High Reliability SP5T RF Switch 50MHz to 8000MHz

Description

The F2955 is a high reliability, low insertion loss, 50Ω SP5T absorptive RF switch designed for a multitude of RF applications, including wireless communications. This device covers a broad frequency range from 50 MHz to 8000 MHz . In addition to providing low insertion loss, the F2955 also delivers excellent linearity and isolation performance while providing a 50Ω termination to the unused RF input ports. The F2955 also includes a patent-pending constant impedance ($\left.\mathbf{K}_{[z]^{\top M}}\right)^{\top}$ feature. $\mathrm{K}_{[z]}$ improves system hot switching ruggedness, minimizes LO pulling in VCOs, and reduces phase and amplitude variations in distribution networks. It is also ideal for dynamic switching/selection between two or more amplifiers while avoiding damage to upstream/downstream sensitive devices, such as power amplifiers (PAs) and analog-todigital converters (ADCs).
The F2955 uses a single positive supply voltage supporting three logic control pins using either 3.3 V or 1.8 V control logic. Connecting a negative voltage to pin 20 disables the internal negative voltage generator and becomes the negative supply.

Competitive Advantage

The F2955 provides constant impedance in all RF ports during transitions, improving a system's hot-switching ruggedness. The device also supports high-power handling and high isolation, particularly important for DPD receiver use.

- Constant impedance $\mathrm{K}_{\mathbf{| z |}}$ during switching transition
- RFX to RFC isolation $=49 \mathrm{~dB}$ at 4 GHz
- Insertion loss $=1.1 \mathrm{~dB}$ at 4 GHz
- IIP3: +60.5 dBm at 4 GHz
- Extended temperature: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

Typical Applications

- Base Station 2G, 3G, 4G
- Portable Wireless
- Repeaters and E911 Systems
- Digital Pre-distortion
- Point-to-Point Infrastructure
- Public Safety Infrastructure
- Military Systems, JTRS Radios
- Cable Infrastructure
- Test / ATE Equipment

Features

- Five symmetric, absorptive RF ports
- High isolation: 49 dB at 4000 MHz
- Low insertion loss: 1.1 dB at 4000 MHz
- High linearity:
- IIP2 of 114 dBm at 2000 MHz
- IIP3 of 60.5 dBm at 4000 MHz
- High operating power handling:
- 33dBm CW on selected RF port
- 27 dBm on terminated ports
- Single 2.7 V to 5.5 V supply voltage
- External negative supply option
- 3.3 V and 1.8 V compatible control logic
- Operating temperature: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- $4 \times 4 \mathrm{~mm} 24-\mathrm{QFN}$ package
- Pin compatible with competitors

Block Diagram

Figure 1. Block Diagram

Pin Assignments

Figure 2. Pin Assignments for $4 \times 4 \times 0.75 \mathrm{~mm}$ 24-QFN - Top View

Pin Descriptions

Table 1. Pin Descriptions

Number	Name	Description
$\begin{aligned} & 1,3,4,6,7,9,10,12, \\ & 13,15,21,23,24 \end{aligned}$	GND	Ground these pins as close to the device as possible.
2	RF5	RF5 Port. Matched to 50Ω. If this pin is not OV DC, then an external coupling capacitor must be used.
5	RF4	RF5 Port. Matched to 50Ω. If this pin is not OV DC, then an external coupling capacitor must be used.
8	RF3	RF5 Port. Matched to 50Ω. If this pin is not OV DC, then an external coupling capacitor must be used.
11	RF2	RF5 Port. Matched to 50Ω. If this pin is not 0 V DC, then an external coupling capacitor must be used.
14	RF1	RF5 Port. Matched to 50Ω. If this pin is not 0 V DC, then an external coupling capacitor must be used.
16	VDD	Power Supply. Bypass to GND with capacitors as shown in the "Typical Application Circuit" (Figure 39) as close as possible to the pin.
17	V1	Control pin to set the switch state. See Table 8.
18	V2	Control pin to set the switch state. See Table 8.
19	V3	Control pin to set the switch state. See Table 8.
20	VSSExt	External VSS negative voltage control. Connect to ground to enable on-chip negative voltage generator. To bypass and disable on chip generator connect this pin to an external VSS.
22	RFC	RF Common Port. Matched to 50Ω when one of the $5 R F$ ports is selected. If this pin is not $0 \mathrm{~V} D C$, then an external coupling capacitor must be used.
	EPAD	Exposed Paddle. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

Absolute Maximum Ratings

Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Unit
VDD to GND	$V_{D D}$	-0.3	+5.5	V
V1, V2, V3 to GND	$V_{\text {cntl }}$	-0.3	$\begin{gathered} \text { Lower of } \\ \left(3.6, V_{D D}+0.3\right) \end{gathered}$	V
RF1, RF2, RF3, RF4, RF5, RFC to GND	$V_{\text {RF }}$	-0.3	+0.3	V
VSSEXt to GND	VSSExt	-4.0	+0.3	V
Input Power for Any One Selected RF Through Port (V_{DD} applied at 2 GHz and $\mathrm{T}_{\text {EPAD }}=+85^{\circ} \mathrm{C}$)	Pmaxthru		37	dBm
Input Power for Any One Selected RF Terminated Port (VDD applied at 2 GHz and $\mathrm{T}_{\text {EPAD }}=+85^{\circ} \mathrm{C}$)	Pmaxterm		30	dBm
Input Power for RFC When in the All Off State (V_{DD} applied at 2 GHz and $\mathrm{T}_{\text {EPAD }}=+85^{\circ} \mathrm{C}$)	Pmaxcom		33	dBm
Continuous Power Dissipation ${ }^{[a]}\left(\mathrm{T}_{\text {EPAD }}=+95^{\circ} \mathrm{C}\right.$ Max)	Pcont		3	W
Maximum Junction Temperature	TJMAX		+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tst	-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	TLEAD		+260	${ }^{\circ} \mathrm{C}$
ESD Voltage - HBM (Per JESD22-A114)	$V_{\text {ESDHBM }}$		$\begin{gathered} 1500 \\ \text { (Class 1C) } \end{gathered}$	V
ESD Voltage - CDM (Per JESD22-C101)	$V_{\text {ESDCDM }}$		$\begin{gathered} 1000 \\ \text { (Class C3) } \end{gathered}$	V

[a] $T_{\text {EPAD }}=$ Temperature of the exposed paddle

Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Parameter	Symbol	Condition		Minimum	Typical	Maximum	Unit
Power Supply Voltages	VDD	Pin 20 grounded		2.7		5.25	V
		Pin 20 driven with VSSExT		2.7		5.25	
	VSSEXt	Negative supply ${ }^{\text {[] }}$		-3.6	-3.4	-3.2	
Operating Temperature Range	Tepad	Exposed paddle		-40		+105	${ }^{\circ} \mathrm{C}$
RF Frequency Range	f_{RF}			50		8000	MHz
RF Continuous Input CW Power ${ }^{[b]}$	PrF	Selected ports				33	dBm
		Terminated ports ${ }^{[c]}$				27	
RF Continuous Input CW Power for Hot RF Switching [c]	Prfsw	RFC as the input	Switch to RF1 through RF5			27	dBm
			Switched into or out of all off state			24	
		RF1 through RF5 as the inputs	Switched to RFC or into term[c]			27	
			Switch into or out of all off conditions			27	
RF1 through 5 Port Impedance	$\mathrm{Z}_{\text {RFX }}$				50		Ω
RFC Port Impedance	$Z_{\text {RFC }}$				50		

[a] For normal operation, connect $\mathrm{VSS}_{\text {Ext }}$ (pin 20) $=0 \mathrm{~V}$ to GND to enable the internal negative voltage generator. If $\mathrm{VSS}_{\text {Ext }}$ is applied to pin 20 , the on-chip negative voltage generator is disabled, completely eliminating any generator spurious responses.
[b] Levels based on $\mathrm{T}_{\text {EPAD }} \leq 85^{\circ} \mathrm{C}$. See Figure 3 for the power de-rating curve for higher case temperatures.
[c] In any of the insertion loss modes or when switching into any insertion loss mode, any 3 of the 4 remaining terminated port paths can be each exposed to the maximum stated power level during continuous or hot switching operation.

Figure 3. Maximum CW RF Input Operating Power vs. RF Frequency

Electrical Characteristics (1)

Table 4. Electrical Characteristics
Typical application circuit (Figure 39), Normal Mode (VDD $=3.3 \mathrm{~V}, \mathrm{VSS}_{\text {ExT }}=0 \mathrm{~V}$) or Bypass Mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, VSSExT $=-3.3 \mathrm{~V}$), $\mathrm{T}_{\text {EPAD }}=+25^{\circ} \mathrm{C}$, $f_{R F}=2000 \mathrm{MHz}$, input power $=0 \mathrm{dBm}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \mathrm{RFX}=$ one of the five input ports, and PCB board trace and connector losses are deembedded unless otherwise noted.

Parameter	Symbol	Condition		Minimum	Typical	Maximum	Unit
Logic Input High	V_{H}			$1.1{ }^{\text {[a] }}$		Lower of (3.6, VDD)	V
Logic Input Low	VIL			-0.3		0.6	V
Logic Current	$\mathrm{IH}_{\mathrm{H},} \mathrm{IL}^{\text {L }}$	For each control pin		-2		+2	$\mu \mathrm{A}$
VDD DC Current	lod	Normal Mode	3.3 V or 1.8V logic		290	360	$\mu \mathrm{A}$
		Bypass Mode	3.3 V or 1.8V logic		270	340	
DC Current (VSSExT)	Ivss	VSSExT $=-3.3 \mathrm{~V}$			-46	-60	$\mu \mathrm{A}$
Insertion Loss RFX to RFC	IL	$\mathrm{frF}=900 \mathrm{MHz}$			0.93	1.4	dB
		$f_{R F}=2100 \mathrm{MHz}$			1.1	1.5	
		$f_{\text {RF }}=2700 \mathrm{MHz}$			1.2	1.6	
		$2700 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 4000 \mathrm{MHz}$			1.1	1.65	
		$4000 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 8000 \mathrm{MHz}$			2.3		
Insertion Loss Flatness	ILflat	400 MHz to 38 Any 400MHz r			0.1	0.4	dB
Minimum Isolation RFX to RFC [b]cc]	ISOC	$400 \mathrm{MHz} \leq \mathrm{f}_{\text {fF }} \leq 900 \mathrm{MHz}$		57.5	62		dB
		900 MHz < frF $\leq 2100 \mathrm{MHz}$		51	55		
		$2100 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 2700 \mathrm{MHz}$		49.5	54		
		$2700 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 4000 \mathrm{MHz}$		45	49		
		$4500 \mathrm{MHz} \leq \mathrm{f}_{\text {fF }} \leq 5500 \mathrm{MHz}$		43	44.8		
Minimum Isolation RFX to RFX [bld]	ISOX	$400 \mathrm{MHz} \leq \mathrm{f}_{\text {RF }} \leq 900 \mathrm{MHz}$		56.5	59		dB
		$900 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 2100 \mathrm{MHz}$		50	53		
		$2100 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 2700 \mathrm{MHz}$		48	51		
		$2700 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 4000 \mathrm{MHz}$		44.5	48		
		$4500 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 5500 \mathrm{MHz}$		41	43		

[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns that are not shown in bold italics are guaranteed by design characterization.
[b] With one path always active.
[c] Minimum value specified for RFC to RF1 through RF4 only. Specification does not apply to RF5.
[d] Each of the 4 inputs to any other input, 4 states only, RF5 removed.

Electrical Characteristics (2)

Table 5. Electrical Characteristics
Typical application circuit (Figure 39), Normal Mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VSS}$ ExT $=0 \mathrm{~V}$) or Bypass Mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VSS}$ ExT $=-3.3 \mathrm{~V}$), $\mathrm{T}_{\text {EPAD }}=+25^{\circ} \mathrm{C}$, $f_{R F}=2000 \mathrm{MHz}$, input power $=0 \mathrm{dBm}, Z_{s}=Z_{L}=50 \Omega, R F X=$ one of the five input ports, and PCB board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Unit
Minimum RFC Return Loss ${ }^{[b]}$	RLRFC	$400 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 900 \mathrm{MHz}$		23		dB
		$900 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 2100 \mathrm{MHz}$		18		
		$2100 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 2700 \mathrm{MHz}$		16		
		$2700 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 4000 \mathrm{MHz}$		16		
		$4500 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 5500 \mathrm{MHz}$		23		
Minimum RFX Return Loss ${ }^{[b]}$ (Active Thru)	RLRFC_A	$400 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 900 \mathrm{MHz}$		23		dB
		$900 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 2100 \mathrm{MHz}$		16		
		$2100 \mathrm{MHz}<\mathrm{ffF} \leq 2700 \mathrm{MHz}$		15		
		$2700 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 4000 \mathrm{MHz}$		14		
		$4500 \mathrm{MHz} \leq \mathrm{ffF} \leq 5500 \mathrm{MHz}$		17		
Minimum RFX Return Loss ${ }^{[b]}$ (Terminated State)	RLRFX_T	$400 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 900 \mathrm{MHz}$		30		dB
		$900 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 2100 \mathrm{MHz}$		22		
		$2100 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 2700 \mathrm{MHz}$		20		
		$2700 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 4000 \mathrm{MHz}$		15		
		$4500 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 5500 \mathrm{MHz}$		14		
Maximum RFX Port VSWR During Switching	VSWR ${ }_{\text {T }}$	From RFX Active to RFX Terminated		1.7:1		
		From RFX Terminated to RFX Active		2:1		
Input 1dB Compression [c]	$I C P_{1 d B}$		$34[$ [a]	36.5		dBm
Input 0.1dB Compression ${ }^{\text {[c] }}$	$1 \mathrm{CP}_{0.1 \mathrm{~dB}}$		28	35		dBm
Input IP2 (Insertion Loss State)	IIP2	$\begin{aligned} & f_{R F 1}=2000 \mathrm{MHz}, f_{R F 2}=2010 \mathrm{MHz} \\ & R F_{\text {input }}=R F X, \mathrm{P}_{1 \mathrm{~N}}=+20 \mathrm{dBm} / \text { tone } \\ & f_{R F 1}+\mathrm{f}_{\mathrm{RF} 2}=4010 \mathrm{MHz} \end{aligned}$		114		dBm
		$\begin{aligned} & f_{R F 1}=4900 \mathrm{MHz}, \mathrm{f}_{\text {RF2 }}=4910 \mathrm{MHz} \\ & R F \text { Input }=\mathrm{RFX}, \mathrm{P}_{1 \mathrm{~N}}=+20 \mathrm{dBm} / \text { tone } \\ & \mathrm{f}_{\text {RF1 }}+\mathrm{f}_{\mathrm{RF} 2}=9810 \mathrm{MHz} \end{aligned}$		106		
		$\begin{aligned} & f_{R F 1}=5500 \mathrm{MHz}, \mathrm{f}_{\text {RF }}=5510 \mathrm{MHz} \\ & R \mathrm{FFinput}=\mathrm{RFX}, \mathrm{P}_{\mathrm{IN}}=+20 \mathrm{dBm} / \text { tone } \\ & \mathrm{f}_{\mathrm{RF} 1}+\mathrm{f}_{\mathrm{RF} 2}=11010 \mathrm{MHz} \end{aligned}$		111		

[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns that are not shown in bold italics are guaranteed by design characterization.
[b] With one path always active.
[c] The input 0.1 dB and 1 dB compression points are linearity figures of merit. Refer to the "Absolute Maximum Ratings" section 0 for the maximum RF input power and for maximum operating RF input power.

Electrical Characteristics (3)

Table 6. Electrical Characteristics
Typical application circuit (Figure 39), Normal Mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VSS}_{\text {Ext }}=0 \mathrm{~V}$) or Bypass Mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, VSSExt $=-3.3 \mathrm{~V}$), $\mathrm{T}_{\text {EPAD }}=+25^{\circ} \mathrm{C}$, $\mathrm{f}_{\mathrm{RF}}=2000 \mathrm{MHz}$, input power $=0 \mathrm{dBm}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$, RFX $=$ one of the five input ports, and PCB board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol	Condition		Minimum	Typical	Maximum	Unit
Input IP3	IIP3	$\Delta f=5 \mathrm{MHz}$ RF Input = RFX $\mathrm{P}_{\text {IN }}=+15 \mathrm{dBm} /$ tone	$\mathrm{f}_{\mathrm{RF}}=400 \mathrm{MHz}$	$45{ }^{\text {a] }}$	60.5		dBm
			$\mathrm{f}_{\mathrm{RF}}=2000 \mathrm{MHz}$	56	60		
			$\mathrm{f}_{\mathrm{RF}}=4000 \mathrm{MHz}$		60.5		
			$\mathrm{f}_{\mathrm{RF}}=4900 \mathrm{MHz}$		55		
			$\mathrm{f}_{\mathrm{RF}}=5500 \mathrm{MHz}$		55		
Group Delay	GD				0.43	1	ns
Switching Time - Bypass $\left(\right.$ VSS $\left._{\text {EXT }}=-3.3 \mathrm{~V}\right){ }^{[b][c]}$	tbp-on1	50\% CTRL to 90\% maximum RF power			256	345	ns
	tsp-on2	50% CTRL to RF power settled to within $\pm 0.1 \mathrm{~dB}$ of maximum power			285		
	tbp.off	50% CTRL to 10% maximum RF power			256	345	
Switching Time -Normal $\left(V_{S S}{ }_{\text {EXT }}=0 \mathrm{~V}\right){ }^{[b][c]}$	tn-on1	50% CTRL to 90% maximum RF power			245		ns
	tn-on2	50% CTRL to RF power settled to within $\pm 0.1 \mathrm{~dB}$ of maximum power			295		
	tn-on3	50% CTRL to 99% RF maximum RF power			350		
	$\mathrm{t}_{\text {n-OFF1 }}$	50% CTRL to 10% maximum RF power			200		
	$\mathrm{t}_{\text {n-OFF2 }}$	50\% CTRL to 1\% maximum RF power			245		
Maximum Switching Rate ${ }^{[d]}$		Pin $20=$ GND			25		kHz
		Pin $20=$ VSSExt applied			290		
Maximum spurious level on any RF port ${ }^{[\mathrm{e}}$]	Spurmax	RF ports terminated into 50Ω RFX connected to RFC			-120		dBm

[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns that are not shown in bold italics are guaranteed by design characterization.
[b] $\mathrm{f}_{\mathrm{RF}}=1 \mathrm{GHz}$.
[c] RFC to RFX. In and out of all-off state [000].
[d] Minimum time required between switching of states $=1$ ((Maximum Switching Rate).
[e] Spurious due to on-chip negative voltage generator. Typical generator fundamental frequency is 2.2 MHz .

Thermal Characteristics

Table 7. Package Thermal Characteristics

Parameter	Symbol	Value	Unit
Junction-to-Ambient Thermal Resistance	θ_{JA}	41	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (Case is defined as the exposed paddle)	θ_{Jc}	6.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Moisture Sensitivity Rating (Per J-STD-020)		MSL1	

Typical Operating Conditions (TOCs)

Unless otherwise noted for the TOC graphs on the following pages, the following conditions apply.

- $V_{D D}=3.3 \mathrm{~V}$.
- $\mathrm{T}_{\text {EPAD }}=+25^{\circ} \mathrm{C}$ (Temperature of exposed paddle).
- $f_{R F}=2000 \mathrm{MHz}$.
- RFX is the driven RF port, and RFC is the output port.
- \quad PIN $=10 \mathrm{dBm}$ for all small signal tests.
- $P_{\text {IN }}=+15 \mathrm{dBm} /$ tone applied to selected RFX port for two-tone linearity tests.
- Two-tone frequency spacing $=5 \mathrm{MHz}$.
- $\mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$.
- All unused RF ports terminated into 50Ω.
- For insertion loss and isolation plots, RF trace and connector losses are de-embedded (see Figure 36 for the "EVKIT Trace and Connector Loss vs. Temperature" plot).
- Plots for isolation and insertion loss over temperature and voltage are for a typical path. For performance of a specific path, refer to the online S-Parameter file.

Typical Performance Characteristics

Figure 4. Insertion Loss vs. Frequency over Selected Switch

Figure 6. Insertion Loss vs. Frequency over Voltage

Figure 8. RFC to RFX Isolation vs. Frequency

Figure 5. Insertion Loss vs. Frequency over Temperature

Figure 7. RFC to RFX Isolation vs. Frequency

Figure 9. Typical RFC to RFX Isolation vs. Frequency over Temperature

Figure 10. Typical RFC to RFX Isolation vs. Frequency over VDD

Figure 12. RFX to RFX Isolation vs. Frequency

Figure 14. Typical RFX to RFX Isolation vs. Frequency over VDD

Figure 11. RFX to RFX Isolation vs. Frequency

Figure 13. Typical RFX to RFX Isolation vs. Frequency over Temperature

Figure 15. RFX Return Loss vs. Frequency over Switch Path [Selected State]

Figure 16. Typical RFX Return Loss vs. Freq. over Temp. [Selected State]

Figure 18. RFC Return Loss vs. Frequency over Switch Path [Selected State]

Figure 20. Typical RFC Return Loss vs. Freq. over V DD [Selected State]

Figure 17. Typical RFX Return Loss vs. Frequency over VDD [Selected State]

Figure 19. Typical RFC Return Loss vs. Freq. over Temp. [Selected State]

Figure 21. RFX Return Loss vs. Frequenc y over Switch Path [Terminated State]

Figure 22. Typical RFX Return Loss vs. Freq. over Temp. [Terminated State]

Figure 24. Return Loss (During Switching) vs. Time

Figure 26. RFX Switching Time [RFX Terminated to RFX Active]

Figure 23. Typical RFX Return Loss vs. Freq. over VDD [Terminated State]

Figure 25. VSWR (During Switching) vs. Time

Figure 27. RFX Switching Time [RFX Active to RFX Terminated]

Figure 28. Switching Speed RFX to RFC All Off to On

Figure 30. RFX IIP3 vs. Frequency over Switch Path [Selected State]

Figure 32. RF2 IIP3 vs. Frequency over Temperature and Voltage

Figure 29. Switching Speed RFX to RFC On to All Off

Figure 31. RF1 IIP3 vs. Frequency over Temperature and Voltage

Figure 33. RF3 IIP3 vs. Frequency over Temperature and Voltage

Figure 34. RF4 IIP3 vs. Frequency over Temperature and Voltage

Figure 36. EVKIT Trace and Connector Loss vs. Temperature

Figure 35. RF5 IIP3 vs. Frequency over Temperature and Voltage

Control Mode

To select the path of the F2915 use Table 8 to see the control voltage with either 1.8 V or 3.3 V logic.
Table 8. Switch Control Truth Table

Mode	V3	V2	V1
All Off	0	0	0
RF1 On	0	0	1
RF2 On	0	1	0
RF3 On	0	1	1
RF4 On	1	0	0
RF5 On	1	0	1
All Off	1	1	0
All Off	1	1	1

Evaluation Kit Picture

Figure 37. Top View

Figure 38. Bottom View

Evaluation Kit / Applications Circuit

Figure 39. Electrical Schematic

Table 9. Bill of Material (BOM)

Part Reference	QTY	Description	Manufacturer Part \#	Manufacturer
C1, C3, C5, C7, C8, C9	6	$100 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}, \mathrm{C} 0 \mathrm{G}$ Ceramic Capacitor (0402)	GRM1555C1H101J	Murata
C2	0	Not Installed (0603)		
C4	0	Not Installed (0603)		
C6	1	$1000 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}, \mathrm{C0G}$ Ceramic Capacitor (0603)	GRM1885C1H102J	Murata
R1, R2, R3	3	$0 \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2GE0R00X	Panasonic
R4, R5, R6	3	$100 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1003X	Panasonic
R7	1	$15 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1502X	Panasonic
R8	1	$22 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF2202X	Panasonic
J1-J8	8	Edge Launch SMA (0.375 inch pitch ground tabs)	$142-0701-851$	Emerson Johnson
J9	1	CONN HEADER VERT DBL 10 X 2 POS GOLD	67997-120HLF	FCI
U1	1	SP5T Switch 4mm x 4mm QFN24-EP	F2955NBGK	Renesas (IDT)
	1	Printed Circuit Board	F29XX EVKIT Rev 02.0	Renesas (IDT)

Evaluation Kit (EVKit) Operation

External Supply Setup

1. Set up a VDD power supply in the voltage range of 2.7 V to 5.5 V and disable the power supply output.
2. If using the on-chip negative voltage generator, install a 2 -pin shunt to short pins 3 (GND) and 4 (VSSEXT) of J 9 .
3. If an external negative voltage supply is to be used, set its voltage within the range of -3.6 V to -3.2 V and disable it. Also, ensure there are no jumper connections on pins 3 and 4 of J 9 .

Logic Control Setup

Using the EVKIT to Manually Set the Control Logic

1. On connector J9, connect a 2 -pin shunt from pin 7 (VDD) to pin 8 (VDD_CTRL). This connection provides the VDD voltage supply to the Evaluation Board logic control pull-up network.
2. On connector 39 connect a 2-pin shunt from pin 9 (LVSEL2) to pin 10 (LVSEL). This connection enables $R 7$ ($15 \mathrm{k} \Omega$) and $\mathrm{R} 8(22 \mathrm{k} \Omega$) to form a voltage divider to set the proper logic control levels to support the full voltage range of VDD. Note that when using the on-board R7 / R8 voltage divider, the current draw from the VDD supply will be higher by approximately VDD/37k Ω.
3. Connector J9 has 3 logic input pins: V 1 (pin 20), V2 (pin 18), and V3 (pin 16). See Table 8 for the logic truth table. With the pull-up network enabled (as noted above), if these pins are left open, a logic HIGH will be provided through pull-up resistors R4, R5, and R6. To set a logic LOW to V1, V2, and V3, connect 2-pin shunts from pin 16 to pin 15 , pin 18 to pin 17 and pin 20 to pin 19, respectively.

Using the External Control Logic

Pins 6, 7, 8, 9, and 10 of 39 should have no connection. External logic controls can be applied to 39 pins 16 (V3), 18 (V2) and 20 (V1). See Table 8 for the logic truth table.

Turn On Procedure

1. Set up the supplies and Evaluation Board as noted in "External Supply Setup" and "Logic Control Setup" above.
2. Connect the preset disabled VDD power supply to pin 2 (VDD) and pin 1 (GND) of J9.
3. If the external negative voltage source is to be used, connect the disabled supply to pin 4 (VSSEXT) and pin 3 (GND) of J9. If using the on-chip negative supply, ensure that the 2-pin shunt is installed connecting pin 3 to pin 4 .
4. Enable the VDD supply and then enable the VSSEXT supply (if used).
5. Set the desired logic setting using V1, V2, and V3 to achieve the desired path setting, see Table 8. Note that external control logic should not be applied without VDD being applied first.

Turn Off Procedure

1. If using external control logic, $\mathrm{V} 1, \mathrm{~V} 2$, and V 3 must be set to a logic LOW.
2. Disable any external VSSEXT supply.
3. Disable the VDD supply.

Application Information

Default Start-up

There are no internal pull-up or pull-down resistors on the control pins.

Logic Control

Control pins V1, V2, and V3 are used to set the state of the SP5T switch (See Table 8).

External $\mathbf{V}_{\text {ss }}$

The F2955 is designed with an on-chip negative voltage generator. This on-chip generator is enabled by connecting pin 20 of the device to ground. To disable the on-chip generator, apply a negative voltage to pin 20 (VSSExT) of the device within the range stated in the "Recommended Operating Conditions" (Table 3).

Power Supplies

A common VDD power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade the noise figure, and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than $1 \mathrm{~V} / 20 \mu \mathrm{~s}$. In addition, all control pins should remain at $0 \mathrm{~V}(\pm 0.3 \mathrm{~V})$ while the supply voltage ramps or while it returns to zero.

Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of each control pin is recommended. This applies to control pins 17,18 , and 19 as shown below.

Figure 40. Control Pin Interface Schematic

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.
www.renesas.com/us/en/document/psc/24-vfafpn-package-outline-drawing-40-x-40-x-075-mm-body-05mm-pitch-epad-27-x-27-mmnbnbg24p3

Marking Diagram

IDTF2955
NBGK
Z1528UZL

Line 1 and 2 are the part number.
Line 3: "Z" is for the ASM Test Step.
Line 3: "YYWW" is the last two digits of the year plus the work week.
Line 3: "UZL" denotes the Assembler Code.

Ordering Information

Part Number	Package	MSL Rating	Carrier Type	Temperature Range
F2955NBGK	$4.0 \times 4.0 \times 0.75 \mathrm{~mm} 24-\mathrm{QFN}$	MSL1	Tray	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
F2955NBGK8	$4.0 \times 4.0 \times 0.75 \mathrm{~mm} 24-\mathrm{QFN}$	MSL1	Reel	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
F2955EVBK	Evaluation Board			

Revision History

Date	Description of Change
February 7, 2023	Updated disclaimer and POD links.
June 25, 2020	- Rebranded the document as Renesas
February 21,2019	- Corrected HBM ESD voltage in Table 2
October 11,2018	- Changed maximum value for "Maximum Junction Temperature" in Table 2 - Changed maximum value for "VDD to GND" in Table 2 - Updated maximum value for "Power Supply Voltages" in Table 3
September 25, 2018	Initial release.

SIDE VIEW

RECOMMENDED LAND PATTERN
(PCB Top View, NSMD Design)

NOTES:

1. JEDEC compatibles.
2. All dimensions are in mm and angles are in degrees.
3. Use $\pm 0.05 \mathrm{~mm}$ for the non-toleranced dimensions.
4. Numbers in () are for references only.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

