OPERATING TEMPERATURE RANGE -30°C TO +85°C RANGE TEMPERATURE -30°C TO +85°C RANGE VOLTAGE AC 30 V RANGE AC 30 V		X X	
VOLTAGE AC 30 V RANGE — % TO MAKE T	QT X X X X X X X X X	X	
① SIGNAL ONLY ② POWER APPLY ② 1.8 A/pin (PIN No.1,5) 0.5 A/pin (PIN No.1,5) 0.5 A/pin (PIN No.2 - 4)	X X X	X	
2 POWER APPLY 0.5 A/pin (PIN No.2 ~ 4)	X X X	X	
SPECIFICATIONS ITEM TEST METHOD REQUIREMENTS CONSTRUCTION GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. MARKING CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 100 mA (DC OR 1000 Hz). 30 mΩ MAX. INSULATION SOV DC. 100 MΩ MIN. RESISTANCE 100 V AC FOR 1 min. NO FLASHOVER OR BREAKDOWN. CAPASITANCE MEASURE ADJACENT TWO CONTACTS AT 1000±10Hz AC VOLTAGE. MECHANICAL CHARACTERISTICS INSERTION AND AMASUMUM RATE OF 12.5mm/min. WITHDRAWAL FORCE 8 N MIN. WITHDRAWAL FORCES MASURED BY APPLICABLE CONNECTOR. WITHDRAWAL FORCE 8 N MIN. MECHANICAL MATING SPEED - MECHANICALLY OPERATED: 500 CYCLES / h - MINDRAWAL FORCE 8 N MIN. WITHDRAWAL FORCE 8 N MIN. MATING SPEED - MECHANICALLY OPERATED: 200 CYCLES / h - MINDRAWAL FORCE 8 N MIN. VIBRATION FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. RANDOM VIBRATION FREQUENCY 50 TO 2000 Hz, AT 15 min, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. FREQUENCY 50 TO 2000 Hz, AT 15 min, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 6 h. TOTAL 18 TIMES. ENVIRONMENTAL CHARACTERISTICS TIME 30 → 2 TO 3 → 30 → 2 TO 3 min UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) TIME 30 → 2 TO 3 → 30 → 2 TO 3 min UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) LOOSENESS, OF PARTS.	X X X	X	
TEST METHOD REQUIREMENTS CONSTRUCTION GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. MARKING CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 100 mA (DC OR 1000 Hz). INSULATION RESISTANCE 500 V DC. VOLTAGE PROOF 100 V AC FOR 1 min. CAPASITANCE 1000±10Hz AC VOLTAGE. MECHANICAL CHARACTERISTICS INSERTION AND AMAXIMUM RATE OF 12.5mm/min. WITHDRAWAL FORCES MECHANICAL OPERATION MECHANICAL OPERATED: 200 CYCLES / h - MANUALLY OPERATED: 200 CYCLES / h - MANUALLY OPERATED: 200 CYCLES / h - MANUALLY OPERATED: 500 CYCLES / h - MANUALLY OPERATED: 500 CYCLES / h - FOR 3 AXIAL DIRECTIONS. VIBRATION FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. RANDOM VIBRATION FREQUENCY 50 TO 2000 Hz, AT 15 min, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. ENVIRONMENTAL CHARACTERISTICS TIME 30 → 2 TO 3 → 30 → 2 TO 3 min UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) THERMAL SHOCK TIME 30 → 2 TO 3 → 30 → 2 TO 3 min UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) ACCORDING TO DRAWING. AD MAX. 1000 MM MX. 1000 MM MN. 100 MM MN. 100 MM MIN. 1000 MM MAX.	X X X	X	
CONSTRUCTION GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. MARKING CONFIRMED VISUALLY. ACCORDING TO DRAWING. ELECTRIC CHARACTERISTICS 30 mΩ MAX. CONTACT RESISTANCE 100 m4 (DC OR 1000 Hz). 100 MΩ MIN. VOLTAGE PROOF 100 V AC FOR 1 min. NO FLASHOVER OR BREAKDOWN. CAPASITANCE MEASURE ADJACENT TWO CONTACTS AT 1000±10Hz AC VOLTAGE. 2 pF MAX MECHANICAL CHARACTERISTICS INSERTION AND WITHDRAWAL FORCES MEASURED BY APPLICABLE CONNECTOR. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. MECHANICAL OPERATION MATING SPEED - MECHANICALLY OPERATED : 500 CYCLES / h - MANUALLY OPERATED : 200 CYCLES / h - SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. (a) INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. VIBRATION FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. (b) NO ELECTRICAL DISCONTINUITY OF 1 µs. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 6 h. (c) NO ELECTRICAL DISCONTINUITY OF 1 µs. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 6 h. (c) NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. ENVIRONMENTAL CHARACTER	X X X	X	
GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. MARKING CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 100 mA (DC OR 1000 Hz). INSULATION 500 V DC. 100 MΩ MIN. RESISTANCE 100 v AC FOR 1 min. CAPASITANCE MEASURE ADJACENT TWO CONTACTS AT 1000±10Hz AC VOLTAGE. MEASURE ADJACENT TWO CONTACTS AT 1000±10Hz AC VOLTAGE. MECHANICAL CHARACTERISTICS INSERTION AND MITHDRAWAL FORCES MECHANICAL CHARACTERISTIONS AND EXTRACTIONS. MECHANICAL OPERATION MATING SPEED MECHANICALLY OPERATED : 200 CYCLES / h 1000 min Max. MECHANICAL OPERATION FREQUENCY 10 TO 55 Hz. VIBRATION FREQUENCY 10 TO 55 Hz. VIBRATION FREQUENCY 10 TO 55 Hz. SINGLE AMPLITUDE 0.75 mm, AT 2 h. FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. RANDOM VIBRATION FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. RANDOM VIBRATION FOR 3 AXIAL DIRECTIONS, TOTAL 18 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. ENVIRONMENTAL CHARACTERISTICS TEMP -55 → 15 TO 35 → 85 → 15 TO 35 °C TIME 30 → 2 TO 3 min 10 UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) THERMAL SHOCK (MATING APPLICABLE CONNECTOR) ASSOCIATED TO ANAMAX. ACCORDING TO DRAWING. 30 mΩ MAX. 1000 MΩ MIN. 1000 MΩ MAX. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. 3 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 μs. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 μs. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 μs. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 μs. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 TEMP -55 → 15 TO 35 → 85 → 15 TO 35 °C 10 MΩ MIN. 3 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.	X	X	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	X	
ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 100 mA (DC OR 1000 Hz). 30 mΩ MAX. INSULATION RESISTANCE 500 V DC. 100 MΩ MIN. VOLTAGE PROOF 100 V AC FOR 1 min. NO FLASHOVER OR BREAKDOWN. CAPASITANCE MEASURE ADJACENT TWO CONTACTS AT 1000±10Hz AC VOLTAGE. 2 pF MAX MECHANICAL CHARACTERISTICS INSERTION AND AMAXIMUM RATE OF 12.5mm/min. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCES MEASURED BY APPLICABLE CONNECTOR. WITHDRAWAL FORCE 8 N MIN. MECHANICAL OPERATED : 500 CYCLES / h - MANUALLY OPERATED : 200 CYCLES / h - FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. (INSERTION FORCE 35 N MAX. VIBRATION FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. (INDERTICAL DISCONTINUITY OF 1 μs. RANDOM VIBRATION FREQUENCY 50 TO 2000 Hz, AT 15 min, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. (INDERTICAL DISCONTINUITY OF 1 μs. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 6 h. (INDERTICAL DISCONTINUITY OF 1 μs. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 6 h. (INDERTICAL DISCONTINUITY OF 1 μs. THERMAL SHOCK TEMP -55 → 15 TO 35 → 85 → 15 TO 35 °C TO 3 min UNDER 1 MS TO TAKE THE STITUS TO THE	X		
$ \begin{array}{c} \text{CONTACT RESISTANCE} \\ \text{INSULATION} \\ \text{RESISTANCE} \\ \text{VOLTAGE PROOF} \\ \text{CAPASITANCE} \\ \text{VOLTAGE PROOF} \\ \text{I 100 V AC FOR 1 min.} \\ \text{CAPASITANCE} \\ \text{VOLTAGE PROOF} \\ \text{I 100 V AC FOR 1 min.} \\ \text{MECHANICAL CHARACTERISTICS} \\ \text{INSERTION AND} \\ \text{WITHDRAWAL FORCES} \\ \text{INSERTION AND} \\ \text{MECHANICAL} \\ \text{OPERATION} \\ \text{OPERATION} \\ \text{AMAZIMALY OPERATED : 200 CYCLES / h} \\ \text{- MANUALLY OPERATED : 200 CYCLES / h} \\ \text{- MANUALLY OPERATED : 200 CYCLES / h} \\ \text{- MANDOM VIBRATION} \\ \text{RANDOM VIBRATION} \\ \text{RANDOM VIBRATION} \\ \text{TREQUENCY 10 TO 55 Hz,} \\ \text{SINGLE AMPLITUDE 0.75 mm, AT 2 h,} \\ \text{FOR 3 AXIAL DIRECTIONS.} \\ \text{SHOCK} \\ \text{AT 3 TIMES FOR 6 DIRECTIONS,} \\ \text{TOTAL 18 TIMES.} \\ \text{ENVIRONMENTAL CHARACTERISTICS} \\ \text{THERMAL SHOCK} \\ \text{IMB 200 CYCLES (MAX)} \\ \text{THERMAL SHOCK} \\ \text{IMB 200 CYCLES (MAX)} \\ \text{TO DATACT RESISTANCE : NO INCREASE OF MAX.} \\ \text{WITHDRAWAL FORCE 35 N MAX.} \\ \text{WITHDRAWAL FORCE 36 N MIN.} \\ \text{3 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{1 } \mus. \\ \text{2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{3 INUSE FOR 6 DIRECTIONS, TOTAL 18 TIMES.} \\ \text{ENVIRONMENTAL CHARACTERISTICS} \\ \text{TIME 30 } 0 2 TO 3 \rightarrow 30 \rightarrow 2 TO 3 min UNDER 10 CYCLES.} \\ \text{(MATING APPLICABLE CONNECTOR)} \\ \text{1 } \text{CONTACT RESISTANCE : 10 M} \text{MM} \text{MN.} \\ \text{3 } \text{NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{2 } \text{INSULATION RESISTANCE : 10 M} \text{MM} \text{MN.} \\ \text{3 } \text{NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{3 } \text{NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{3 } \text{NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{4 } \text{CONTACT RESISTANCE : 10 M} \text{MM} \text{MN.} \\ \text{3 } \text{NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{4 } \text{CONTACT RESISTANCE : 10 M} \text{MM} \text{M} \\ \text{4 } \text{CONTACT RESISTANCE : 10 M} \text{MM} \text{MIN.} $	Х	X	
INSULATION RESISTANCE	Х	X	
RESISTANCE VOLTAGE PROOF 100 V AC FOR 1 min. NO FLASHOVER OR BREAKDOWN. MEASURE ADJACENT TWO CONTACTS AT 1000 \pm 10Hz AC VOLTAGE. 2 pF MAX MECHANICAL CHARACTERISTICS INSERTION AND WITHDRAWAL FORCES 10000 TIMES INSERTIONS AND EXTRACTIONS. MEASURED BY APPLICABLE CONNECTOR. WITHDRAWAL FORCE 8 N MIN. 10000 TIMES INSERTIONS AND EXTRACTIONS. MECHANICAL OPERATION MECHANICALLY OPERATED: 500 CYCLES / h - MANUALLY OPERATED: 200 CYCLES / h - MANUALLY OPERATED: 200 CYCLES / h - MANUALLY OPERATED: 200 CYCLES / h - FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. FOR 3 AXIAL DIRECTIONS OF PULSE 11 ms AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. 1000 ENESS, OF PARTS. 11 CONTACT RESISTANCE: 70 m\text{Q MAX} MAX. WITHDRAWAL FORCE 8 N MIN. 3 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 \mus. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 \mus. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 \mus. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 \mus. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 \mus. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 \mus. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 \mus. 3 \mus. 3 \mus. 2 \mus. 3 \mus.			
$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	X	Х	
CAPASITANCE $ \begin{array}{c} \text{MEASURE ADJACENT TWO CONTACTS AT} \\ 1000 \pm 10 \text{Hz AC VOLTAGE.} \end{array} \\ \text{MECHANICAL CHARACTERISTICS} \\ \text{INSERTION AND} \\ \text{WITHDRAWAL FORCES} \\ \end{array} \\ \begin{array}{c} \text{A MAXIMUM RATE OF 12.5mm/min.} \\ \text{MEASURED BY APPLICABLE CONNECTOR.} \\ \end{array} \\ \begin{array}{c} \text{INSERTION FORCE} \\ \text{S N MIN.} \\ \end{array} \\ \begin{array}{c} \text{MEASURED BY APPLICABLE CONNECTOR.} \\ \end{array} \\ \begin{array}{c} \text{INSERTION FORCE} \\ \text{S N MIN.} \\ \end{array} \\ \begin{array}{c} \text{MINDERTION FORCE} \\ \text{S N MIN.} \\ \end{array} \\ \begin{array}{c} \text{MECHANICAL} \\ \text{OPERATION} \\ \end{array} \\ \begin{array}{c} \text{MATING SPEED} \\ -\text{MECHANICALLY OPERATED: 500 CYCLES / h} \\ -\text{MANUALLY OPERATED: 200 CYCLES / h} \\ -\text{MANUALLY OPERATED: 200 CYCLES / h} \\ \end{array} \\ \begin{array}{c} \text{SINGLE AMPLITUDE} \\ \text{SINGLE AMPLITUDE} \\ \text{O.75} \\ \text{mm, AT 2 h,} \\ \text{FOR 3 AXIAL DIRECTIONS, TOTAL 6 h.} \\ \end{array} \\ \begin{array}{c} \text{FREQUENCY 10 TO 55 Hz,} \\ \text{SINGLE AMPLITUDE 0.75 mm, AT 2 h,} \\ \text{FOR 3 AXIAL DIRECTIONS, TOTAL 6 h.} \\ \end{array} \\ \begin{array}{c} \text{FREQUENCY 50 TO 2000 Hz, AT 15 min,} \\ \text{FOR 3 AXIAL DIRECTIONS OF PULSE 11 ms} \\ \text{A490m/s}^2 \text{ DIRECTIONS OF PULSE 11 ms} \\ \text{AT 3 TIMES FOR 6 DIRECTIONS,} \\ \text{TOTAL 18 TIMES.} \\ \end{array} \\ \begin{array}{c} \text{ENVIRONMENTAL CHARACTERISTICS} \\ \end{array} \\ \begin{array}{c} \text{TEMP } -55 \rightarrow 15 \text{ TO } 35 \rightarrow 85 \rightarrow 15 \text{ TO } 35 \text{ °C} \\ \text{TIME } & 30 \rightarrow 2 \text{ TO } 3 \rightarrow 30 \rightarrow 2 \text{ TO } 3 \text{ min} \\ \text{UNDER 10 CYCLES.} \\ \text{(MATING APPLICABLE CONNECTOR.} \\ \end{array} \\ \begin{array}{c} \text{1} \text{ INSLATION RESISTANCE : 70 mp.} \\ \text{3} \text{ NO DAMAGE, CRACK AND} \\ \text{LOOSENESS, OF PARTS.} \\ \end{array} \\ \begin{array}{c} \text{3} \text{ INSULATION RESISTANCE : 10 mp.} \\ \text{3} \text{ NO DAMAGE, CRACK AND} \\ \text{LOOSENESS, OF PARTS.} \\ \end{array}$		X	
MECHANICAL CHARACTERISTICS INSERTION AND WITHDRAWAL FORCES MECHANICAL OPERATION MECHANICAL OPERATION FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. RANDOM VIBRATION SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. ENVIRONMENTAL THERMAL SHOCK MECHANICAL CHARACTERISTICS MAXIMUM RATE OF 12.5mm/min. MAXIMUM RATE OF 12.5mm/min. MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :NO INCREASE OF MORE THAN 10 mΩ FROM INITIAL VALUE. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :NO INCREASE OF MORE THAN 10 mΩ FROM INITIAL VALUE. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :NO INCREASE OF MORE THAN 10 mΩ FROM INITIAL VALUE. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :NO INCREASE OF MORE THAN 10 mΩ FROM INITIAL VALUE. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :NO INCREASE OF MORE THAN 10 mΩ FROM INITIAL VALUE. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :NO INCREASE OF MORE THAN 10 mΩ FROM INITIAL VALUE. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :NO INCREASE OF MORE THAN 10 mΩ FROM INITIAL VALUE. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :NO INCREASE OF MORE THAN 10 mΩ MAX. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :10 MΩ MAX. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O CONTACT RESISTANCE :10 MΩ MAX. INSERTION FORCE 35 N MAX. WITHDRAWAL FORCE 8 N MIN. O DO DAMAGE, CRACK AND LOOSENESS, OF PARTS.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Х	_	
WITHDRAWAL FORCES MEASURED BY APPLICABLE CONNECTOR. WITHDRAWAL FORCE 8 N MIN.			
$\begin{array}{c} \text{MECHANICAL} \\ \text{OPERATION} \end{array} \\ \begin{array}{c} \text{MATING SPEED} \\ \text{- MECHANICALLY OPERATED: 500 CYCLES / h} \\ \text{- MANUALLY OPERATED: 200 CYCLES / h} \\ \text{VIBRATION} \end{array} \\ \begin{array}{c} \text{FREQUENCY 10 TO 55 Hz,} \\ \text{SINGLE AMPLITUDE 0.75 mm, AT 2 h,} \\ \text{FOR 3 AXIAL DIRECTIONS,} \\ \text{FOR 3 AXIAL DIRECTIONS,} \\ \text{TOTAL 18 TIMES.} \end{array} \\ \text{SHOCK} \end{array} \\ \begin{array}{c} \text{FREQUENCY 50 TO 2000 Hz, AT 15 TO 35 °C} \\ \text{TIME 30 } \rightarrow 2 \text{TO 3} \rightarrow 30 \rightarrow 2 \text{TO 3} \text{min} \\ \text{UNDER 10 CYCLES.} \\ \text{MATING SPEED} \\ \text{- MATING SPEED} \\ \text{- MECHANICALLY OPERATED: 500 CYCLES / h} \\ \text{- MANUALLY OPERATED: 200 CYCLES / h} \\ \text{- MATING SPEED} \\ \text{- MATING APPLICABLE CONNECTOR)} \end{array} \\ \begin{array}{c} \text{- MATING SPEED} \\ \text{- MATING APPLICABLE CONNECTOR)} \\ \text{- MATING APPLICABLE CONNECTOR)} \end{array} \\ \begin{array}{c} \text{- MATING SPEED} \\ \text{- MATING APPLICABLE CONNECTOR)} \\ - MA$	Х	T_	
MECHANICAL OPERATION MATING SPEED - MECHANICALLY OPERATED: 500 CYCLES / h - MANUALLY OPERATED: 200 CYCLES / h - MANUALLY OPERATED: 200 CYCLES / h SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. RANDOM VIBRATION FREQUENCY 50 TO 2000 Hz, AT 15 min, FOR 3 AXIAL DIRECTIONS. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. ENVIRONMENTAL CHARACTERISTICS THERMAL SHOCK		+	
$\begin{array}{c} \text{MATING SPEED} \\ -\text{MECHANICALLY OPERATED} : 500 \text{ CYCLES / h} \\ -\text{MANUALLY OPERATED} : 200 \text{ CYCLES / h} \\ -\text{MANUALLY OPERATED} : 200 \text{ CYCLES / h} \\ \end{array} \begin{array}{c} \text{(2) INSERTION FORCE} 35 \text{ N MAX.} \\ \text{WITHDRAWAL FORCE} 8 \text{ N MIN.} \\ \text{(3) NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \end{array} \\ \text{VIBRATION} \\ \begin{array}{c} \text{FREQUENCY} 10 \text{TO} 55 \text{Hz,} \\ \text{SINGLE AMPLITUDE} 0.75 \text{mm, AT} 2 \text{h,} \\ \text{FOR} 3 \text{AXIAL DIRECTIONS, TOTAL 6 h.} \\ \end{array} \\ \text{RANDOM VIBRATION} \\ \begin{array}{c} \text{FREQUENCY} 50 \text{TO} 2000 \text{Hz, AT} 15 \text{ min,} \\ \text{FOR} 3 \text{AXIAL DIRECTIONS.} \\ \end{array} \\ \text{SHOCK} \\ \begin{array}{c} \text{AT} 3 \text{TIMES FOR} 6 \text{DIRECTIONS,} \\ \text{TOTAL 18 TIMES.} \\ \end{array} \\ \begin{array}{c} \text{ENVIRONMENTAL CHARACTERISTICS} \\ \end{array} \\ \begin{array}{c} \text{TEMP} -55 \rightarrow 15 \text{ TO} 35 \rightarrow 85 \rightarrow 15 \text{ TO} 35 ^{\circ}\text{C}} \\ \text{TIME} 30 \rightarrow 2 \text{ TO} 3 \rightarrow 30 \rightarrow 2 \text{ TO} 3 \text{ min} \\ \text{UNDER} 10 \text{CYCLES.} \\ \text{(MATING APPLICABLE CONNECTOR)} \\ \end{array} \begin{array}{c} \text{(2) INSERTION FORCE} 35 \text{ N MAX.} \\ \text{WITHDRAWAL FORCE} 8 \text{ N MIN.} \\ \text{(MOSENESS, OF PARTS.} \\ \end{array}$			
OPERATION $ \begin{array}{c} \text{IMA ING SPEED} \\ \text{- MECHANICALLY OPERATED : } 500 \text{ CYCLES / h} \\ \text{- MANUALLY OPERATED : } 200 \text{ CYCLES / h} \\ \text{- MANUALLY OPERATED : } 200 \text{ CYCLES / h} \\ \end{array} \begin{array}{c} \text{(2) INSERTION FORCE} & 35 \text{ N MAX.} \\ \text{WITHDRAWAL FORCE} & 8 \text{ N MIN.} \\ \text{(3) NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.} \\ \text{VIBRATION} \\ \end{array} \begin{array}{c} \text{FREQUENCY} & 10 & \text{TO} & 55 & \text{Hz,} \\ \text{SINGLE AMPLITUDE} & 0.75 & \text{mm, AT} & 2 & \text{h,} \\ \text{FOR} & 3 & \text{AXIAL DIRECTIONS, TOTAL 6 h.} \\ \text{FOR} & 3 & \text{AXIAL DIRECTIONS.} \\ \text{FOR} & 3 & \text{AXIAL DIRECTIONS.} \\ \text{FOR} & 3 & \text{AXIAL DIRECTIONS.} \\ \text{SHOCK} \\ \end{array} \begin{array}{c} \text{FREQUENCY 50 TO 2000 Hz, AT 15 min,} \\ \text{FOR} & 3 & \text{AXIAL DIRECTIONS.} \\ \text{490m/s}^2 & \text{DIRECTIONS OF PULSE} & 11 & \text{ms} \\ \text{AT} & 3 & \text{TIMES FOR} & 6 & \text{DIRECTIONS,} \\ \text{TOTAL 18 TIMES.} \\ \end{array} \begin{array}{c} \text{20 NO DAMAGE, CRACK AND} \\ \text{LOOSENESS, OF PARTS.} \\ \end{array} \\ \text{CONTACT RESISTANCE : 70 m} & \text{MAX.} \\ \text{20 INSULATION RESISTANCE : 10 M} & \text{MIN.} \\ \text{30 NO DAMAGE, CRACK AND} \\ \text{UNDER} & 10 & \text{CYCLES.} \\ \text{(MATING APPLICABLE CONNECTOR)} \\ \end{array} \begin{array}{c} \text{30 NO DAMAGE, CRACK AND} \\ \text{LOOSENESS, OF PARTS.} \\ \end{array} $			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X	-	
LOOSENESS, OF PARTS. VIBRATION FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. RANDOM VIBRATION FREQUENCY 50 TO 2000 Hz, AT 15 min, FOR 3 AXIAL DIRECTIONS. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. ENVIRONMENTAL CHARACTERISTICS THERMAL SHOCK TIME 30 → 2 TO 3 → 30 → 2 TO 3 min UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) LOOSENESS, OF PARTS. 1 NO ELECTRICAL DISCONTINUITY OF 1 μs. 2 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. 1 (CONTACT RESISTANCE : 70 mΩ MAX. 2 INSULATION RESISTANCE : 10 MΩ MIN. 3 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.			
VIBRATION SINGLE AMPLITUDE 0.75 mm, AT 2 h, FOR 3 AXIAL DIRECTIONS, TOTAL 6 h. RANDOM VIBRATION FREQUENCY 50 TO 2000 Hz, AT 15 min, FOR 3 AXIAL DIRECTIONS. SHOCK FOR 3 AXIAL DIRECTIONS OF PULSE 11 ms LOOSENESS, OF PARTS. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. ENVIRONMENTAL CHARACTERISTICS THERMAL SHOCK TIME $30 \rightarrow 2$ TO $3 \rightarrow 30 \rightarrow 2$ TO 3 min UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) TOTAL 18 TIMES TO $35 \rightarrow 85 \rightarrow 15$ TO $35 \circ C$ TO $35 \circ$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
RANDOM VIBRATION FREQUENCY 50 TO 2000 Hz, AT 15 min, FOR 3 AXIAL DIRECTIONS. (2) NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. (2) NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. (3) NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. (4) PARTAGE STANCE STA	X	-	
RANDOM VIBRATION FOR 3 AXIAL DIRECTIONS. ② NO DAMAGE, CRACK AND 490m/s² DIRECTIONS OF PULSE 11 ms LOOSENESS, OF PARTS. SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES.	<u> </u>	-	
SHOCK AT 3 TIMES FOR 6 DIRECTIONS, TOTAL 18 TIMES. ENVIRONMENTAL CHARACTERISTICS	X	-	
TOTAL 18 TIMES. ENVIRONMENTAL CHARACTERISTICS TEMP -55 \rightarrow 15 TO 35 \rightarrow 85 \rightarrow 15 TO 35 $^{\circ}$ C TIME 30 \rightarrow 2 TO 3 \rightarrow 30 \rightarrow 2 TO 3 min UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) TOTAL 18 TIMES. (1) CONTACT RESISTANCE : 70 m Ω MAX. (2) INSULATION RESISTANCE :10 M Ω MIN. (3) NO DAMAGE, CRACK AND LOOSENESS,OF PARTS.			
THERMAL SHOCK	X	-	
THERMAL SHOCK			
THERMAL SHOCK TIME $30 \rightarrow 2$ TO $3 \rightarrow 30 \rightarrow 2$ TO 3 min UNDER 10 CYCLES. (MATING APPLICABLE CONNECTOR) INSULATION RESISTANCE :10 M Ω MIN. (3) NO DAMAGE, CRACK AND LOOSENESS,OF PARTS.	$\overline{}$		
(MATING APPLICABLE CONNECTOR) (MOSENESS, OF PARTS.	X		
	_ ^	-	
HUMIDITY LIFE TEMPERATURE -10~65 °C, HUMIDITY 90 TO NO DAMAGE, CRACK AND LOOSENESS, 98 %, UNDER 7 CYCLES (168 h) OF PARTS.	X	-	
(MATING APPLICABLE CONNECTOR)			
	\perp		
COUNT DESCRIPTION OF REVISIONS DESIGNED CHECKED	DA	DATE	
REMARK APPROVED NM. NISHIMATSU	15.	10. 27	
HIROSE will not guarantee the performance on these specifications in CHECKED KN. ICHIKAWA	15.	10. 27	
case this product will be mated with the others which is not DESIGNED TS. ITO	15.	10. 27	
HIROSE's.	15. 10. 27		
Unless otherwise specified, refer to USB2.0, EIA364 or IEC 60512.	15.	10.27	
Note QT:Qualification Test AT:Assurance Test X:Applicable Test DRAWING NO. ELC-126723-3	0-0	0	
SPECIFICATION SHEET PART NO. ZX80-B-5P (30)			
HIROSE ELECTRIC CO., LTD. CODE NO. CL242-0051-0-30			

SPECIFICATIONS										
ITEM	TEST METHOD	ETHOD REQUIREMENTS								
DRY HEAT		NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.	Х	-						
COLD	(MATING APPLICABLE CONNECTOR)	NO DAMAGE, CRACK AND LOOSENESS, OF PARTS.	Х	-						
CORROSION SALT MIST	EXPOSED IN 5 % SALT WATER, 35 °C FOR 48h. (LEFT UNDER UNMATED CONDITION.)	NO HEAVY CORROSION.	Χ	-						
SOLDERABILITY	SOLDERING POINT IMMERSED IN SOLDER BATH OF 255±5 °C, 5sec.(USING TYPE R FLUX)	SOLDER SHALL COVER MINIMUM OF 95% OF THE SURFACE BEING IMMERSED.	Х	-						
RESISTANCE TO SOLDERING HEAT	A PROFILE IS SHOWN IN FIG-1, UNDER 2 CYCLES	NO DEFORMATION OR SIGNIFICANT LOOSENESS OF CONTACTS.	Χ	-						

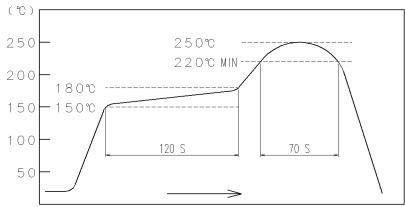


FIG – 1 RESISTANCE TO SOLDERING HEAT (TEMPERATURE AT TOP SURFACE OF CONNECTOR)

■ RECOMMENDED PROFILE REFERS TO FIG – 2. (TEMPERATURE AT SMT LEADS)

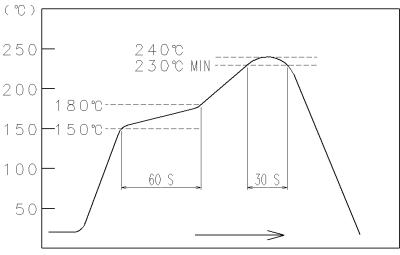


FIG – 2 RECOMMENDED REFLOW PROFILE TEMPERATURE

Note QT:Q	ualification Test AT:Assurance Test X:Applicable Test	DRAWING NO.		ELC-126723-30-00		
HS.	SPECIFICATION SHEET	PART NO.	RT NO. ZX80-B-5P (30)			
1.0	HIROSE ELECTRIC CO., LTD.	CODE NO	CL242	2-0051-0-30	\triangle	2/2