MAX828, MAX829

Switched Capacitor Voltage Converter

The MAX828 and MAX829 are CMOS charge pump voltage inverters that are designed for operation over an input voltage range of 1.15 V to 5.5 V with an output current capability in excess of 50 mA . The operating current consumption is only $68 \mu \mathrm{~A}$ for the MAX828 and $118 \mu \mathrm{~A}$ for the MAX829. The devices contain an internal oscillator that operates at 12 kHz for the MAX828 and 35 kHz for the MAX829. The oscillator drives four low resistance MOSFET switches, yielding a low output resistance of 26Ω and a voltage conversion efficiency of 99.9%. These devices require only two external capacitors, $10 \mu \mathrm{~F}$ for the MAX828 and $3.3 \mu \mathrm{~F}$ for the MAX829, for a complete inverter making it an ideal solution for numerous battery powered and board level applications. The MAX828 and MAX829 are available in the TSOP-5 package.

Features

- Operating Voltage Range of 1.15 V to 5.5 V
- Output Current Capability in Excess of 50 mA
- Low Current Consumption of $68 \mu \mathrm{~A}$ (MAX828) or $118 \mu \mathrm{~A}$ (MAX829)
- Operation at 12 kHz (MAX828) or 35 kHz (MAX829)
- Low Output Resistance of 26Ω
- Space Saving TSOP-5 Package
- Pb-Free Packages are Available

Typical Applications

- LCD Panel Bias
- Cellular Telephones
- Pagers
- Personal Digital Assistants
- Electronic Games
- Digital Cameras
- Camcorders
- Hand-Held Instruments

This device contains 77 active transistors.
Figure 1. Typical Application

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAM

EAx $=$	Device Code
	X A A or B
A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
U	$=$ Pb-Free Package

(Note: Microdot may be in either location)

PIN CONFIGURATION

ORDERING INFORMATION

Device	Package	Shipping †
MAX828EUK	TSOP-5	3000 Tape/Reel
MAX828EUKG	TSOP-5 (Pb-Free)	3000 Tape/Reel
MAX829EUK	TSOP-5	3000 Tape/Reel
MAX829EUKG	TSOP-5 (Pb-Free)	3000 Tape/Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS*

Rating	Symbol	Value	Unit
Input Voltage Range ($\mathrm{V}_{\text {in }}$ to GND)	$V_{\text {in }}$	-0.3 to 6.0	V
Output Voltage Range (V $\mathrm{V}_{\text {out }}$ to GND)	$V_{\text {out }}$	-6.0 to 0.3	V
Output Current (Note 1)	$\mathrm{I}_{\text {out }}$	100	mA
Output Short Circuit Duration (V ${ }_{\text {out }}$ to GND, Note 1)	tsc	Indefinite	sec
Operating Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$
Power Dissipation and Thermal Characteristics Thermal Resistance, Junction to Air Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{R}_{\text {QJA }} \\ \mathrm{P}_{\mathrm{D}} \end{gathered}$	$\begin{aligned} & 256 \\ & 313 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \mathrm{~mW} \end{aligned}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.
*ESD Ratings
ESD Machine Model Protection up to 200 V, Class B
ESD Human Body Model Protection up to 2000 V, Class 2

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}\right.$ for MAX828 $\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mu \mathrm{~F}$, for MAX829 $\mathrm{C}_{1}=\mathrm{C}_{2}=3.3 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, typical values shown are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. See Figure 20 for test setup.)

Characteristic	Symbol	Min	Typ	Max	Unit
Operating Supply Voltage Range ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$)	$V_{\text {in }}$	1.5 to 5.5	1.15 to 6.0	-	V
```Supply Current Device Operating ( \(\mathrm{R}_{\mathrm{L}}=\infty\) ) \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) MAX828 MAX829 \(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) MAX828 MAX829```	$1{ }_{\text {in }}$		$\begin{gathered} 68 \\ 118 \\ \\ 73 \\ 128 \end{gathered}$	$\begin{gathered} 90 \\ 200 \\ \\ 100 \\ 200 \end{gathered}$	$\mu \mathrm{A}$
Oscillator Frequency $\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \text { MAX828 } \\ \text { MAX829 } \end{gathered}$ $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \text { MAX828 } \\ & \text { MAX829 } \end{aligned}$	fosc	$\begin{gathered} 8.4 \\ 24.5 \\ \\ 6.0 \\ 19 \end{gathered}$	$\begin{aligned} & 12 \\ & 35 \\ & - \end{aligned}$	$\begin{gathered} 15.6 \\ 45.6 \\ 21 \\ 54 \end{gathered}$	kHz
$\begin{aligned} & \text { Output Resistance ( } \mathrm{I}_{\text {out }}=25 \mathrm{~mA} \text {, Note } 2 \text { ) } \\ & \text { MAX828 } \\ & \text { MAX829 } \end{aligned}$	$\mathrm{R}_{\text {out }}$	-	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\Omega$
Voltage Conversion Efficiency ( $\mathrm{R}_{\mathrm{L}}=\infty$ )	$\mathrm{V}_{\text {EFF }}$	99	99.9	-	\%
Power Conversion Efficiency ( $\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$ )	P EfF	-	96	-	\%

1. Maximum Package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.
$T_{J}=T_{A}+\left(P_{D} R_{\theta J A}\right)$
2. Capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ contribution is approximately $20 \%$ of the total output resistance.


Figure 2. Output Resistance vs. Supply Voltage MAX828


Figure 4. Output Resistance vs. Ambient Temperature MAX828


Figure 6. Output Current vs. Capacitance MAX828


Figure 3. Output Resistance vs. Supply Voltage MAX829


Figure 5. Output Resistance vs. Ambient Temperature MAX829


Figure 7. Output Current vs. Capacitance MAX829


Figure 8. Output Voltage Ripple vs. Capacitance MAX828


Figure 10. Supply Current vs. Supply Voltage MAX828


Figure 12. Oscillator Frequency vs. Ambient Temperature MAX828


Figure 9. Output Voltage Ripple vs. Capacitance MAX829


Figure 11. Supply Current vs. Supply Voltage MAX829

$\mathrm{T}_{\mathrm{A}}$, AMBIENT TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ )
Figure 13. Oscillator Frequency vs. Ambient Temperature MAX829


Figure 14. Output Voltage vs. Output Current MAX828


Figure 16. Power Conversion Efficiency vs. Output Current MAX828
OUTPUT VOLTAGE RIPPLE \& NOISE $=10 \mathrm{mV} /$ Div .


TIME $=25 \mu \mathrm{~s} / \mathrm{div}$
Figure 18. Output Voltage Ripple and Noise
MAX828
 AC COUPLED
AC COUPLED


Figure 15. Output Voltage vs. Output Current MAX829


Figure 17. Power Conversion Efficiency vs. Output Current MAX829


TIME $=10 \mu \mathrm{~s} / \mathrm{div}$
Figure 19. Output Voltage Ripple and Noise MAX829


Figure 20. Test Setup/Voltage Inverter

## DETAILED OPERATING DESCRIPTION

The MAX828/829 charge pump converters inverts the voltage applied to the $\mathrm{V}_{\text {in }}$ pin. Conversion consists of a two-phase operation (Figure 21). During the first phase, switches $S_{2}$ and $S_{4}$ are open and $S_{1}$ and $S_{3}$ are closed. During this time, $\mathrm{C}_{1}$ charges to the voltage on $\mathrm{V}_{\text {in }}$ and load current is supplied from $C_{2}$. During the second phase, $S_{2}$ and $S_{4}$ are closed, and $S_{1}$ and $S_{3}$ are open. This action connects $C_{1}$ across $\mathrm{C}_{2}$, restoring charge to $\mathrm{C}_{2}$.


Figure 21. Ideal Switched Capacitor Charge Pump

## APPLICATIONS INFORMATION

## Output Voltage Considerations

The MAX828/829 performs voltage conversion but does not provide regulation. The output voltage will drop in a linear manner with respect to load current. The value of this equivalent output resistance is approximately $26 \Omega$ nominal at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}$. $\mathrm{V}_{\text {out }}$ is approximately -5.0 V at light loads, and drops according to the equation below:

$$
\begin{gathered}
V_{\text {DROP }}=I_{\text {out }} \times R_{\text {out }} \\
V_{\text {out }}=-\left(V_{\text {in }}-V_{\text {DROP }}\right)
\end{gathered}
$$

## Charge Pump Efficiency

The overall power efficiency of the charge pump is affected by four factors:

1. Losses from power consumed by the internal oscillator, switch drive, etc. (which vary with input voltage, temperature and oscillator frequency).
2. I ${ }^{2}$ R losses due to the on-resistance of the MOSFET switches on-board the charge pump.
3. Charge pump capacitor losses due to Equivalent Series Resistance (ESR).
4. Losses that occur during charge transfer from the commutation capacitor to the output capacitor when a voltage difference between the two capacitors exists.
Most of the conversion losses are due to factors 2, 3 and 4. These losses are given by Equation 1.

$$
\begin{gather*}
\mathrm{P}_{\text {LOSS }(2,3,4)}=\mathrm{I}_{\text {out }}^{2} \times \mathrm{R}_{\text {out }} \cong \mathrm{I}_{\text {out }}^{2} \times \\
{\left[\frac{1}{\left(\mathrm{f}_{\mathrm{OSC}}\right) \mathrm{C}_{1}}+8 \mathrm{R}_{\text {SWITCH }}+4 \mathrm{ESR}_{\mathrm{C}_{1}}+\mathrm{ESR}_{\mathrm{C}_{2}}\right]} \tag{eq.1}
\end{gather*}
$$

The $1 /\left(\mathrm{f}_{\text {OSC }}\right)\left(\mathrm{C}_{1}\right)$ term in Equation 1 is the effective output resistance of an ideal switched capacitor circuit (Figures 22 and 23).
The losses due to charge transfer above are also shown in Equation 2. The output voltage ripple is given by Equation 3.

$$
\begin{align*}
P_{\text {LOSS }} & =\left[0.5 C_{1}\left(\mathrm{~V}_{\text {in }}^{2}-\mathrm{V}_{\text {out }}{ }^{2}\right)\right. \\
& \left.+0.5 \mathrm{C}_{2}\left(\mathrm{~V}_{\text {RIPPLE }}{ }^{2}-2 \mathrm{~V}_{\text {out }} \mathrm{V}_{\text {RIPPLE }}\right)\right] \times \mathrm{f}_{\text {OSC }} \tag{eq.2}
\end{align*}
$$

$\mathrm{V}_{\text {RIPPLE }}=\frac{\mathrm{I}_{\text {out }}}{\left(\mathrm{f}_{\mathrm{OSC}}\right)\left(\mathrm{C}_{2}\right)}+2\left(\mathrm{I}_{\text {out }}\right)\left(\mathrm{ESR}_{\mathrm{C}_{2}}\right)$


Figure 22. Ideal Switched Capacitor Model


Figure 23. Equivalent Output Resistance

## Capacitor Selection

In order to maintain the lowest output resistance and output ripple voltage, it is recommended that low ESR capacitors be used. Additionally, larger values of $\mathrm{C}_{1}$ will lower the output resistance and larger values of $C_{2}$ will reduce output voltage ripple. (See Equation 3).

Table 1 shows various values of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{C}_{3}$ with the corresponding output resistance values at $25^{\circ} \mathrm{C}$. Table 2 shows the output voltage ripple for various values of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $C_{3}$. The data in Tables 1 and 2 was measured not calculated.

Table 1. Output Resistance vs. Capacitance $\left(C_{1}=C_{2}=C_{3}\right), V_{\text {in }}=4.75 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=-4.0 \mathrm{~V}$

$\mathbf{C}_{\mathbf{1}}=\mathbf{C}_{\mathbf{2}}=\mathbf{C}_{\mathbf{3}}$	$\mathbf{M A X 8 2 8} \mathbf{R}_{\text {out }}$   $(\boldsymbol{\Omega})$	MAX829 $\mathbf{R}_{\text {out }}$   $(\boldsymbol{\Omega})$
0.7	127.2	55.7
1.4	67.7	36.8
3.3	36	26.0
7.3	26.7	24.9
10	25.9	25.1
24	24.3	25.2
50	24	24

Table 2. Output Voltage Ripple vs. Capacitance $\left(C_{1}=C_{2}=C_{3}\right), V_{\text {in }}=4.75 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=-4.0 \mathrm{~V}$

$\mathbf{C}_{\mathbf{1}}=\mathbf{C}_{\mathbf{2}}=\mathbf{C}_{\mathbf{3}}$   $\mathbf{( \mathbf { F } )} \mathbf{~}$	MAX828 Ripple   $(\mathbf{m V})$	MAX829 Ripple   $(\mathbf{m V})$
0.7	377.5	320
1.4	360.5	234
3.3	262	121
7.3	155	62.1
10	126	51.25
24	55.1	25.2
50	36.6	27.85

## Input Supply Bypassing

The input voltage, $\mathrm{V}_{\text {in }}$ should be capacitively bypassed to reduce AC impedance and minimize noise effects due to the switching internals in the device. If the device is loaded from $V_{\text {out }}$ to GND, it is recommended that a large value capacitor (at least equal to $\mathrm{C}_{1}$ ) be connected from $\mathrm{V}_{\text {in }}$ to GND. If the device is loaded from $V_{\text {in }}$ to $V_{\text {out }}$ a small $(0.7 \mu \mathrm{~F})$ capacitor between the pins is sufficient.

## Voltage Inverter

The most common application for a charge pump is the voltage inverter (Figure 20). This application uses two or three external capacitors. The capacitors $\mathrm{C}_{1}$ (pump capacitor) and $C_{2}$ (output capacitor) are required. The input bypass capacitor $\mathrm{C}_{3}$, may be necessary depending on the application. The output is equal to $-\mathrm{V}_{\text {in }}$ plus any voltage drops due to loading. Refer to Tables 1 and 2 for capacitor selection. The test setup used for the majority of the characterization is shown in Figure 20.

## Layout Considerations

As with any switching power supply circuit, good layout practice is recommended. Mount components as close together as possible to minimize stray inductance and capacitance. Also use a large ground plane to minimize noise leakage into other circuitry.

## Capacitor Resources

Selecting the proper type of capacitor can reduce switching loss. Low ESR capacitors are recommended. The MAX828 and MAX829 were characterized using the capacitors listed in Table 3. This list identifies low ESR capacitors for the voltage inverter application.

Table 3. Capacitor Types

Manufacturer/Contact	Part Types/Series
AVX	TPS
843-448-9411	
www.avxcorp.com	ESRD
Cornell Dubilier	
508-996-8561	
www.cornell-dubilier.com	
Sanyo/Os-con	SN
619-661-6835	
www.sanyovideo.com/oscon.htm	
Vishay	593 D
603-224-1961	
www.vishay.com	594



Figure 24. Voltage Inverter

## MAX828, MAX829

The MAX828 / 829 primary function is a voltage inverter. The device will convert 5.0 V into -5.0 V with light loads. Two capacitors are required for the inverter to function. A third capacitor, the input bypass capacitor, may be required depending on the power source for the inverter. The performance for this device is illustrated below.


Figure 25. Voltage Inverter Load Regulation Output Voltage vs. Output Current MAX828


Figure 26. Voltage Inverter Load Regulation Output Voltage vs. Output Current MAX829


Figure 27. Cascade Devices for Increased Negative Output Voltage

Two or more devices can be cascaded for increased output voltage. Under light load conditions, the output voltage is approximately equal to $-\mathrm{V}_{\text {in }}$ times the number of stages. The converter output resistance increases dramatically with each additional stage. This is due to a reduction of input voltage to each successive stage as the converter output is loaded. Note that the ground connection for each successive stage must connect to the negative output of the previous stage. The performance characteristics for a converter consisting of two cascaded devices are shown below.


Figure 28. Cascade Load Regulation, Output Voltage vs. Output Current MAX828


Figure 29. Cascade Load Regulation, Output Voltage vs. Output Current MAX829

Curve	$\mathrm{V}_{\text {in }}(\mathrm{V})$	$\mathbf{R}_{\text {out }}(\boldsymbol{\Omega})$
A	3.0	173
B	5.0	141
C	3.0	179
D	5.0	147



Figure 30. Negative Output Voltage Doubler

A single device can be used to construct a negative voltage doubler. The output voltage is approximately equal to $-2 \mathrm{~V}_{\text {in }}$ minus the forward voltage drop of each external diode. The performance characteristics for the above converter are shown below. Note that curves A and C show the circuit performance with economical 1N4148 diodes, while curves B and D are with lower loss MBRA120E Schottky diodes.


Figure 31. Doubler Load Regulation, Output Voltage vs. Output Current MAX828


Figure 32. Doubler Load Regulation, Output Voltage vs. Output Current MAX829

## MAX828, MAX829

Curve	$\mathbf{V}_{\text {in }}(\mathbf{V})$	Diodes	MAX828   $\mathbf{R}_{\text {out }}(\boldsymbol{\Omega})$	MAX829   $\mathbf{R}_{\text {out }}(\boldsymbol{\Omega})$
A	3.0	1 N4148	122	118
B	3.0	MBRA120E	114	106
C	5.0	1N4148	96	90
D	5.0	MBRA120E	91	87



Figure 33. Negative Output Voltage Tripler

A single device can be used to construct a negative voltage tripler. The output voltage is approximately equal to $-3 \mathrm{~V}_{\text {in }}$ minus the forward voltage drop of each external diode. The performance characteristics for the above converter are shown below. Note that curves A and C show the circuit performance with economical 1N4148 diodes, while curves B and D are with lower loss MBRA120E Schottky diodes.


Figure 34. Tripler Load Regulation, Output Voltage vs. Output Current MAX828


Figure 35. Tripler Load Regulation, Output Voltage vs. Output Current MAX829

## MAX828, MAX829

Curve	$\mathbf{V}_{\text {in }}(\mathbf{V})$	Diodes	MAX828   $\mathbf{R}_{\text {out }}(\boldsymbol{\Omega})$	MAX829   $\mathbf{R}_{\text {out }}(\boldsymbol{\Omega})$
A	3.0	1 N4148	259	246
B	3.0	MBRA120E	251	237
C	5.0	1N4148	209	198
D	5.0	MBRA120E	192	185



MAX828: Capacitors $=10 \mu \mathrm{~F}$
MAX829: Capacitors $=3.3 \mu \mathrm{~F}$
Figure 36. Positive Output Voltage Doubler

A single device can be used to construct a positive voltage doubler. The output voltage is approximately equal to $2 \mathrm{~V}_{\text {in }}$ minus the forward voltage drop of each external diode. The performance characteristics for the above converter are shown below. Note that curves A and C show the circuit performance with economical 1N4148 diodes, while curves B and D are with lower loss MBRA120E Schottky diodes.


Figure 37. Doubler Load Regulation, Output Voltage vs. Output Current MAX828


Figure 38. Doubler Load Regulation, Output Voltage vs. Output Current MAX829

## MAX828, MAX829

Curve	$\mathbf{V}_{\text {in }}(\mathbf{V})$	Diodes	MAX828   $\mathbf{R}_{\text {out }}(\mathbf{\Omega})$	MAX829   $\mathbf{R}_{\text {out }}(\boldsymbol{\Omega})$
A	3.0	1 N4148	32.5	32.2
B	3.0	MBRA120E	27.1	25.7
C	5.0	1N4148	26.0	25.1
D	5.0	MBRA120E	21.2	19.0



Figure 39. Positive Output Voltage Tripler

A single device can be used to construct a positive voltage tripler. The output voltage is approximately equal to $3 \mathrm{~V}_{\text {in }}$ minus the forward voltage drop of each external diode. The performance characteristics for the above converter are shown below. Note that curves A and C show the circuit performance with economical 1N4148 diodes, while curves B and D are with lower loss MBRA120E Schottky diodes.


Figure 40. Tripler Load Regulation, Output Voltage vs. Output Current MAX828


Figure 41. Tripler Load Regulation, Output Voltage vs. Output Current MAX829

## MAX828, MAX829

Curve	$\mathbf{V}_{\text {in }}(\mathrm{V})$	Diodes	MAX828   $\mathbf{R}_{\text {out }}(\boldsymbol{\Omega})$	MAX829   $\mathbf{R}_{\text {out }}(\boldsymbol{\Omega})$
A	3.0	1 N4148	110	111
B	3.0	MBRA120E	96.5	96.7
C	5.0	1N4148	84.5	87.3
D	5.0	MBRA120E	78.2	77.1



Figure 42. Paralleling Devices for Increased Negative Output Current

An increase in converter output current capability with a reduction in output resistance can be obtained by paralleling two or more devices. The output current capability is approximately equal to the number of devices paralleled. A single shared output capacitor is sufficient for proper operation but each device does require it's own pump capacitor. Note that the output ripple frequency will be complex since the oscillators are not synchronized. The output resistance is approximately equal to the output resistance of one device divided by the total number of devices paralleled. The performance characteristics for a converter consisting of two paralleled devices is shown below.


Figure 43. Parallel Load Regulation, Output Voltage vs. Output Current MAX828


Figure 44. Parallel Load Regulation, Output Voltage vs. Output Current MAX829

## MAX828, MAX829

Curve	$\mathbf{V}_{\text {in }}(\mathrm{V})$	$\mathbf{R}_{\text {out }}(\Omega)$
A	5.0	13.3
B	3.0	17.3
C	5.0	14.4
D	3.0	17.3



Figure 45. External Switch for Increased Negative Output Current

The output current capability of the MAX828 and MAX829 can be extended beyond 600 mA with the addition of two external switch transistors and two Schottky diodes. The output voltage is approximately equal to $-\mathrm{V}_{\mathrm{in}}$ minus the sum of the base emitter drops of both transistors and the forward voltage of both diodes. The performance characteristics for the converter are shown below. Note that the output resistance is reduced to 0.9 and 1.0 ohms for the 828 and 829 respectively.



Figure 48. Positive Output Voltage Doubler with High Current Capability

The MAX828/829 can be configured to produce a positive output voltage doubler with current capability in excess of 500 mA . This is accomplished with the addition of two external switch transistors and two Schottky diodes. The output voltage is approximately equal to $2 \mathrm{~V}_{\text {in }}$ minus the sum of the base emitter drops of both transistors and the forward voltage of both diodes. The performance characteristics for the converter are shown below. Note that the output resistance is reduced to $1.8 \Omega$.


Figure 51. A Positive Doubler, with a Negative Inverter

## MAX828, MAX829

All of the previously shown converter circuits have only single outputs. Applications requiring multiple outputs can be constructed by incorporating combinations of the former circuits. The converter shown above combines Figures 24 and 36 to form a negative output inverter with a positive output doubler. Different combinations of load regulation are shown below. In Figures 52 and 53 the positive doubler has a constant $\mathrm{I}_{\text {out }}=15 \mathrm{~mA}$ while the negative inverter has the variable load. In Figures 54 and 55 the negative inverter has the constant $\mathrm{I}_{\text {out }}=15 \mathrm{~mA}$ and the positive doubler has the variable load.


Figure 52. Negative Inverter Load Regulation, Output Voltage vs. Output Current, MAX828


Figure 54. Positive Doubler Load Regulation, Output Voltage vs. Output Current, MAX828

Figure 53. Negative Inverter Load Regulation, Output Voltage vs. Output Current, MAX829


Figure 55. Positive Doubler Load Regulation, Output Voltage vs. Output Current, MAX829


Inverter Size $=0.5$ in x 0.2 in
Area $=0.10 \mathrm{in}^{2}, 64.5 \mathrm{~mm}^{2}$
Figure 56. Inverter Circuit Board Layout, Top View Copper Side

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
 Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

