
HPS_DDR3_DQ[27]	PIN_W26	HPS DDR3 Data[27]	SSTL-15 Class I
HPS_DDR3_DQ[28]	PIN_R24	HPS DDR3 Data[28]	SSTL-15 Class I
HPS_DDR3_DQ[29]	PIN_T24	HPS DDR3 Data[29]	SSTL-15 Class I
HPS_DDR3_DQ[30]	PIN_Y27	HPS DDR3 Data[30]	SSTL-15 Class I
HPS_DDR3_DQ[31]	PIN_AA27	HPS DDR3 Data[31]	SSTL-15 Class I
HPS_DDR3_DQS_n[0]	PIN_R16	HPS DDR3 Data Strobe n[0]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_n[1]	PIN_R18	HPS DDR3 Data Strobe n[1]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_n[2]	PIN_T18	HPS DDR3 Data Strobe n[2]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_n[3]	PIN_T20	HPS DDR3 Data Strobe n[3]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_p[0]	PIN_R17	HPS DDR3 Data Strobe p[0]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_p[1]	PIN_R19	HPS DDR3 Data Strobe p[1]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_p[2]	PIN_T19	HPS DDR3 Data Strobe p[2]	Differential 1.5-V SSTL Class I
HPS_DDR3_DQS_p[3]	PIN_U19	HPS DDR3 Data Strobe p[3]	Differential 1.5-V SSTL Class I
HPS_DDR3_ODT	PIN_D28	HPS DDR3 On-die Termination	SSTL-15 Class I
HPS_DDR3_RAS_n	PIN_A25	DDR3 Row Address Strobe	SSTL-15 Class I
HPS_DDR3_RESET_n	PIN_V28	HPS DDR3 Reset	SSTL-15 Class I
HPS_DDR3_WE_n	PIN_E25	HPS DDR3 Write Enable	SSTL-15 Class I
HPS_DDR3_RZQ	PIN_D25	External reference ball for	1.5 V
		output drive calibration	

3.7.5 Micro SD Card Socket

The board supports Micro SD card interface with x4 data lines. It serves not only an external storage for the HPS, but also an alternative boot option for ADC-SoC board. **Figure 3-26** shows signals connected between the HPS and Micro SD card socket.

 Table 3-20 lists the pin assignment of Micro SD card socket to the HPS.

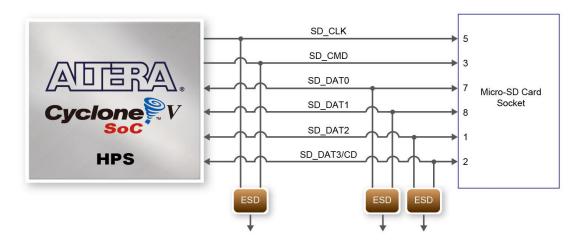


Figure 3-26 Connections between the FPGA and SD card socket

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_SD_CLK	PIN_B8	HPS SD Clock	3.3V
HPS_SD_CMD	PIN_D14	HPS SD Command Line	3.3V
HPS_SD_DATA[0]	PIN_C13	HPS SD Data[0]	3.3V
HPS_SD_DATA[1]	PIN_B6	HPS SD Data[1]	3.3V
HPS_SD_DATA[2]	PIN_B11	HPS SD Data[2]	3.3V
HPS_SD_DATA[3]	PIN_B9	HPS SD Data[3]	3.3V

Table 3-20 Pin Assignment of Micro SD Card Socket

3.7.6 USB 2.0 OTG PHY

The board provides USB interfaces using the SMSC USB3300 controller. A SMSC USB3300 device in a 32-pin QFN package device is used to interface to a single Type AB Micro-USB connector. This device supports UTMI+ Low Pin Interface (ULPI) to communicate to USB 2.0 controller in HPS. As defined by OTG mode, the PHY can operate in Host or Device modes. When operating in Host mode, the interface will supply the power to the device through the Micro-USB interface. **Figure 3-27** shows the connections of USB PTG PHY to the HPS. **Table 3-21** lists the pin assignment of USB OTG PHY to the HPS.

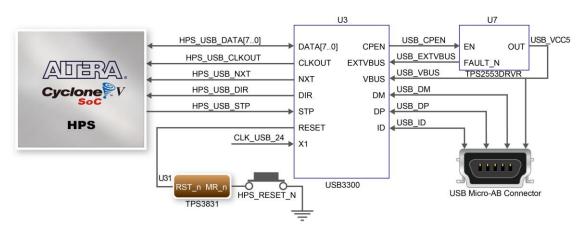


Figure 3-27 Connections between the HPS and USB OTG PHY

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_USB_CLKOUT	PIN_G4	60MHz Reference Clock Output	3.3V
HPS_USB_DATA[0]	PIN_C10	HPS USB_DATA[0]	3.3V
HPS_USB_DATA[1]	PIN_F5	HPS USB_DATA[1]	3.3V
HPS_USB_DATA[2]	PIN_C9	HPS USB_DATA[2]	3.3V
HPS_USB_DATA[3]	PIN_C4	HPS USB_DATA[3]	3.3V
HPS_USB_DATA[4]	PIN_C8	HPS USB_DATA[4]	3.3V
HPS_USB_DATA[5]	PIN_D4	HPS USB_DATA[5]	3.3V
HPS_USB_DATA[6]	PIN_C7	HPS USB_DATA[6]	3.3V
HPS_USB_DATA[7]	PIN_F4	HPS USB_DATA[7]	3.3V
HPS_USB_DIR	PIN_E5	Direction of the Data Bus	3.3V
HPS_USB_NXT	PIN_D5	Throttle the Data	3.3V
HPS_USB_RESET	PIN_H12	HPS USB PHY Reset	3.3V
HPS_USB_STP	PIN_C5	Stop Data Stream on the Bus	3.3V

3.7.7 G-sensor

The board comes with a digital accelerometer sensor module (ADXL345), commonly known as G-sensor. This G-sensor is a small, thin, ultralow power assumption 3-axis accelerometer with high-resolution measurement. Digitalized output is formatted as 16-bit in two's complement and can be accessed through I2C interface. The I2C address of G-sensor is 0xA6/0xA7. More information about this chip can be found in its datasheet, which is available on manufacturer's website or in the directory \Datasheet\G-Sensor folder of ADC-SoC system CD. **Figure 3-28** shows the connections between the HPS and G-sensor. **Table 3-22** lists the pin assignment of G-senor to the HPS.

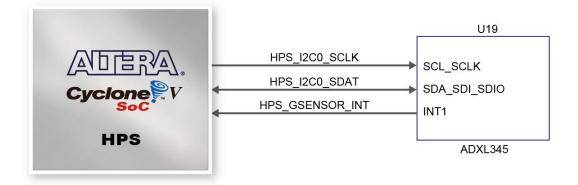
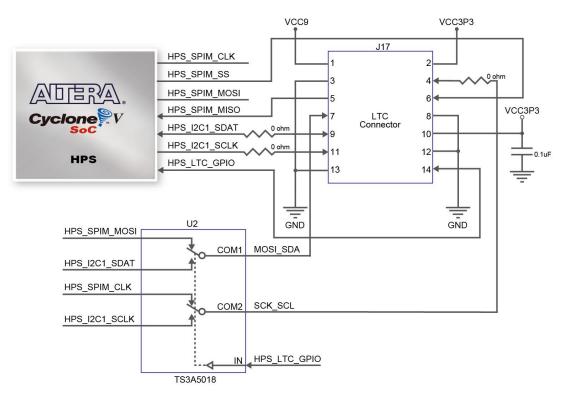


Figure 3-28 Connections between HPS and G-Sensor device.

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_GSENSOR_INT	PIN_A17	HPS GSENSOR Interrupt Output	3.3V
HPS_I2C0_SCLK	PIN_C18	HPS I2C0 Clock	3.3V
HPS_I2C0_SDAT	PIN_A19	HPS I2C0 Data	3.3V


Table 3-22 Pin Assignment of G-senor

3.7.8 LTC Connector

The board has a 14-pin header, which is originally used to communicate with various daughter cards from Linear Technology. It is connected to the SPI Master and I2C ports of HPS. The communication with these two protocols is bi-directional. The 14-pin header can also be used for GPIO, SPI, or I2C based communication with the HPS. Connections between the HPS and LTC connector are shown in **Figure 3-29**, and the pin assignment of LTC connector is listed in **Table 3-23**.

Signal Name	FPGA Pin No.	Description	I/O Standard	
HPS_LTC_GPIO	PIN_H13	HPS LTC GPIO	3.3V	
HPS_I2C1_SCLK	PIN_B21	HPS I2C1 Clock	3.3V	
HPS_I2C1_SDAT	PIN_A21	HPS I2C1 Data	3.3V	
HPS_SPIM_CLK	PIN_C19	SPI Clock	3.3V	
HPS_SPIM_MISO	PIN_B19	SPI Master Input/Slave Output	3.3V	
HPS_SPIM_MOSI	PIN_B16	SPI Master Output /Slave Input	3.3V	
HPS_SPIM_SS	PIN_C16	SPI Slave Select	3.3V	

|--|

3.7.9 Real-Time Clock

This board is populated with a real-time clock (RTC) DS1339C, which is a low-power clock / date device manufactured by MAXIM. The clock/date provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months less than 31 days, including correction for leap year. The clock operates in either 24-hour or 12-hour format with AM/PM indicator.

The I2C address of RTC is 0xD0/0xD1 and its I2C bus is shared with the G-sensor (ADXL345). The datasheet of DS1339C has more information about this chip. It is available on manufacturer's website or in the directory \Datasheet\RTC folder of ADC-SoC system CD. Figure 3-30 shows the connections between the HPS and G-sensor / RTC. Table 3-24 lists the pin assignment of RTC to the HPS.

The RTC device allows the system to maintain accurate time after the main power is turned off. This board also provides a battery holder for the unit to run after the power is turned off. Users need to install a CR1220 button cell battery in the battery holder. Users can also solder a connector (pitch 2.54) at the J24 position using an external power supply (input voltage range 1.4V to 3.6V) for the RTC to run. The battery holder and J24 connector are located at the top right of the board, as shown in **Figure 3-31**.

Table 3-24 Pin Assignment of RTC

Signal Name	FPGA Pin No.	Description	I/O Standard
HPS_I2C0_SCLK	PIN_C18	HPS I2C0 Clock	3.3V
HPS_I2C0_SDAT	PIN_A19	HPS I2C0 Data	3.3V

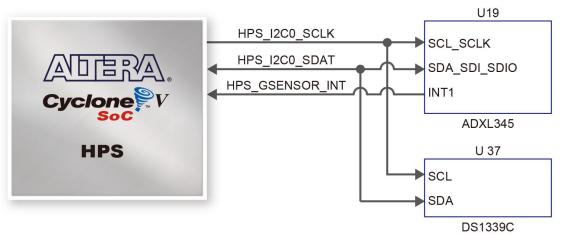


Figure 3-30 Connections between HPS and G-Sensor / RTC device.

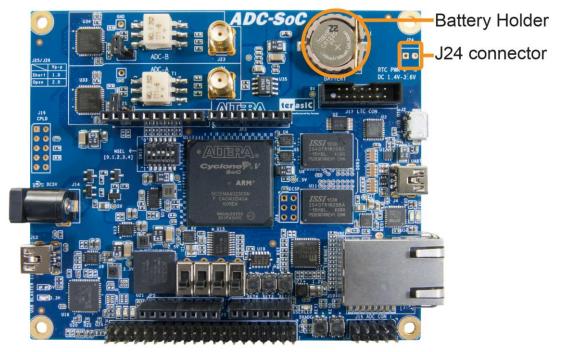


Figure 3-31 battery holder and J24 connector location.

Chapter 4

Examples For FPGA

This chapter provides examples of advanced designs implemented by RTL or Qsys on the ADC-SoC board. These reference designs cover the features of peripherals connected to the FPGA, such as A/D Converter. All the associated files can be found in the directory \Demonstrations\FPGA of ADC-SoC System CD.

Installation of Demonstrations

Install the demonstrations on your computer:

Copy the folder Demonstrations to a local directory of your choice. It is important to make sure the path to your local directory contains NO space. Otherwise it will lead to error in Nios II.

Note Quartus II v16.1 or later is required for all ADC-SoC demonstrations to support Cyclone V SoC device.

4.1 ADC-SoC Factory Configuration

The ADC-SoC board has a default configuration bit-stream pre-programmed, which demonstrates some of the basic features on board. The setup required for this demonstration and the location of its files are shown below.

Demonstration Setup, File Locations, and Instructions

- Project directory: ADC_SOC_Default
- Bitstream used: ADC_SOC_Default.sof or ADC_SOC_Default.jic
- Power on the ADC-SoC board with the USB cable connected to the USB-Blaster II port. If necessary (that is, if the default factory configuration is not currently stored in the EPCS device), download the bit stream to the board via JTAG interface.
- You should now be able to observe the LEDs are blinking.
- For the ease of execution, a demo_batch folder is provided in the project. It is able to not only

load the bit stream into the FPGA in command line, but also program or erase .jic file to the EPCS by executing the test.bat file shown in **Figure 4-1**

If users want to program a new design into the EPCS device, the easiest method is to copy the new .sof file into the demo_batch folder and execute the test.bat. Option "2" will convert the .sof to .jic and option"3" will program .jic file into the EPCS device.

C:\Windows\system32\cmd.exe	
******************************	A
lakesure MSEL[4:0] is set to "10010"	
Plesase choose your operation	
'1" for programming .sof to FPGA.	
"2" for converting .sof to .jic	
'3" for programming .jic to EPCS.	
'4" for erasing .jic from EPCS.	

Please enter your choise: [1,2,3,4]?	
	-
< III	•

Figure 4-1 Command line of the batch file to program the FPGA and EPCS device

4.2 LTC2308 ADC Reading

This demonstration illustrates steps to evaluate the performance of the 8-channel 12-bit A/D Converter LTC2308. The DC 5.0V on the 2x5 header is used to drive the analog signals by a trimmer potentiometer. The voltage can be adjusted within the range between 0 and 4.096V. The 12-bit voltage measurement is displayed on the NIOS II console. **Figure 4-2** shows the block diagram of this demonstration.

If the input voltage is $-2.0V \sim 2.0V$, a pre-scale circuit can be used to adjust it to $0 \sim 4V$.

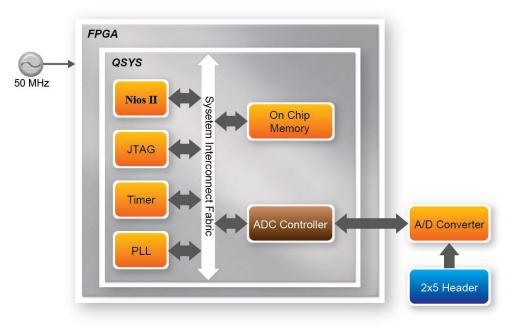


Figure 4-2 Block diagram of ADC reading

Figure 4-3 depicts the pin arrangement of the 2x5 header. This header is the input source of ADC convertor in this demonstration. Users can connect a trimmer to the specified ADC channel (ADC_IN0 ~ ADC_IN7) that provides voltage to the ADC convert. The FPGA will read the associated register in the convertor via serial interface and translates it to voltage value to be displayed on the Nios II console.

VCC5	1		2	ADC_IN0
ADC_IN1	3	-	4	ADC_IN2
ADC_IN3	5		6	ADC_IN4
ADC_IN5	7		8	ADC_IN6
ADC_IN7	9		10	GND

Figure 4-3 Pin distribution of the 2x5 Header for the ADC

System Requirements

The following items are required for this demonstration.

- ADC-SoC board x1
- Trimmer Potentiometer x1
- Wire Strip x3
- •

Demonstration File Locations

- Hardware project directory: ADC_SOC_ADC
- Bitstream used: ADCSOC_ADC.sof
- Software project directory: ADC_SOC_ADC \software
- Demo batch file : ADC_SOC_ADC \demo_batch \ test.bat

Demonstration Setup and Instructions

- Connect the trimmer to corresponding ADC channel on the 2x5 header, as shown in Figure 4-4, as well as the +5V and GND signals. The setup shown above is connected to ADC channel 0.
- Execute the demo batch file test.bat to load the bitstream and software execution file to the FPGA.
- The Nios II console will display the voltage of the specified channel voltage result information

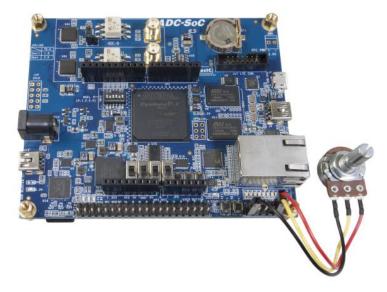


Figure 4-4 Hardware setup for the ADC reading demonstration

4.3 RTL Code for High Speed ADC AD9254

This demo takes the waveform of an external signal generator as the input of ADC-SoC via ADC-A and/or ADC-B through SMA_A and/or SMA_B connector, respectively. Users can observe the original incoming waveform and the rectified waveform by the FPGA simultaneously. **Figure 4-5** shows the block diagram of this demonstration.

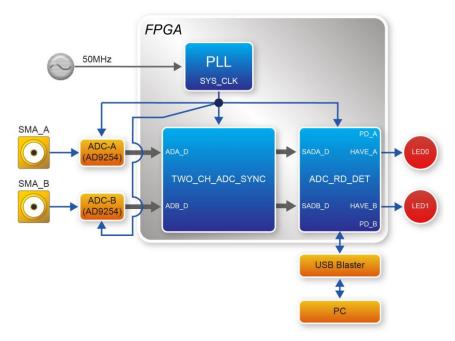


Figure 4-5 Block diagram of HIGH-SPEED-ADC

The function of each block is listed below:

PLL: This block takes the 50MHz clock on ADC-SoC and generates the SYS_CLK (150MHz) for the two ADC IC and FPGA.

ADC-A/B: These blocks represent the two AD9254 IC on ADC-SoC. Each one is 14-bit high-speed parallel Analog-to-Digital converter.

TWO_CH_ADC_SYNC: This block synchronizes the data of AD9254 with SYS_CLK.

ADC_RD_DET: This block has two functions performed by the two submodules. (1) the module WAVE_RECT takes the absolute value of incoming waveform. (2) the module SIGNAL_DET serves as the detector of incoming signal, which generates 1 or 0, depending on the absolute value of incoming signal is greater or less than the threshold, respectively.

USB_Blaster : This block establishes connection to the host PC and it can be used to observe the waveform of incoming signal in real time and the rectified waveform in SignalTap II in Quartus software.

System Requirements

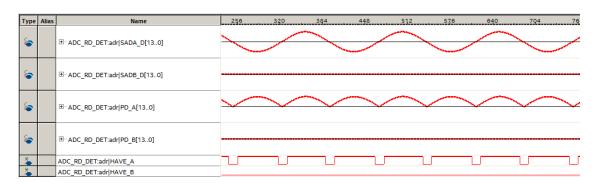
The following items are required for this demonstration.

- ADC-SoC Board x1
- Signal Generator x1
- SMA Cable x1
- ٠
- Demonstration File Locations
- Hardware project directory: ADC_SoC_HIGH_SPEED_ADC
- Bitstream used: ADC_SoC_HIGH_SPEED_ADC.sof
- Demo batch file : ADC_SoC_HIGH_SPEED_ADC\demo_batch $\$ test.bat
- SignalTapeII file : ADC_SoC_HIGH_SPEED_ADC\demo_batch\ViewWave.stp

Demonstration Setup and Instructions

• Connect the output of a signal generator to the SMA connector J21 (ADC-A) or J23 (ADC-B) of ADC-SoC, as shown in Figure 4-6.

Figure 4-6 Hardware setup for the HIGH-SPEED-ADC


• Connect the 5V adapter to the J14 of ADC-SoC. Connect the J13 of ADC-SoC to the host PC via mini USB cable.

ADC-SoC User Manual

- Execute the demo batch file test.bat to load the bitstream file to the FPGA.
- Open ViewWave.stp and click RUN to observe the waveform change of incoming signal in real time, as shown in **Figure 4-7**. The LED0 and LED1 correspond to ADC-A and ADC-B, respectively. They will lit when the incoming signal exceeds the threshold.

Signal comes in from Channel A

Signal comes in from Channel B

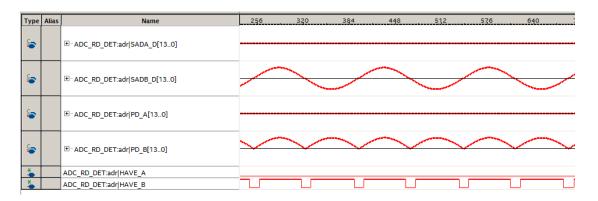


Figure 4-7 SignalTape II viewer for the HIGH-SPEED-ADC

(1) SADA_D and SADB_D correspond to the 14-bit incoming parallel data from the two AD9254 IC.

(2) PD_A and PD_B represent the absolute values of the two ADC.

(3) HAVE_A and HAVE_B are either 1 or 0, depending on the absolute value of ADC is greater or less than the threshold, respectively.

4.4 Nios II Code for High Speed ADC AD9254

This demo shows how to capture 50,000 digitized ADC values from AD9254 continuously for the Nios II processor to handle these digitized data. A TERASIC_AD9254 Qsys IP component is provided in this demo. This component captures digitized ADC values and save them to the on-chip memory in FPGA.

Block Diagram

Figure 4-8 shows the block diagram of this demonstration. There are two TRASIC_AD9254 IP components used to retrieve digitalized ADC value from the two AD9254 chips on the ADC-SoC board. The ADC data retrieved from TERAISC_AD9254 A and B are stored on on-chip memory A and B, respectively. The Nios II program also runs on the on-chip memory. Both TERASIC_AD9254 IP and Nios II program run at 100MHz, which is generated by the PLL IP based on the 50MHz oscillator on the ADC-SoC board. An external signal generator is used to generate testing waveforms. The waveform is the input of the AD9254 chip through the SMA connector on the ADC-SoC board.

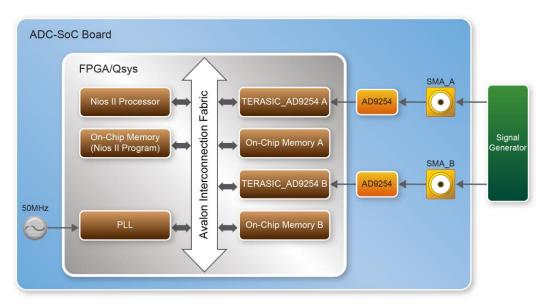


Figure 4-8 Block diagram of Nios II based high-speed ADC demo

The Nios II program retrieves the 50,000 digitized data by accessing the control and status register of TERASIC_AD9254 IP. After the data collection is complete, Nios II program will dump the first 10 and last 10 digitized data value from the 50,000 data.

The source code of TERASIC_AD9254 IP is located in the ip\TERASI_AD9254 folder. The IP will push the retrieved data into a FIFO first. The data will then be stored on the on-chip memory through Avalon memory-mapped master port. The FIFO is used to compensate the latency for writing data to on-chip memory. The behavior of TERASIC_AD9254 IP is controlled by the 32-bit control register. The Nios II program can access this register through Avalon memory-mapped slave port of the IP. There's also a 32-bit status register to report the function status.

The control register is defined as:

Bits	Description
19~0	Capture number
29~20	Reserved
30	Generate dummy data for test only
31	Capture Start

The status register is defined as:

Bits	Description
0	Data collection is complete
1	FIFO overflow
2	ADC value is out of range
31~3	Reserved.

System Requirements

The following items are required for this demonstration.

- ADC-SoC Board x1
- Signal Generator x1
- SMA Cable x1 (x2 for running the complete demo)
- •
- Locations of Demonstration Files
- Hardware project directory: ADC_SoC_HIGH_SPEED_ADC_Nios
- Nios II project directory: ADC_SoC_HIGH_SPEED_ADC_Nios\software
- Source code of TERASI_AD9254 IP: ADC_SoC_HIGH_SPEED_ADC_Nios\ip\TERASI_AD9254
- Bitstream used: ADC_SoC_HIGH_SPEED_ADC.sof
- Demo batch file : ADC_SoC_HIGH_SPEED_ADC\demo_batch\test.bat

Demonstration Setup and Instructions

- Connect the two outputs of a signal generator to the SMA connector J21 (ADC-A) and J23 (ADC-B) of ADC-SoC.
- Setup the signal generator to generate sine waveform above 100 KHz.
- Connect an 5V adapter to the J14 of ADC-SoC. Connect the J13 of ADC-SoC to the host PC via mini USB cable.
- Execute the demo batch file test.bat to configure FPGA and launch Nios II program.
- Nios II terminal will dump the retrieved ADC data automatically for both ADC chips, as shown in **Figure 4-9**.

(
Altera Nios II EDS 15.1 [gcc4]	
ADC Dama	A
ADC Demo ADC-A:	
Start Capture	
status=1h	
ADC[0] = -264(fef8h) ADC[1] = -264(fef8h)	
ADC[2] = -256(ff00h)	
ADC[3] = -256(ff00h)	
ADC[4] = -252(ff04h) ADC[5] = -256(ff00h)	
ADC[6] = -256(ff00h)	
ADC[7] = -272(fef0h)	
ADC[8] = -260(fefch) ADC[9] = -260(fefch)	
ADC[49991] = -260(fefch)	
ADC[49992] = -256(ff00h)	=
ADC[49993] = -256(ff00h) ADC[49994] = -260(fefch)	
ADC[49995] = -268(fef4h)	
ADC[49996] = -252(ff04h)	
ADC[49997] = -268(fef4h) ADC[49998] = -256(ff00h)	
ADC[49999] = -272(fef0h)	
ADC-B:	
Start Capture status=1h	
ADC[0] = 28756(7054h)	
ADC[1] = 28652(6fech)	
ADC[2] = 28612(6fc4h) ADC[3] = 28524(6f6ch)	
ADC[3] = 28524(6f6ch) ADC[4] = 28468(6f34h)	
ADC[5] = 28392(6ee8h)	
ADC[6] = 28312(6e98h) ADC[7] = 28220(6e3ch)	
ADC[8] = 28096(6dc0h)	
ADC[9] = 28060(6d9ch)	
ADC[49991] = -28604(9044h) ADC[49992] = -28588(9054h)	
ADC[49993] = -28512(90a0h)	
ADC[49994] = -28436(90ech)	
ADC [49995] = -28404(910ch) ADC [49996] = -28376(9128h)	
ADC[49997] = -28292(917ch)	
ADC[49998] = -28204(91d4h)	
ADC[49999] = -28192(91e0h)	
	· ·

Figure 4-9 Screenshot of running Nios II based high-speed ADC demo

Chapter 5

Examples for HPS SoC

This chapter provides several C-code examples based on the Terasic Linux BPS. These examples demonstrate major features of peripherals connected to HPS interface on ADC-SoC board such as users LED/KEY, I2C interfaced G-sensor. All the associated files can be found in the directory Demonstrations/*SOC* of the ADC-SoC System CD.

Installation of the Demonstrations

To install the demonstrations on the host computer:

Copy the directory *Demonstrations* into a local directory of your choice. **SoC EDS v16.1 is required for users to compile the c-code project.**

5.1 Users LED and KEY

This demonstration shows how to control the users LED and KEY by accessing the register of GPIO controller through the memory-mapped device driver. The memory-mapped device driver allows developer to access the system physical memory.

■ Function Block Diagram

Figure 5-1 shows the function block diagram of this demonstration. The users LED and KEY are connected to the **GPIO1** controller in HPS. The behavior of GPIO controller is controlled by the register in GPIO controller. The registers can be accessed by application software through the memory-mapped device driver, which is built into SoC Linux.

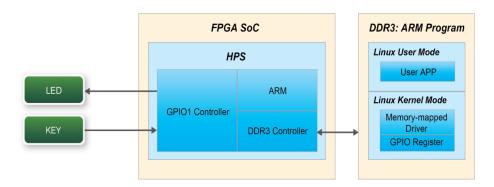


Figure 5-1 Block diagram of GPIO demonstration

■ Block Diagram of GPIO Interface

The HPS provides three general-purpose I/O (GPIO) interface modules. **Figure 5-2** shows the block diagram of GPIO Interface. GPIO[28..0] is controlled by the GPIO0 controller and GPIO[57..29] is controlled by the GPIO1 controller. GPIO[70..58] and input-only GPI[13..0] are controlled by the GPIO2 controller.

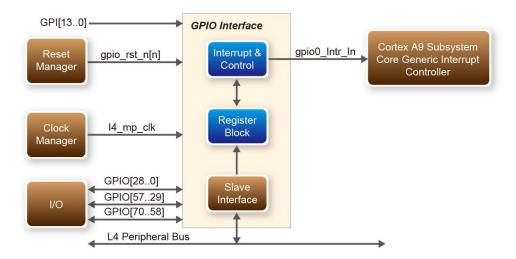


Figure 5-2 Block diagram of GPIO Interface

GPIO Register Block

The behavior of I/O pin is controlled by the registers in the register block. There are three 32-bit

registers in the GPIO controller used in this demonstration. The registers are:

- **gpio_swporta_dr**: write output data to output I/O pin
- **gpio_swporta_ddr**: configure the direction of I/O pin
- **gpio_ext_porta**: read input data of I/O input pin

The **gpio_swporta_ddr** configures the LED pin as output pin and drives it high or low by writing data to the **gpio_swporta_dr** register. The first bit (least significant bit) of **gpio_swporta_dr** controls the direction of first IO pin in the associated GPIO controller and the second bit controls the direction of second IO pin in the associated GPIO controller and so on. The value "1" in the register bit indicates the I/O direction is output, while the value "0" in the register bit indicates the I/O direction is output.

The first bit of **gpio_swporta_dr** register controls the output value of first I/O pin in the associated GPIO controller, the second bit controls the output value of second I/O pin in the associated GPIO controller and so on. The value "1" in the register bit indicates the output value is high, and the value "0" indicates the output value is low.

The status of KEY can be queried by reading the value of **gpio_ext_porta** register. The first bit represents the input status of first IO pin in the associated GPIO controller, and the second bit represents the input status of second IO pin in the associated GPIO controller and so on. The value "1" in the register bit indicates the input state is high, and the value "0" indicates the input state is low.

GPIO Register Address Mapping

The registers of HPS peripherals are mapped to HPS base address space 0xFC000000 with 64KB size. The registers of the GPIO1 controller are mapped to the base address 0xFF708000 with 4KB size, and the registers of the GPIO2 controller are mapped to the base address 0xFF70A000 with 4KB size, as shown in **Figure 5-3**.

HPS

Identifier:	HPS
Access:	R/W
Description:	Address map for the HHP HPS system-domain

Title	Identifier	Offset
Reserved		0x0
QSPI Flash Controller Module Register	QSPIREGS	0xFF705000
		0xFF705100
Manager Module	Fre	and the second s
ACP ID Mapper Registers	ACPIDMAP	
GPIO Module	GPIO0	0xFF708000
Reserved		0xFF708080
GPIO Module	GPIO1	0xFF709000
Reserved		0xFF709080
GPIO Module	GPIO2	0xFF70A000
Reserved		0xFF70A080
L3	EGS	0xFF800000
		0xFF880000
AND Controller Module Data (AXI Slave)	NANDE	
EMAC Module	EMAC1	0xFF702000

■ Software API

Developers can use the following software API to access the register of GPIO controller.

- open: open memory mapped device driver
- mmap: map physical memory to user space
- alt_read_word: read a value from a specified register
- alt_write_word: write a value into a specified register
- munmap: clean up memory mapping
- close: close device driver.

Developers can also use the following MACRO to access the register

- alt_setbits_word: set specified bit value to one for a specified register
- alt_clrbits_word: set specified bit value to zero for a specified register

The program must include the following header files to use the above API to access the registers of GPIO controller.

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>

#include "hwlib.h"
#include "socal/socal.h"
#include "socal/hps.h"
#include "socal/alt_gpio.h"

LED and KEY Control

Figure 5-4 shows the HPS users LED and KEY pin assignment for the ADC-SoC board. The LED is connected to HPS_GPIO53 and the KEY is connected to HPS_GPIO54. They are controlled by the GPIO1 controller, which also controls HPS_GPIO29 ~ HPS_GPIO57.

	A20	HPS_LED
HPS_GPI053	J18	HPS_KEY
HPS_GPIO54		

Figure 5-4 Pin assignment of LED and KEY

Figure 5-5 shows the **gpio_swporta_ddr** register of the GPIO1 controller. The bit-0 controls the pin direction of HPS_GPIO29. The bit-24 controls the pin direction of HPS_GPIO53, which connects to HPS_LED, the bit-25 controls the pin direction of HPS_GPIO54, which connects to HPS_KEY , and so on. The pin direction of HPS_LED and HPS_KEY are controlled by the bit-24 and bit-25 in the **gpio_swporta_ddr** register of the GPIO1 controller, respectively. Similarly, the output status of HPS_LED is controlled by the bit-24 in the **gpio_swporta_dr** register of the GPIO1 controller. The status of KEY can be queried by reading the value of the bit-24 in the **gpio_ext_porta** register of the GPIO1 controller.

gpio_swp	oorta_ddr	register		GPIO1 Co	ontroller				
Bit-28	Bit-27	Bit-26	Bit-25	Bit-24		Bit-2	Bit-1	Bit-0	
			Î					Contr	ols the Direction of HPS GPI0
								Contr	ols the Direction of HPS_GPI
								Contr	ols the Direction of HPS_GPIC
							Contr	rols the Dire	ction of HPS_GPIO53(HPS_L
							Contr	ols the Dire	ction of HPS_GPIO54(HPS_K
								Contr	ols the Direction of HPS_GPI
								Contr	ols the Direction of HPS_GPI
	_							Contr	ols the Direction of HPS_GPI

Figure 5-5 gpio_swporta_ddr register in the GPIO1 controller

The following mask is defined in the demo code to control LED and KEY direction and LED's

output value.

#define USER_IO_DIR	(0x01000000)
#define BIT_LED	(0x01000000)
#define BUTTON_MASK	(0x02000000)

The following statement is used to configure the LED associated pins as output pins.

alt_setbits_word((virtual_base +
 ((uint32_t)(ALT_GPIO1_SWPORTA_DDR_ADDR) &
 (uint32_t)(HW_REGS_MASK))), USER_IO_DIR);

The following statement is used to turn on the LED.

alt_setbits_word((virtual_base +
 ((uint32_t)(ALT_GPIO1_SWPORTA_DR_ADDR) &
 (uint32_t)(HW_REGS_MASK))), BIT_LED);

The following statement is used to read the content of **gpio_ext_porta** register. The bit mask is used to check the status of the key.

alt_read_word((virtual_base +
 ((uint32_t)(ALT_GPIO1_EXT_PORTA_ADDR) &
 (uint32_t)(HW_REGS_MASK))));

Demonstration Source Code

- Build tool: SoC EDS V16.1
- Project directory: \Demonstration\SoC\hps_gpio
- Binary file: hps_gpio
- Build command: make ('make clean' to remove all temporal files)
- Execute command: ./hps_gpio

Demonstration Setup

- Connect a USB cable to the USB-to-UART connector (J4) on the ADC-SoC board and the host PC.
- Copy the executable file "**hps_gpio**" into the microSD card under the "/**home/root**" folder in Linux.
- Insert the booting micro SD card into the ADC-SoC board.
- Power on the ADC-SoC board.

- Launch PuTTY and establish connection to the UART port of Putty. Type "root" to login Linux.
- Type "./hps_gpio " in the UART terminal of PuTTY to start the program.

```
root@socfpga:~# ./hps_gpio
led test
the led flash 2 times
user key test
press key to control led
```

- HPS_LED will flash twice and users can control the user LED with push-button.
- Press HPS_KEY to light up HPS_LED.
- Press "CTRL + C" to terminate the application.

5.2 I2C Interfaced G-sensor

This demonstration shows how to control the G-sensor by accessing its registers through the built-in I2C kernel driver in Terasic Linux BSP.

■ Function Block Diagram

Figure 5-6 shows the function block diagram of this demonstration. The G-sensor on the ADC-SoC board is connected to the **I2C0** controller in HPS. The G-Sensor I2C 7-bit device address is 0x53. The system I2C bus driver is used to access the register files in the G-sensor. The G-sensor interrupt signal is connected to the PIO controller. This demonstration uses polling method to read the register data.

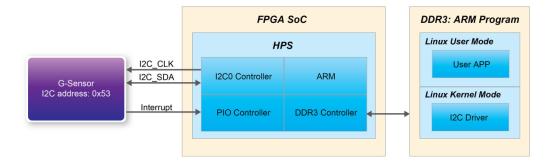


Figure 5-6 Block diagram of the G-sensor demonstration

■ I2C Driver

The procedures to read a register value from G-sensor register files by the existing I2C bus driver in the system are:

- 1. Open I2C bus driver "/dev/i2c-0": file = open("/dev/i2c-0", O_RDWR);
- 2. Specify G-sensor's I2C address 0x53: ioctl(file, I2C_SLAVE, 0x53);
- 3. Specify desired register index in g-sensor: write(file, &Addr8, sizeof(unsigned char));
- 4. Read one-byte register value: read(file, &Data8, sizeof(unsigned char));

The G-sensor I2C bus is connected to the I2C0 controller, as shown in the **Figure 5-7**. The driver name given is '/dev/i2c-0'.

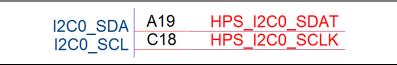


Figure 5-7 Connection of HPS I2C signals

The step 4 above can be changed to the following to write a value into a register.

write(file, &Data8, sizeof(unsigned char));

The step 4 above can also be changed to the following to read multiple byte values.

read(file, &szData8, sizeof(szData8)); // where szData is an array of bytes

The step 4 above can be changed to the following to write multiple byte values.

write(file, &szData8, sizeof(szData8)); // where szData is an array of bytes

■ G-sensor Control

The ADI ADXL345 provides I2C and SPI interfaces. I2C interface is selected by setting the CS pin to high on the ADC-SoC board.

The ADI ADXL345 G-sensor provides user-selectable resolution up to 13-bit \pm 16g. The resolution can be configured through the DATA_FORAMT(0x31) register. The data format in this demonstration is configured as:

- Full resolution mode
- \pm 16g range mode
- Left-justified mode

The X/Y/Z data value can be derived from the DATAX0(0x32), DATAX1(0x33), DATAY0(0x34),

DATAY1(0x35), DATAZ0(0x36), and DATAX1(0x37) registers. The DATAX0 represents the least significant byte and the DATAX1 represents the most significant byte. It is recommended to perform multiple-byte read of all registers to prevent change in data between sequential registers read. The following statement reads 6 bytes of X, Y, or Z value.

read(file, szData8, sizeof(szData8)); // where szData is an array of six-bytes

Demonstration Source Code

- Build tool: SoC EDS v16.1
- Project directory: \Demonstration\SoC\hps_gsensor
- Binary file: gsensor
- Build command: make ('make clean' to remove all temporal files)
- Execute command: ./gsensor [loop count]

Demonstration Setup

- Connect a USB cable to the USB-to-UART connector (J4) on the ADC-SoC board and the host PC.
- Copy the executable file "gsensor" into the microSD card under the "/home/root" folder in Linux.
- Insert the booting microSD card into the ADC-SoC board.
- Power on the ADC-SoC board.
- Launch PuTTY to establish connection to the UART port of ADC-SoC board. Type "**root**" to login Yocto Linux.
- Execute "./gsensor" in the UART terminal of PuTTY to start the G-sensor polling.
- The demo program will show the X, Y, and Z values in the PuTTY, as shown in Figure 5-8.

1000000001	page 1 or		1.11 9.00			
root@socfpga:~# ./gsensor						
===== gse	nsor test	t ====				
id=E5h						
[1]X=80 m	ig, Y=−40	mg,	Z=924	mg		
[2]X=76 m	ig, Y=−32	mg,	Z=972	mg		
[3]X=76 m	ig, Y=−36	mg,	Z=964	mg		
[4]X=84 m	ig, Y=−36	mg,	Z=976	mg		
[5]X=76 m	ig, Y=−40	mg,	Z=964	mg		
[6]X=76 m	ig, Y=-40	mg,	Z=972	mg		

Figure 5-8 Terminal output of the G-sensor demonstration

• Press "CTRL + C" to terminate the program.

Chapter 6

Examples for using both HPS SoC and FGPA

Although HPS and FPGA can operate independently, they are tightly coupled via a high-bandwidth system interconnect built from high-performance ARM AMBA® AXITM bus bridges. Both FPGA fabric and HPS can access to each other via these interconnect bridges. This chapter provides demonstrations on how to achieve superior performance and lower latency through these interconnect bridges when comparing to solutions containing a separate FPGA and discrete processor.

6.1 HPS Control FPGA LED

This demonstration shows how HPS controls the FPGA LED through Lightweight HPS-to-FPGA Bridge. The FPGA is configured by HPS through FPGA manager in HPS.

■ A brief view on FPGA manager

The FPGA manager in HPS configures the FPGA fabric from HPS. It also monitors the state of FPGA and drives or samples signals to or from the FPGA fabric. The command is provided to configure FPGA through the FPGA manager. The FPGA configuration data is stored in the file with .rbf extension. The MSEL[4:0] must be set to 00000 before executing the command on HPS.

■ Function Block Diagram

Figure 6-1 shows the block diagram of this demonstration. The HPS uses Lightweight HPS-to-FPGA AXI Bridge to communicate with FPGA. The hardware in FPGA part is built into Qsys. The data transferred through Lightweight HPS-to-FPGA Bridge is converted into Avalon-MM master interface. The PIO Controller works as Avalon-MM slave in the system. They control the associated pins to change the state of LED. This is similar to a system using Nios II processor to control LED.

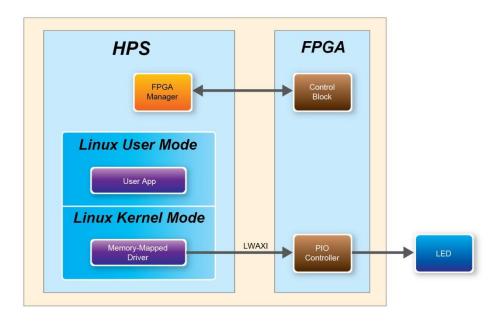
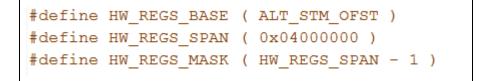



Figure 6-1 FPGA LED are controlled by HPS

■ LED Control Software Design

The Lightweight HPS-to-FPGA Bridge is a peripheral of HPS. The software running on Linux cannot access the physical address of the HPS peripheral. The physical address must be mapped to the user space before the peripheral can be accessed. Alternatively, a customized device driver module can be added to the kernel. The entire CSR span of HPS is mapped to access various registers within that span. The mapping function and the macro defined below can be reused if any other peripherals whose physical address is also in this span.

The start address of Lightweight HPS-to-FPGA Bridge after mapping can be retrieved by ALT_LWFPGASLVS_OFST, which is defined in altera_hps hardware library. The slave IP connected to the bridge can then be accessed through the base address and the register offset in these IPs. For instance, the base address of the PIO slave IP in this system is 0x0001_0040, the direction control register offset is 0x01, and the data register offset is 0x00. The following statement is used to retrieve the base address of PIO slave IP.

h2p_lw_led_addr=virtual_base+((unsigned long)(ALT_LWFPGASLVS_OFST + LED_PIO_BASE) & (unsigned long)(HW_REGS_MASK));

Considering this demonstration only needs to set the direction of PIO as output, which is the default direction of the PIO IP, the step above can be skipped. The following statement is used to set the output state of the PIO.

alt_write_word(h2p_lw_led_addr, Mask);

The Mask in the statement decides which bit in the data register of the PIO IP is high or low. The bits in data register decide the output state of the pins connected to the LED.

Demonstration Source Code

- Build tool: SoC EDS V16.1
- Project directory: \Demonstration\ SoC_FPGA\HPS_CONTROL_FPGA_LED
- FPGA configuration file : HPS_CONTROL_FPGA_LED.rbf
- Binary file: HPS_CONTROL_FPGA_LED
- Build app command: make ('make clean' to remove all temporal files)
- Execute app command:./ HPS_CONTROL_FPGA_LED

Demonstration Setup

- Quartus II and SoCEDS must be installed on the host PC.
- The MSEL[4:0] is set to 00000.
- Connect a USB cable to the USB-to-UART connector (J4) on the ADC-SoC board and the host PC.
- Copy the executable files "HPS_CONTROL_FPGA_LED" and the FPGA configuration file " HPS_CONTROL_FPGA_LED.rbf " into the microSD card under the "/home/root" folder in Linux.
- Insert the booting microSD card into the ADC-SoC board.
- Power on the ADC-SoC board.
- Launch PuTTY to establish connection to the UART port of the ADC-SoC board. Type "**root**" to login Linux.
- Execute "dd if= HPS_CONTROL_FPGA_LED.rbf of=/dev/fpga0 bs=1M" in the UART terminal of PuTTY to configure the FPGA through the FPGA manager. After the configuration is successful, the message shown in **Figure 6-2** will be displayed in the terminal.

```
root@socfpga:~# dd if=HPS_CONTROL_FPGA_LED.rbf of=/dev/fpga0 bs=1M
4+1 records in
4+1 records out
root@socfpga:~#
root@socfpga:~#
```


Figure 6-2 Running command to configure the FPGA

- Execute "./HPS_CONTROL_FPGA_LED" in the UART terminal of PuTTY to start the program.
- The message shown in **Figure 6-3**, will be displayed in the terminal. The LED[7:0] will be flashing.

LED	ON			
LED	OFF			
LED	ON			
LED	OFF			
LED	ON			
LED	OFF			
LED	ON			
LED	OFF			
LED	ON			
LED	OFF			
LED	ON			
LED	OFF			

Figure 6-3 Running result in the terminal of PuTTY

• Press "CTRL + C" to terminate the program.

6.2 High Speed ADC AD9254

This demo shows how to capture 50,000 digitized ADC values from AD9254 continuously for the HPS to handle the digitized data. A TERASIC_AD9254 Qsys IP component is provided in this demo. This component captures digitized ADC values and saves them to the on-chip memory in the FPGA.

Block Diagram

Figure 6-4 shows the block diagram of this demonstration. There are two TRASIC_AD9254 IP components used to retrieve the digitalized ADC values from the two AD9254 chips on the ADC-SoC board. The ADC data retrieved from the TERAISC_AD9254 A and B are stored on on-chip memory A and B, respectively. Both TERASIC_AD9254 IP and H2F AXI bus run at 100MHz, which is generated by the PLL IP based on the 50MHz oscillator on the ADC-SoC board. An external signal generator is used to generate testing waveforms. The waveform is the input of the AD9254 chip through the SMA connector on the ADC-SoC board.

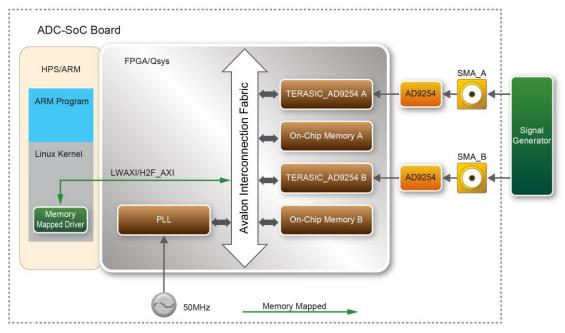


Figure 6-4 Block diagram of HPS based high-speed ADC demo

The ARM program retrieves the 50,000 digitized data by accessing the control and status register of TERASIC_AD9254 IP. After the data collection is complete, the ARM program will display the first 10 and last 10 digitized data on Linux terminal and save all data to the file **''high_speed_adc.csv''**.

The source code of TERASIC_AD9254 IP is located in the ip\TERASI_AD9254 folder. The IP will push the retrieved data into a FIFO first. The data will then be stored on the on-chip memory through Avalon memory-mapped master port. The FIFO is used to compensate the latency for writing data to the on-chip memory. The behavior of TERASIC_AD9254 IP is controlled by the 32-bit control register. The HPS program can access this register through Avalon memory-mapped slave port of the IP. There's also a 32-bit status register to report the function status.

The control register is defined as:

Bits	Description
19~0	Capture number
29~20	Reserved
30	Generate dummy data for test only
31	Capture Start

The status register is defined as:

Bits	Description
0	Data collection is complete
1	FIFO overflow
2	ADC value is out of range
31~3	Reserved.

System Requirements

The following items are required for this demonstration.

- ADC-SoC Board x1
- Signal Generator x1
- SMA Cable x1 (x2 for running the complete demo)

Demonstration Source Code

- Build tool: SoC EDS V16.1
- Project directory: \Demonstration\SoC_FPGA\ADC_SoC_HIGH_SPEED_ADC_HPS
- Quartus Project directory: <Project directory>\Quartus
- FPGA configuration file: <Project directory>\Quartus\output_files\soc_system.rbf
- ARM program directory: < Project directory>\Linux_application
- Source code of TERASI_AD9254 IP: <Project directory>\Quartus\ip\TERASI_AD9254
- Binary file: <Project directory>\Linux_application\high_speed_adc
- Build app command: make ('make clean' to remove all temporal files)
- Execute app command:./high_speed_adc

Demonstration Setup

- Quartus Prime and SoCEDS must be installed on the host PC.
- The MSEL[4:0] is set to 01010.
- Connect a USB cable to the USB-to-UART connector (J4) on the ADC-SoC board and the host PC.Insert the booting microSD card into the ADC-SoC board.
- Connect the two outputs of a signal generator to the SMA connector J21 (ADC-A) and J23 (ADC-B) of ADC-SoC.
- Setup the signal generator to generate sine waveform above 100 KHz.
- Power on the ADC-SoC board.
- Launch PuTTY to establish connection to the UART port of the ADC-SoC board. Type "**root**" to login Linux.
- Use "scp" command to cpoy the executable files "high_speed_adc" and the FPGA configuration file " soc_system.rbf" into the microSD card under the "/home/root" folder in Linux.
- Execute "dd if=soc_system.rbf of=/dev/fpga0 bs=1M" in the UART terminal of PuTTY to

configure the FPGA through the FPGA manager. After the configuration is successful, the message shown in **Figure 6-5** will be displayed in the terminal.

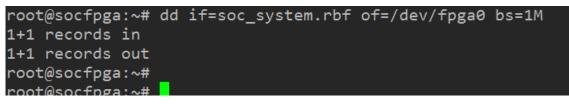


Figure 6-5 Running command to configure the FPGA

- Execute "./high_speed_adc" in the UART terminal of PuTTY to start the program.
- The message shown in **Figure 6-6**, will be displayed in the terminal. ARM program will dump the retrieved ADC data automatically for both ADC chips

COM36 - PuTTY
root@socfpga:~# ./high_speed_adc
ADC Demo
Start Capture
Channel A status: 0x1h
Channel B status: 0x1h
$ADC_A[0] = -176(ff50h), ADC_B[0] = -28160(9200h)$
$ADC_A[1] = -168(ff58h), ADC_B[1] = -28364(9134h)$
$ADC_A[2] = -172(ff54h), ADC_B[2] = -28556(9074h)$
ADC_A[3] = -172(ff54h), ADC_B[3] = -28760(8fa8h)
ADC_A[4] = -184(ff48h), ADC_B[4] = -28964(8edch)
ADC_A[5] = -164(ff5ch), ADC_B[5] = -29128(8e38h)
$ADC_A[6] = -172(ff54h), ADC_B[6] = -29300(8d8ch)$
$ADC_A[7] = -164(ff5ch), ADC_B[7] = -29488(8cd0h)$
$ADC_A[8] = -172(ff54h), ADC_B[8] = -29640(8c38h)$
$ADC_A[9] = -176(ff50h), ADC_B[9] = -29776(8bb0h)$
ADC_A[49990] = -172(ff54h), ADC_B[49990] = 14576(38f0h)
ADC_A[49991] = -172(ff54h), ADC_B[49991] = 14208(3780h)
ADC_A[49992] = -164(ff5ch), ADC_B[49992] = 13816(35f8h)
ADC_A[49993] = -172(ff54h), ADC_B[49993] = 13444(3484h)
ADC_A[49994] = -164(ff5ch), ADC_B[49994] = 13072(3310h)
ADC_A[49995] = -168(ff58h), ADC_B[49995] = 12644(3164h)
ADC_A[49996] = -180(ff4ch), ADC_B[49996] = 12252(2fdch)
ADC_A[49997] = -176(ff50h), ADC_B[49997] = 11852(2e4ch)
ADC_A[49998] = -160(ff60h), ADC_B[49998] = 11480(2cd8h)
ADC_A[49999] = -172(ff54h), ADC_B[49999] = 11112(2b68h)
All data are saved to the file "high_speed_adc.csv".
root@socfpga:~# 🗧 🥃

Figure 6-6 Shows the screenshot when the high_speed_adc program is executed completed.

Chapter 7

Programming the EPCS Device

This chapter describes how to program the serial configuration (EPCS) device with Serial Flash Loader (SFL) function via the JTAG interface. Users can program EPCS devices with a JTAG indirect configuration (.jic) file, which is converted from a user-specified SRAM object file (.sof) in Quartus. The .sof file is generated after the project compilation is successful. The steps of converting .sof to .jic in Quartus II are listed below.

7.1 Before Programming Begins

The FPGA should be set to AS x1 mode i.e. MSEL[4..0] = "10010" to use the Flash as a FPGA configuration device, as shown in Figure 7-1.

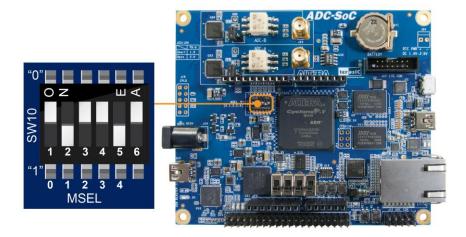


Figure 7-1 DIP switch (SW10) setting of Active Serial (AS) mode

7.2 Convert .SOF File to .JIC File

1. Choose **Convert Programming Files** from the File menu of Quartus II, as shown in **Figure** 7-2.

terasic

ADC-SoC User Manual

File	Edit View Project	Assignments	Proces
	New	Ctrl+N	
2	Open	Ctrl+O	
	Close	Ctrl+F4	
闣	New Project Wizard		
1	Open Project	Ctrl+J	
	Save Project		
	Close Project		
	Save	Ctrl+S	
	Save As		
Ø	Save All	Ctrl+Shi	ft+S
	File Properties		
	Create / Update		•
	Export		
	Convert Programming File	s	
	Page Setup		

Figure 7-2 File menu of Quartus II

- 2. Select **JTAG Indirect Configuration File** (.jic) from the **Programming file type** field in the dialog of Convert Programming Files.
- 3. Choose **EPCS128** from the **Configuration device** field.
- 4. Choose Active Serial from the Mode filed.
- 5. Browse to the target directory from the **File name** field and specify the name of output file.
- 6. Click on the **SOF data** in the section of **Input files to convert**, as shown in **Figure 7-3**.

Tools Window				Search altera.com	
	t file information from oth		version setup information created her	e for Conversion Setup	
Output programming fi	ile				
Programming file type:	JTAG Indirect Configur	ration File (.jic)			-
Options	Configuration device:	EPCS128	▼ Mode:	Active Serial	-
ile name:	output_file.jic				
Advanced	Remote/Local update d	ifference file:	NONE		-
	Create Memory Ma	o File (Generate output_fi	e.map)		
	Create CvP files (Ge	enerate output_file.periph	.jic and output_file.core.rbf)		
	Create config data	RPD (Generate output_file	e_auto.rpd)		
nput files to convert					
File/Da	ta area	Properties	Start Address	Add Hex	Data
Flash Loader				Add Sof	Page
SOF Data	Pa	age_0	<auto></auto>	Add File	_
				Remo	ve
				Up	
				Dow	n

Figure 7-3 Dialog of "Convert Programming Files"

- 7. Click Add File.
- 8. Select the .sof to be converted to a .jic file from the Open File dialog.
- 9. Click **Open**.
- 10. Click on the Flash Loader and click Add Device, as shown in Figure 7-4.
- 11. Click **OK** and the **Select Devices** page will appear.

File Tools Window Search altera.com Conversion setup files Open Conversion Setup Data Save Conversion Setup Output programming file Programming file type: ITAG Indirect Configuration File (.jic) Options Configuration device: EPCS128 Mode: Active Serial Import file.jic Create Memory Map File (Generate output_file.map) Create CVP files (Generate output_file.periph.jic and output_file.core.rbf) Create config data RPD (Generate output_file_auto.rpd) Input files to convert File/Data area Properties Start Address Add Mex_Data Add Sof Page Add Sof Page 	x	ANO_S	O_SOC_Default - DE0_NANO_S	Default/DE0_NANC	/DE0_NANO_SOC	D:/SVN/DE0_nano/DE	ning File - D:/SVI	මී Convert Programm
Open Conversion Setup Data Save Conversion Setup Output programming file Programming file type: ITAG Indirect Configuration File (,jic) Options Configuration device: EPCS128 Mode: Advanced Remote/Local update difference file: NONE Image: Create Memory Map File (Generate output_file.core.rbf) Create CvP files (Generate output_file_auto.rpd) Input files to convert File/Data area Properties Start Address Add Hex Data Add Sof Page Add Sof Page	•	Search altera.com	Search					File Tools Window
Output programming file Programming file type: ITAG Indirect Configuration File (,jic) Image: Options Configuration device: EPCS128 Image: Output programming file Programming file type: Image: Output file.jic Image: Oreate Memory Map File (Generate output_file.map) Create CvP files (Generate output_file_auto.rpd) Input files to convert File/Data area Properties Start Address Add Sof Page	*							Conversion setup files
Programming file type: JTAG Indirect Configuration File (,jic) Options Configuration device: EPCS128 File game: output_file.jic Advanced Remote/Local update difference file: NONE ~ Ør Create Memory Map File (Generate output_file.map) Create CvP files (Generate output_file.auto.rpd) Input files to convert File/Data area Properties Start Address Add Hex Data Filash Loader Add Sof Page Add Sof Page Add Sof Page			Save Conversion Setup			rsion Setup Data	Open Conversion S	
Options Configuration device: EPCS128 Mode: Active Serial File pame: output_file.jic Advanced Remote/Local update difference file: NONE Image: Create Memory Map File (Generate output_file.map) Create CvP files (Generate output_file.periph.jic and output_file.core.rbf) Create config data RPD (Generate output_file_auto.rpd) Input files to convert File/Data area Properties Start Address Add Hex Data Flash Loader Add Sof Page Add Sof Page Add Sof Page							le	Output programming fil
File mane: output_file.jic Advanced Remote/Local update difference file: NONE Image: Create Memory Map File (Generate output_file.map) Image: Create CvP files (Generate output_file.periph.jic and output_file.core.rbf) Image: Create config data RPD (Generate output_file_auto.rpd) Imput files to convert File/Data area Properties Start Address Flash Loader Add Sof Page		•			: (.jic)	ect Configuration File (.jic	JTAG Indirect Co	Programming file type:
Advanced Remote/Local update difference file: NONE Image: Create Memory Map File (Generate output_file.map) Image: Create CvP files (Generate output_file.periph.jic and output_file.core.rbf) Image: Create config data RPD (Generate output_file_auto.rpd) Imput files to convert File/Data area Properties Start Address Add Hex Data Filesh Loader Add Sof Page		rial 🔹	Active Serial	▼ <u>M</u> ode:	8	on device: EPCS128	Configuration dev	Options
Image: Construction of the state of the						e.jic	output_file.jic	File <u>n</u> ame:
Create CvP files (Generate output_file.periph.jic and output_file.core.rbf) Create config data RPD (Generate output_file_auto.rpd) Input files to convert File/Data area Properties Start Address Filash Loader Add Sof Page					file: NONE	cal update difference file:	Remote/Local upd	Advanced
Create config data RPD (Generate output_file_auto.rpd) Input files to convert File/Data area Properties Start Address Add Hex Data Filash Loader Add Sof Page								
Input files to convert File/Data area Properties Start Address Add Heg Data Flash Loader Add Sof Page Add Sof Page Add Sof Page			Ð					
File/Data area Properties Start Address Add Hex Data Flash Loader Add Sof Page Add Sof Page Add Sof Page				.rpa)	ierate output_file_au	config data RPD (General	Create coning	
Flash Loader Add Sof Page	Ξ							
Add Sof Page				Start Address	Properties	Pro	ta area	
		Add Sof Page	,	<auto></auto>		Page_0		▲ SOF Data
DE0_NANO_SOC_Default.sof 5CSEMA4U23		Add Device			23	sof 5CSEMA4U23	SOC_Default.sof	DE0_NANO_S
Remove		Remove						
Up		Up						
Down		Down						
Propertijes		Properties						
Generate Close Help		Close Help	Generate Close					
	-							

Figure 7-4 Click on the "Flash Loader"

- 12. Select the targeted FPGA to be programed into the EPCS, as shown in Figure 7-5.
- 13. Click **OK** and the **Convert Programming Files** page will appear, as shown in **Figure 7-6**.
- 14. Click Generate.

evice family		Device name	
APEX20K	*	5CGXFC9D7	New
Arria GX		5CGXFC9E6	
Arria II GX		5CGXFC9E7	Import
Arria II GZ		5CSEBA2	Export
🗌 Arria V		5CSEBA4	
Arria V GZ		5CSEBA5	Edit
Cyclone	=	5CSEBA6	Remove
Cydone II		5CSEBA6ES	Keniove
Cyclone III		5CSEMA2	Uncheck All
Cydone III LS		5CSEMA4	
Cyclone IV E		5CSEMA5	
Cyclone IV GX		5CSEMA6	
🗹 Cyclone V		5CSTFD5D5	
HardCopy II		5CSTFD6D5	
HardCopy III		5CSXFC2C6	=
HardCopy IV		5CSXFC4C6	
MAX 10 FPGA		5CSXFC5C6	
MAX II	-	5CSXFC5D6	-

Figure 7-5 "Select Devices" page

e Tools Window				Search alte	era.com
Conversion setup files					
	Open Conversion Setup	Data	Save	e Conversion Setup	
Output programming fi	ile				
Programming file type:	JTAG Indirect Configu	uration File (.jic)			•
Options	Configuration device:	EPCS128	▼ <u>M</u> ode:	Active Serial	•
File <u>n</u> ame:	output_file.jic				
Advanced	Remote/Local update	difference file:	DNE		-
	Create Memory Ma	ap File (Generate output_file	.map)		
	Create CvP files (G	Generate output_file.periph.j	iic and output_file.core.rbf)		
		Generate output_file.periph.j RPD (Generate output_file_			
input files to convert					
	Create config data	RPD (Generate output_file_	auto.rpd)		dd Hex Data
input files to convert File/Da 4 Flash Loader	Create config data				dd He <u>x</u> Data
File/Da Filash Loader 5CSEMA4	Create config data	RPD (Generate output_file_	auto.rpd) Start Address		dd He <u>x</u> Data dd <u>S</u> of Page
File/Da Flash Loader 5CSEMA4 SOF Data	Create config data	RPD (Generate output_file_ Properties	auto.rpd)		
File/Da Flash Loader 5CSEMA4 SOF Data	Create config data	RPD (Generate output_file_	auto.rpd) Start Address		dd <u>S</u> of Page
File/Da Flash Loader 5CSEMA4 SOF Data	Create config data	RPD (Generate output_file_ Properties	auto.rpd) Start Address		dd <u>Sof Page</u> dd Device Remove
 Flash Loader 5CSEMA4 SOF Data 	Create config data	RPD (Generate output_file_ Properties	auto.rpd) Start Address		dd <u>Sof Page</u> dd Devi <u>c</u> e Remove
File/Da Flash Loader 5CSEMA4 SOF Data	Create config data	RPD (Generate output_file_ Properties	auto.rpd) Start Address		dd <u>Sof Page</u> dd Device Remove
File/Da Flash Loader 5CSEMA4 SOF Data	Create config data	RPD (Generate output_file_ Properties	auto.rpd) Start Address		dd <u>Sof Page</u> dd Devi <u>c</u> e Remove
File/Da Flash Loader 5CSEMA4 SOF Data	Create config data	RPD (Generate output_file_ Properties	auto.rpd) Start Address		dd <u>Sof Page</u> dd Device Remove Up Down

Figure 7-6 "Convert Programming Files" page after selecting the device

7.3 Write JIC File into the EPCS Device

When the conversion of SOF-to-JIC file is complete, please follow the steps below to program the EPCS device with the .jic file created in Quartus II Programmer.

- 1. Set MSEL[4..0] = "10010"
- 2. Choose **Programmer** from the Tools menu and the **Chain.cdf** window will appear.
- **3.** Click **Auto Detect** and then select the correct device(5CSEMA4). Both FPGA device and HPS should be detected, as shown in **Figure 7-7.**
- 4. Double click the red rectangle region shown in **Figure 7-7** and the **Select New Programming File** page will appear. Select the .jic file to be programmed.
- 5. Program the EPCS device by clicking the corresponding **Program/Configure** box. A factory default SFL image will be loaded, as shown in **Figure 7-8**.
- 6. Click **Start** to program the EPCS device.

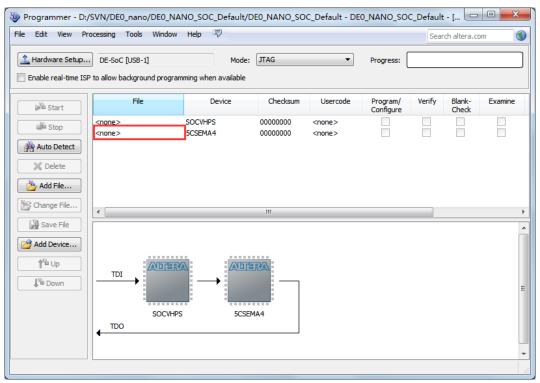


Figure 7-7 Two devices are detected in the Quartus II Programmer

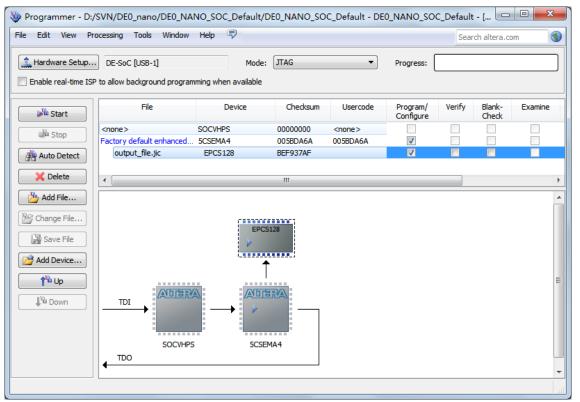


Figure 7-8 Quartus II programmer window with one .jic file

7.4 Erase the EPCS Device

The steps to erase the existing file in the EPCS device are:

- 1. Set MSEL[4..0] = "10010"
- 2. Choose **Programmer** from the **Tools** menu and the **Chain.cdf** window will appear.
- **3.** Click **Auto Detect**, and then select correct device, both FPGA device and HPS will detected. (See **Figure 7-7**)
- 4. Double click the red rectangle region shown in **Figure 7-7**, and the **Select New Programming File** page will appear. Select the correct .jic file.
- 5. Erase the EPCS device by clicking the corresponding **Erase** box. A factory default SFL image will be loaded, as shown in **Figure 7-9**.

00000000 <non< th=""><th>Jsercode Program/ Configure DA6A V</th><th>Verify Bland Chec</th><th></th><th>Security Bit</th><th>Erase ISP CLAM</th></non<>	Jsercode Program/ Configure DA6A V	Verify Bland Chec		Security Bit	Erase ISP CLAM
00000000 <non 005BDA6A 005BD</non 	Configure one> BDA6A	Chec	k		CLAM
005BDA6A 005BI	BDA6A				
BEF937AF					V

Figure 7-9 Erase the EPCS device in Quartus II Programmer

6. Click **Start** to erase the EPCS device.

7.5 EPCS Programming via nios-2-flash-programmer

Before programming the EPCS via nios-2-flash-programmer, users must add an EPCS patch file nios-flash-override.txt into the Nios II EDS folder. The patch file is available in the folder Demonstation\EPCS_Patch of ADC-SoC System CD. Please copy this file to the folder [QuartusInstalledFolder]\nios2eds\bin (e.g. C:\intleFPGA\16.1\nios2eds\bin)

If the patch file is not included into the Nios II EDS folder, an error will occur as shown in **Figure 7-10**.

Figure 7-10 Error Message "No EPCS Layout Data".

Chapter 8

8.1 Revision History

Version	Change Log
V1.0	Initial Version (Preliminary)
V1.0.1	Correction: remove System Builder

Copyright © 2017 Terasic Inc. All rights reserved.

