



#### 20-Output PCIe 4.0/5.0 Clock Buffer With On-chip Termination

#### Features

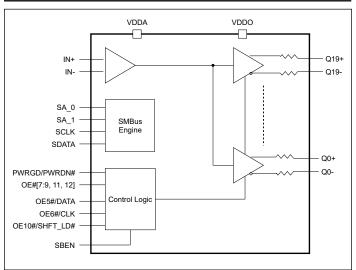
- Supports Intel's DB2000QL spec
- 3.3V supply voltage
- HCSL input: 100MHz (typ), up to 400MHz
- 20 differential low-power HCSL outputs with on-chip termination
- Two output enable control modes
  - Traditional 8 OE# pins with power down tolerance and 20 SMBus bits
  - Simple 3-wire Side-Band interface real-time control
- SMBus interface support
- Spread spectrum tolerant
- Very low jitter outputs

•

- Differential additive phase jitter: DB2000Q <30fs RMS</li>
- Differential additive phase jitter: PCIe 4.0 <30fs RMS</li>
- Differential additive phase jitter: PCIe 5.0 <20fs RMS</li> PCIe 1.0/2.0/3.0/4.0/5.0 compliant
- Differential output-to-output skew <50ps
- Low propagation delay: <3ns
- Industrial temperature support: -40°C to 85°C •
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen- and Antimony-Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/
- Packaging (Pb-free & Green): • 80-lead 6x6mm dual-row aQFN

# ing the reference clocks for UPI, SAS, SATA, and other applica-

Description


tions. It takes a reference input to fanout twenty 100MHz lowpower differential HCSL outputs with on-chip terminations. The on-chip termination can save 80 external resistors and make layout easier. OE pins combined with SMBus bits, as well as a 3-wire side band interface, provide easier power management for each output. All OE pins are power down tolerant, which allows the OE pins to be driven by external signals when the device is in a power down or reset condition. The device must reset and power up properly if these pins are driven to any valid voltage prior to the assertion of VDD or PWRGD#.

The PI6CB332001A is a 20-output, very low-power, PCIe

1.0/2.0/3.0/4.0/5.0 clock buffer. The device is capable of distribut-

The device uses Diodes' proprietary design to achieve very low jitter that meets PCIe 1.0/2.0/3.0/4.0/5.0 requirements.

#### **Block Diagram**



#### Notes:

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

<sup>1.</sup> No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.





## **Pin Configuration**

|   | 1    | 2    | 3    | 4     | 5    | 6                | 7      | 8         | 9    | 10       | 11                  | 12   |
|---|------|------|------|-------|------|------------------|--------|-----------|------|----------|---------------------|------|
| А | Q17+ | Q16- | Q16+ | Q15-  | Q15+ | Q14-             | Q14+   | Q13-      | Q13+ | Q12-     | Q12+                | Q11- |
| В | Q17- | VDDO | NC   | SA_0  | NC   | VDDO             | NC     | SA_1      | NC   | OE12#    | VDDO                | Q11+ |
| С | Q18+ | NC   |      |       |      |                  |        |           |      |          | OE11#               | Q10- |
| D | Q18- | NC   |      |       |      |                  |        |           |      |          | NC                  | Q10+ |
| Е | Q19+ | SBEN |      |       |      |                  |        |           |      |          | OE10#/SH-<br>FT_LD# | OE9# |
| F | Q19- | NC   |      |       |      |                  |        |           |      |          | NC                  | Q9-  |
| G | IN+  | NC   |      |       |      | EPAD             | is GND |           |      |          | NC                  | Q9+  |
| Н | IN-  | VDDA |      |       |      |                  |        |           |      |          | OE8#                | Q8-  |
| J | Q0+  | NC   |      |       |      |                  |        |           |      |          | NC                  | Q8+  |
| К | Q0-  | NC   |      |       |      |                  |        |           |      |          | OE7#                | Q7-  |
| L | Q1+  | VDDO | NC   | SDATA | SCLK | NC               | NC     | OE5#/DATA | NC   | OE6#/CLK | VDDO                | Q7+  |
| М | Q1-  | Q2+  | Q2-  | Q3+   | Q3-  | PWRGD/<br>PWRDN# | Q4+    | Q4-       | Q5+  | Q5-      | Q6+                 | Q6-  |

### **Pin Description**

| Pin Number | Pin Name | Туре   |      | Description                             |
|------------|----------|--------|------|-----------------------------------------|
| A1         | Q17+     | Output | HCSL | Differential true clock output          |
| A2         | Q16-     | Output | HCSL | Differential complementary clock output |
| A3         | Q16+     | Output | HCSL | Differential true clock output          |
| A4         | Q15-     | Output | HCSL | Differential complementary clock output |
| A5         | Q15+     | Output | HCSL | Differential true clock output          |
| A6         | Q14-     | Output | HCSL | Differential complementary clock output |
| A7         | Q14+     | Output | HCSL | Differential true clock output          |
| A8         | Q13-     | Output | HCSL | Differential complementary clock output |
| A9         | Q13+     | Output | HCSL | Differential true clock output          |
| A10        | Q12-     | Output | HCSL | Differential complementary clock output |





#### **Pin Description Cont.**

| Pin Number | Pin Name | e Type |      | Description                                                                                                                                                                                                                  |
|------------|----------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A11        | Q12+     | Output | HCSL | Differential true clock output                                                                                                                                                                                               |
| A12        | Q11-     | Output | HCSL | Differential complementary clock output                                                                                                                                                                                      |
| B1         | Q17-     | Output | HCSL | Differential complementary clock output                                                                                                                                                                                      |
| B2         | VDDO     | Power  |      | Power supply for outputs, nominal 3.3V                                                                                                                                                                                       |
| B3         | NC       |        |      | No connect                                                                                                                                                                                                                   |
| B4         | SA_0     | Input  | CMOS | SMBus address bit. This is a tri-level input that works in conjunction with SA_1 pin, if present, to decode SMBus addresses. It has internal pull-up/down resistors to bias to VDD/2. See the SMBus Address Selection table. |
| B5         | NC       |        |      | No connect                                                                                                                                                                                                                   |
| B6         | VDDO     | Power  |      | Power supply for outputs, nominal 3.3V                                                                                                                                                                                       |
| B7         | NC       |        |      | No connect                                                                                                                                                                                                                   |
| B8         | SA_1     | Input  | CMOS | SMBus address bit. This is a tri-level input that works in conjunction with SA_0 pin, if present, to decode SMBus addresses. It has internal pull-up/down resistors to bias to VDD/2. See the SMBus Address Selection table. |
| B9         | NC       |        |      | No connect                                                                                                                                                                                                                   |
| B10        | OE12#    | Input  | CMOS | Active low input for enabling Q12 pair. 1 =disable outputs, 0 = enable outputs. The pin has internal pull down                                                                                                               |
| B11        | VDDO     | Power  |      | Power supply for outputs, nominal 3.3V                                                                                                                                                                                       |
| B12        | Q11+     | Output | HCSL | Differential true clock output                                                                                                                                                                                               |
| C1         | Q18+     | Output | HCSL | Differential true clock output                                                                                                                                                                                               |
| C2         | NC       |        |      | No connect                                                                                                                                                                                                                   |
| C11        | OE11#    | Input  | CMOS | Active low input for enabling Q11 pair. 1 =disable outputs, 0 = enable outputs. The pin has internal pull down                                                                                                               |
| C12        | Q10-     | Output | HCSL | Differential complementary clock output                                                                                                                                                                                      |
| D1         | Q18-     | Output | HCSL | Differential complementary clock output                                                                                                                                                                                      |
| D2         | NC       |        |      | No connect                                                                                                                                                                                                                   |
| D11        | NC       |        |      | No connect                                                                                                                                                                                                                   |
| D12        | Q10+     | Output | HCSL | Differential true clock output                                                                                                                                                                                               |
| E1         | Q19+     | Output | HCSL | Differential true clock output                                                                                                                                                                                               |
|            |          |        |      | Input that enables the Side-Band Interface for controlling output enables.<br>This pin disables the output enable pins when asserted. It has an internal pull-down resistor.                                                 |
| E2         | SBEN     | Input  | CMOS | 0 = OE pins and SMBus enable bits control outputs, Side-band interface disabled.                                                                                                                                             |
|            |          |        |      | 1 = Side-Band Interface controls output enables, OE pins and SMBus en-<br>able bits are disabled                                                                                                                             |





### **Pin Description Cont.**

| Pin Number | Pin Name    | Туре   |      | Description                                                                                                                                                                           |  |  |
|------------|-------------|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            |             |        |      | Active low input for enabling output 10 or SHFT_LD- pin for the Side-<br>Band Interface. Refer to the Side-Band Interface section for details. This<br>pin has an internal pull-down. |  |  |
| E11        | OE10#/SHFT_ | Input  | CMOS | OE mode: 1 = disable output, 0 = enable output.                                                                                                                                       |  |  |
|            | LD#         |        |      | Side-Band Mode: 1 = enable Side-Band Interface shift register, 0 = disable                                                                                                            |  |  |
|            |             |        |      | Side-Band Interface shift register. A falling edge transfers Side-Band shift register contents to output register                                                                     |  |  |
| E12        | OE9#        | Input  | CMOS | Active low input for enabling Q9 pair. 1 =disable outputs, 0 = enable outputs. The pin has internal pull down                                                                         |  |  |
| F1         | Q19-        | Output | HCSL | Differential complementary clock output                                                                                                                                               |  |  |
| F2         | NC          |        |      | No connect                                                                                                                                                                            |  |  |
| F11        | NC          |        |      | No connect                                                                                                                                                                            |  |  |
| F12        | Q9-         | Output | HCSL | Differential complementary clock output                                                                                                                                               |  |  |
| G1         | IN+         | Input  | HCSL | Differential true clock input                                                                                                                                                         |  |  |
| G2         | NC          |        |      | No connect                                                                                                                                                                            |  |  |
| G11        | NC          |        |      | No connect                                                                                                                                                                            |  |  |
| G12        | Q9+         | Output | HCSL | Differential true clock output                                                                                                                                                        |  |  |
| H1         | IN-         | Input  | HCSL | Differential complementary clock input                                                                                                                                                |  |  |
| H2         | VDDA        | Power  |      | Power supply for inputs and analog circuits, nominal 3.3V                                                                                                                             |  |  |
| H11        | OE8#        | Input  | CMOS | Active low input for enabling Q8 pair. 1 =disable outputs, 0 = enable outputs. The pin has internal pull down                                                                         |  |  |
| H12        | Q8-         | Output | HCSL | Differential complementary clock output                                                                                                                                               |  |  |
| J1         | Q0+         | Output | HCSL | Differential true clock output                                                                                                                                                        |  |  |
| J2         | NC          | -      |      | No connect                                                                                                                                                                            |  |  |
| J11        | NC          |        |      | No connect                                                                                                                                                                            |  |  |
| J12        | Q8+         | Output | HCSL | Differential true clock output                                                                                                                                                        |  |  |
| K1         | Q0-         | Output | HCSL | Differential complementary clock output                                                                                                                                               |  |  |
| K2         | NC          |        |      | No connect                                                                                                                                                                            |  |  |
| K11        | OE7#        | Input  | CMOS | Active low input for enabling Q7 pair. 1 =disable outputs, 0 = enable outputs. The pin has internal pull down                                                                         |  |  |
| K12        | Q7-         | Output | HCSL | Differential complementary clock output                                                                                                                                               |  |  |
| L1         | Q1+         | Output | HCSL | Differential true clock output                                                                                                                                                        |  |  |
| L2         | VDDO        | Power  |      | Power supply for outputs, nominal 3.3V                                                                                                                                                |  |  |
| L3         | NC          |        |      | No connect                                                                                                                                                                            |  |  |
| L4         | SDATA       | I/O    | CMOS | SMBus data pin                                                                                                                                                                        |  |  |
| L5         | SCLK        | Input  | CMOS | SMBus clock pin                                                                                                                                                                       |  |  |
| L6         | NC          |        |      | No connect                                                                                                                                                                            |  |  |
| L7         | NC          |        |      | No connect                                                                                                                                                                            |  |  |





### **Pin Description Cont.**

| Pin Number | Pin Name         | Туре   |      | Description                                                                                                                                                                                                      |  |  |
|------------|------------------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| L8         | OE5#/DATA        | Input  | CMOS | Active low input for enabling output 5 or the data pin for the Side-Band<br>Interface. Refer to the Side-Band Interface section for details. This pin<br>has an internal pull-down.                              |  |  |
|            |                  |        |      | OE mode: 1 = disable output, 0 = enable output.                                                                                                                                                                  |  |  |
|            |                  |        |      | Side-Band mode: Data pin                                                                                                                                                                                         |  |  |
| L9         | NC               |        |      | No connect                                                                                                                                                                                                       |  |  |
|            |                  | T (    | CMOS | Active low input for enabling output 6 or the clock pin for the Side-Band<br>Interface shift register. Refer to the Side-Band Interface section for de-<br>tails. This pin has an internal pull-down.            |  |  |
| L10        | OE6#/CLK         | Input  | CMOS | OE mode: 1 = disable output, 0 = enable output.                                                                                                                                                                  |  |  |
|            |                  |        |      | Side Band mode: Clocks data into the Side-Band Interface shift register on the rising edge                                                                                                                       |  |  |
| L11        | VDDO             | Power  |      | Power supply for outputs, nominal 3.3V                                                                                                                                                                           |  |  |
| L12        | Q7+              | Output | HCSL | Differential true clock output                                                                                                                                                                                   |  |  |
| M1         | Q1-              | Output | HCSL | Differential complementary clock output                                                                                                                                                                          |  |  |
| M2         | Q2+              | Output | HCSL | Differential true clock output                                                                                                                                                                                   |  |  |
| M3         | Q2-              | Output | HCSL | Differential complementary clock output                                                                                                                                                                          |  |  |
| M4         | Q3+              | Output | HCSL | Differential true clock output                                                                                                                                                                                   |  |  |
| M5         | Q3-              | Output | HCSL | Differential complementary clock output                                                                                                                                                                          |  |  |
| M6         | PWRGD/<br>PWRDN# | Input  | CMOS | Input notifies device to sample latched inputs and start up on first high<br>assertion. Low enters Power Down mode, subsequent high assertions exit<br>Power Down mode. This pin has internal pull-down resistor |  |  |
| M7         | Q4+              | Output | HCSL | Differential true clock output                                                                                                                                                                                   |  |  |
| M8         | Q4-              | Output | HCSL | Differential complementary clock output                                                                                                                                                                          |  |  |
| M9         | Q5+              | Output | HCSL | Differential true clock output                                                                                                                                                                                   |  |  |
| M10        | Q5-              | Output | HCSL | Differential complementary clock output                                                                                                                                                                          |  |  |
| M11        | Q6+              | Output | HCSL | Differential true clock output                                                                                                                                                                                   |  |  |
| M12        | Q6-              | Output | HCSL | Differential complementary clock output                                                                                                                                                                          |  |  |
|            | EPAD             | Power  |      | Connect to Ground                                                                                                                                                                                                |  |  |





#### **SMBus Address Selection Table**

| SA_1 | SA_0 | Address |
|------|------|---------|
| L    | L    | D8      |
| L    | М    | DA      |
| L    | Н    | DE      |
| М    | L    | C2      |
| М    | М    | C4      |
| М    | Н    | C6      |
| Н    | L    | CA      |
| Н    | М    | CC      |
| Н    | Н    | CE      |

#### **Output Control - SBEN=0**

| Inp              | uts     | OE# Pins and Re  | egister Bits | Side Band           | Interface |              |         |
|------------------|---------|------------------|--------------|---------------------|-----------|--------------|---------|
| PWRGD/<br>PWRDN# | IN+/IN- | SMBUS Enable Bit | OE# Pin      | MASKx<br>Byte[10:8] | Dx        | Q+/Q- [19:0] |         |
| 0                | Х       | Х                | Х            | Х                   | Х         | Low/Low      |         |
|                  | Running |                  | 0            | Х                   | Х         | Х            | Low/Low |
| 1                |         | 1                | 0            | Х                   | Х         | Running      |         |
|                  |         | 1                | 1            | Х                   | Х         | Low/Low      |         |
| 1                | 0.1     | 1                | 0            | Х                   | Х         | Stopped      |         |
|                  | Stopped | 1                | 1            | Х                   | Х         | Low/Low      |         |

## **Output Control - SBEN=1**

| Inp              | uts     | OE# Pins and Re  | egister Bits | Side Band           |    |              |
|------------------|---------|------------------|--------------|---------------------|----|--------------|
| PWRGD/<br>PWRDN# | IN+/IN- | SMBUS Enable Bit | OE# Pin      | MASKx<br>Byte[10:8] | Dx | Q+/Q- [19:0] |
| 0                | Х       | Х                | Х            | Х                   | Х  | Low/Low      |
|                  | Running | Х                | Х            | 0                   | 0  | Low/Low      |
| 1                |         | Running          | Х            | Х                   | 0  | 1            |
|                  |         | X                | Х            | 1                   | Х  | Running      |
|                  |         | Х                | Х            | 0                   | 0  | Low/Low      |
| 1                | Stopped | Х                | Х            | 0                   | 1  | Stopped      |
|                  |         | Х                | Х            | 1                   | Х  | Stopped      |





## **Output Enable Control on PI6CB332001A**

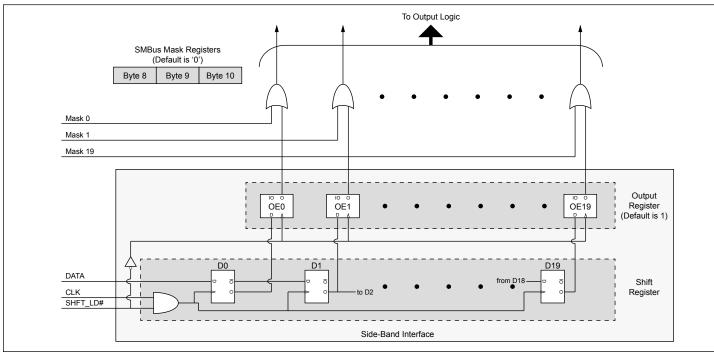
The 20-output PI6CB332001A has two methods for enabling and disabling outputs. The first is the traditional method of OE# pins and SMBus output enable bits. The second method is a simple 3-wire serial interface referred, to as the Side-Band Interface (SBI). Both interfaces are not active at the same time, and the SBEN pin selects which interface is active. Tying the SBEN pin high enables the SBI. Tying the SBEN pin low enables the traditional OE# pin/SMBus output enable interface.

Both the SBI and the traditional interface feed the common output enable/disable synchronization logic, ensuring the glitch-free enabling and disabling of outputs, regardless of the method used.

#### **Traditional Method**

Outputs 5 through 12 have dedicated output enable pins, and each of the 20 outputs have dedicated SMBus output enable bits in Byte0, Byte1, and Byte2 of the SMBus register set.

#### **Side-Band Interface**


This interface consists of DATA, CLK, and SHFT LD# pins. When the SHFT LD# pin is high, the rising edge of CLK can shift DATA into the shift register. After shifting data, the falling edge of SHFT\_LD# clocks the shift register contents to the Output register.

When the SBI is enabled, OE[7:9, 11, 12]# are disabled, and DATA, CLK, and SHFT\_LD# are enabled on OE5#, OE6# and OE10# respectively. Additionally, SMBus registers for masking off the disable function of the shift register (0 value of a bit) and becomes active. When set to one, the mask register forces its respective output to 'enabled.' This prevents accidentally disabling critical outputs when using the SBI.

An SMBus read-back bit in Byte 4 indicates which output enable control interface is enabled.

When the SBI is enabled and power is applied, the SBI becomes active even if the PWRGD/PWRDN# pin indicates the part is in power down. This allows loading the shift register and transferring the contents to the output register before the assertion of PWRGD. Note that the mask registers are part of the normal SMBus interface and cannot be accessed when the PWRGD/PWRDN# is low. Figure 1 provides a functional description of the SBI.

The SBI and the traditional SMBus output enable registers both default to the 'output enabled' state at power-up. The mask registers default to zero at power-up, allowing the shift bits to disable their respective output. See Figure 1.



#### Figure 1. Side Band Interface Control Logic Description





Figures 2 shows the basic timing of the side-band interface. The SHFT\_LD# pin goes high to enable the CLK input. Next, the rising edge of CLK clocks enable DATA into the shift register. After the 20th clock for output 19, stop the clock low and drive the SHFT\_LD# pin low. The falling edge of SHFT\_LD# clocks the shift register contents to the output register, enabling or disabling the outputs. Always shift 20 bits of data into the shift register to control the outputs.

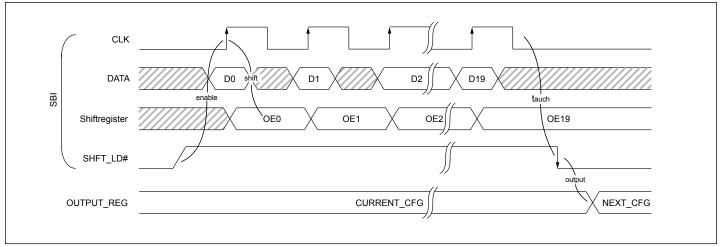
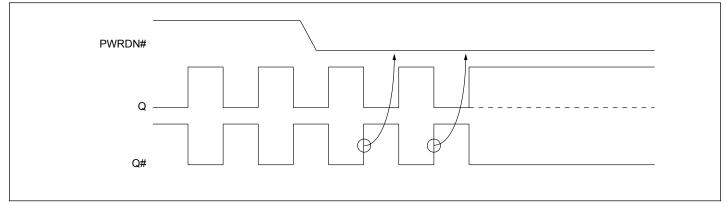
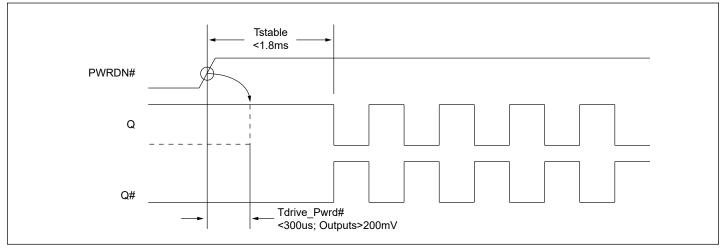



Figure 2. Side Band Interface Functional Timing

The SBI interface supports clock rates up to 10MHz. Multiple devices may share CLK and DATA pins. Dedicating a SHFT\_LD# pin to each devices allows its use as a chip-select pin. When the SHFT\_LD# pin is low, the PI6CB332001A ignores any activity on the CLK and DATA pins.







#### **Power Management Table**

| PWRGD/PWRDN# | Q+     | Q-     |
|--------------|--------|--------|
| 0            | Low    | Low    |
| 1            | Normal | Normal |

#### **PWRDN#** Assertion



#### **PWRGD** Assertion







### **Maximum Ratings**

| (Above which useful life may be impaired. For user guidelines, not test | ted.) |
|-------------------------------------------------------------------------|-------|
| Storage Temperature65°C to +150°C                                       | С     |
| Supply Voltage to Ground Potential, V <sub>DDxx</sub> 0.5V to +4.0      | V     |
| Input Control Pins Voltage0.5V to V <sub>DD</sub> +0.5V                 | V     |
| CLK+/- pins0.5V to 2.5V                                                 | V     |
| SMBus, Input High Voltage 3.9                                           | V     |
| ESD Protection (HBM)                                                    | V     |
| Junction Temperature125 °C ma                                           | ax    |

#### Note:

Stresses greater than those listed under MAXIMUM RATINGSmay cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

### **Operating Conditions**

Temperature = T<sub>A</sub>; Supply voltages per normal operation conditions; See test circuits for the load conditions

| Symbol                              | Parameters                                     | Conditions                                                         | Min.  | Тур. | Max.  | Units |
|-------------------------------------|------------------------------------------------|--------------------------------------------------------------------|-------|------|-------|-------|
| V <sub>DD</sub> , V <sub>DD_A</sub> | Power Supply Voltage                           |                                                                    | 3.135 | 3.3  | 3.465 | V     |
| I <sub>DD</sub>                     | Power Supply Current                           | V <sub>DD</sub> + V <sub>DDA</sub> , All outputs active<br>@100MHz |       | 160  | 200   | mA    |
| I <sub>DD_PD</sub>                  | Power Supply Power Down <sup>(1)</sup> Current | V <sub>DD</sub> + V <sub>DDA</sub> , All outputs LOW/<br>LOW       |       | 3    | 5     | mA    |
| TA                                  | Ambient Temperature                            | Industrial grade                                                   | -40   |      | 85    | °C    |

#### Note:

1. Input clock is not running.

#### **Input Electrical Characteristics**

| Symbol           | Parameters                    | Conditions | Min. | Тур. | Max. | Units |
|------------------|-------------------------------|------------|------|------|------|-------|
| R <sub>pu</sub>  | Internal pull up resistance   |            |      | 120  |      | KΩ    |
| R <sub>dn</sub>  | Internal pull down resistance |            |      | 120  |      | KΩ    |
| L <sub>PIN</sub> | Pin inductance                |            |      |      | 7    | nH    |





#### **SMBus Electrical Characteristics**

Temperature = T<sub>A</sub>; Supply voltages per normal operation conditions; See test circuits for the load conditions

| Symbol               | Parameters                   | Conditions                                                       | Min.                       | Тур. | Max. | Units |
|----------------------|------------------------------|------------------------------------------------------------------|----------------------------|------|------|-------|
| V <sub>DDSMB</sub>   | Nominal bus voltage          |                                                                  | 2.7                        |      | 3.6  | V     |
|                      |                              | SMBus, $V_{DDSMB} = 3.3V$                                        | 2.1                        |      | 3.6  |       |
| VIHSMB               | SMBus Input High Voltage     | SMBus, V <sub>DDSMB</sub> < 3.3V                                 | 0.65<br>V <sub>DDSMB</sub> |      |      | V     |
| N7                   | CMDere Levent Leven Velterer | SMBus, $V_{DDSMB} = 3.3V$                                        |                            |      | 0.6  | v     |
| VILSMB               | SMBus Input Low Voltage      | SMBus, V <sub>DDSMB</sub> < 3.3V                                 |                            |      | 0.6  | v     |
| I <sub>SMBSINK</sub> | SMBus sink current           | SMBus, at V <sub>OLSMB</sub>                                     | 4                          |      |      | mA    |
| Volsmb               | SMBus Output Low Voltage     | SMBus, at I <sub>SMBSINK</sub>                                   |                            |      | 0.4  | V     |
| f <sub>MAXSMB</sub>  | SMBus operating frequency    | Maximum frequency                                                |                            |      | 400  | kHz   |
| t <sub>RMSB</sub>    | SMBus rise time              | (Max $\mathrm{V_{IL}}$ - 0.15) to (Min $\mathrm{V_{IH}}$ + 0.15) |                            |      | 1000 | ns    |
| t <sub>FMSB</sub>    | SMBus fall time              | (Min V <sub>IH</sub> + 0.15) to (Max V <sub>IL</sub> - 0.15)     |                            |      | 300  | ns    |

#### **LVCMOS DC Electrical Characteristics**

Temperature = T<sub>A</sub>; Supply voltages per normal operation conditions; See test circuits for the load conditions

| Symbol          | Parameters               | Conditions                                                   | Min. | Тур.               | Max.                    | Units |
|-----------------|--------------------------|--------------------------------------------------------------|------|--------------------|-------------------------|-------|
| V <sub>IH</sub> | Input High Voltage       | Single-ended inputs, except tri-level pins                   | 2    |                    | V <sub>DD</sub><br>+0.3 | v     |
| V <sub>IL</sub> | Input Low Voltage        | Single-ended inputs, except tri-level pins                   | -0.3 |                    | 0.8                     | V     |
| V <sub>IH</sub> | Input High Voltage       | Single-ended tri-level inputs                                | 2.4  |                    | V <sub>DD</sub><br>+0.3 | v     |
| VIM             | Input Mid Voltage        | Single-ended tri-level inputs                                | 1.3  | 0.5V <sub>DD</sub> | 1.8                     | V     |
| V <sub>IL</sub> | Input Low Voltage        | Single-ended tri-level inputs                                | -0.3 |                    | 0.9                     | V     |
| I <sub>IH</sub> | Input High Current       | Single-ended inputs, $V_{IN} = V_{DD}$                       |      |                    | 5                       | μΑ    |
| I <sub>IL</sub> | Input Low Current        | Single-ended inputs, $V_{IN} = 0V$                           | -5   |                    |                         | μA    |
| I <sub>IH</sub> | Input High Current       | Single-ended inputs with pull up resistor, $V_{IN} = V_{DD}$ |      |                    | 50                      | μΑ    |
| I <sub>IL</sub> | Input Low Current        | Single-ended inputs with pull up resistor, $V_{\rm IN} = 0V$ | -50  |                    |                         | μΑ    |
| C <sub>IN</sub> | Input Capacitance        |                                                              | 1.5  |                    | 5                       | pF    |
| t <sub>RF</sub> | Rise/ Fall time of Input |                                                              |      |                    | 5                       | ns    |





#### **LVCMOS AC Electrical Characteristics**

Temperature = T<sub>A</sub>; Supply voltages per normal operation conditions; See test circuits for the load conditions

| Symbol             | Parameters            | Conditions                                                                                     | Min. | Тур. | Max. | Units  |
|--------------------|-----------------------|------------------------------------------------------------------------------------------------|------|------|------|--------|
| t <sub>OELAT</sub> | Output enable latency | Q start after OE# assertion<br>Q stop after OE# deassertion                                    |      | 5    | 10   | clocks |
| t <sub>PDLAT</sub> | PD# de-assertion      | Differential outputs enable after PD# de-<br>assertion                                         |      |      | 300  | us     |
| t <sub>STAB</sub>  | Output stabilization  | From power up and after input clock<br>stabilization or after PD# de-assertion to<br>1st clock |      | 1.0  | 1.8  | ms     |

#### HCSL Input Characteristics<sup>(1)</sup>

Temperature =  $T_A$ ; Supply voltages per normal operation conditions; See test circuits for the load conditions

| Symbol             | Parameters                              | Conditions                                                    | Min. | Тур. | Max. | Units |
|--------------------|-----------------------------------------|---------------------------------------------------------------|------|------|------|-------|
| f <sub>IN</sub>    | Input Frequency                         | V <sub>DD</sub> = 3.3V                                        | 1    | 100  | 400  | MHz   |
| VIHDIF             | Diff. Input High Voltage <sup>(3)</sup> | IN+, IN-, single-end measurement                              | 330  |      | 1150 | mV    |
| V <sub>ILDIF</sub> | Diff. Input Low Voltage <sup>(3)</sup>  | IN+, IN-, single-end measurement                              | -300 | 0    | 300  | mV    |
| V <sub>SWING</sub> | Diff. Input Swing Voltage               | Peak to peak value (V <sub>IHDIF</sub> - V <sub>ILDIF</sub> ) | 200  |      |      | mV    |
| V <sub>COM</sub>   | Common mode voltage                     |                                                               | 100  |      | 900  | mV    |
| t <sub>RF</sub>    | Diff. Input Slew Rate <sup>(2)</sup>    |                                                               | 0.7  |      |      | V/ns  |
| I <sub>IN</sub>    | Diff. Input Leakage Current             | $V_{IN+} = V_{DD}, V_{IN-} = 0.8V$                            | -40  |      | 100  | uA    |
| t <sub>DC</sub>    | Diff. Input Duty Cycle                  | Measured differentially                                       | 45   |      | 55   | %     |
| tj <sub>c-c</sub>  | Diff. Input Cycle to cycle jitter       | Measured differentially                                       |      |      | 125  | ps    |

Note:

1. Guaranteed by design and characterization, not 100% tested in production

2. Slew rate measured through +/-75mV window centered around differential zero

3. The device can be driven by a single-ended clock by driving the true clock and biasing the complement clock input to the Vbias, where Vbias is (VIH-VIL)/2





#### **HCSL Output Characteristics**

Temperature = T<sub>A</sub>; Supply voltages per normal operation conditions; See test circuits for the load conditions

| Symbol             | Parameters                            | Condition                           | Min. | Тур. | Max. | Units |
|--------------------|---------------------------------------|-------------------------------------|------|------|------|-------|
| V <sub>MAX</sub>   | Maximum output voltage                | Measurement on single               | 660  | 780  | 900  | mV    |
| V <sub>MIN</sub>   | Minimum output voltage                | ended signal using absolute value   | -150 | 20   | 150  | mV    |
| Vcross<br>absolute | Absolute Crossing point Voltage       |                                     | 250  |      | 550  | mV    |
| Vcross<br>relative | Relative Crossing point Voltage       |                                     |      |      | 140  | mV    |
| fout               | Output Frequency                      |                                     |      | 100  | 400  | MHz   |
| t <sub>RF</sub>    | Slew rate <sup>(1,2,3)</sup>          | Scope averaging on, 10 inches trace | 1.5  | 3.0  | 4    | V/ns  |
| Dt <sub>RF</sub>   | Slew rate matching <sup>(1,2,4)</sup> | Scope averaging on, 10 inches trace |      |      | 20   | %     |
| t <sub>SKEW</sub>  | Output Skew <sup>(1,2)</sup>          | Averaging on, $V_{\rm T}$ = 50%     |      |      | 50   | ps    |
| t <sub>DC</sub>    | Diff. Output Duty Cycle               | Measured differentially             | 45   |      | 55   | %     |
| DC Distor-<br>tion | Duty Cycle Distortion <sup>(5)</sup>  | Measured differentially at 100MHz   | -0.5 |      | 0.5  | %     |
| T <sub>pd</sub>    | Propagation Delay                     |                                     |      | 2.0  | 3    | ns    |

Note:

1. Guaranteed by design and characterization, not 100% tested in production

2. Measured from differential waveform

3. Slew rate is measured through the Vswing voltage range centered around differential 0V, within +/-150mV window

4. Slew rate matching is measured through +/-75mV window centered around differential zero

5. Duty cycle distortion is the difference in duty cycle between the out and input clock

#### **Side Band Interface**

Temperature = T<sub>A</sub>; Supply voltages per normal operation conditions

| Symbol             | Parameters                       | Conditions                                                             | Min. | Тур. | Max. | Units  |
|--------------------|----------------------------------|------------------------------------------------------------------------|------|------|------|--------|
| tPERIOD            | Side Band clock period           |                                                                        | 40   |      |      | ns     |
| tsetup             | SHFT Setup time                  | SHFT setup time to CLK rising edge                                     | 10   |      |      | ns     |
| tDSETUP            | Data setup time                  | DATA setup time to CLK rising edge                                     | 5    |      |      | ns     |
| t <sub>DHOLD</sub> | Data hold time <sup>(1)</sup>    | DATA hold time after CLK rising edge                                   | 2    |      |      | ns     |
| t <sub>DELAY</sub> | Delay time <sup>(1)</sup>        | Delay from CLK rising edge to LD# falling edge                         | 10   |      |      | ns     |
| t <sub>PD</sub>    | Propagation delay <sup>(2)</sup> | Delay LD# falling edge to next output con-<br>figuration taking effect | 4    |      | 10   | clocks |
| t <sub>RF</sub>    | CLK slew rate <sup>(3)</sup>     | CLK input between 20% to 80%                                           | 0.7  |      | 4    | V/ns   |

#### Note:

1. Guaranteed by design and characterization, not 100% tested in production

2. Refer to device differential input clock

3. Control input must be monotonic from 20% to 80% of input swing





| Symbol    | Parameters                  | Condition                                                                                       | Min. | Тур. | Max. | Spec<br>Limit     | Units        |
|-----------|-----------------------------|-------------------------------------------------------------------------------------------------|------|------|------|-------------------|--------------|
|           |                             | PCIe 1.0                                                                                        |      | 0    | 0.03 | 86                | ps<br>(pkpk) |
|           |                             | PCIe 2.0 Low Band, 10kHz < f <<br>1.5MHz (PLL BW 5-16MHz or 8-5MHz,<br>CDR = 10MHz)             |      | 0    | 0.03 | 3                 | ps           |
|           |                             | PCIe 2.0 High Band, 1.5MHz < f < Nyquist<br>(50MHz); (PLL BW 5-16MHz or 8-5MHz,<br>CDR = 10MHz) |      | 0    | 0.03 | 3.1               | ps           |
|           | Additive Integrated phase   | PCIe 3.0 (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)                                                  |      | 0    | 0.03 | 1                 | ps           |
| tjphase – | jitter (RMS) <sup>(1)</sup> | PCIe 4.0 (PLL BW 2-4MHz or<br>2-5MHz, CDR= 10MHz)                                               |      | 0    | 0.03 | 0.5               | ps           |
|           |                             | PCIe 5.0 (PLL BW of 500k to<br>1.8MHz. CDR =20MHz) <sup>(4)</sup>                               |      | 0.07 | 0.12 | 0.15              | ps           |
|           |                             | 100MHz (12kHz to 20MHz), input jitter ~156fs $^{(2)}$                                           |      | 67   | 105  | NA <sup>(5)</sup> | fs           |
|           |                             | 156.25MHz (12kHz to 20MHz), input jitter ~110fs $^{\rm (2)}$                                    |      | 50   | 90   | NA <sup>(5)</sup> | fs           |
|           |                             | 100MHz, apply DB2000Q filter, see figure 5                                                      |      |      | 25   | 80                | fs           |

### PCIe Common Clock (CC) Architecture Jitter <sup>(3)</sup>

#### PCIe Independent Reference Clock Architecture Jitter <sup>(3)</sup>

| Symbol  | Parameters                             | Condition                                           | Min. | Тур. | Max. | Spec<br>Limit | Units |
|---------|----------------------------------------|-----------------------------------------------------|------|------|------|---------------|-------|
|         |                                        | PCIe 3.0 SRIS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz) |      | 0    | 0.03 | 0.7           | ps    |
| tjphase | Additive Integrated phase jitter (RMS) | PCIe 4.0 SRIS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz) |      | 0    | 0.03 | 0.7           | ps    |
|         |                                        | PCIe 4.0 SRNS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz) |      | 0    | 0.03 | 0.7           | ps    |

#### Note:

1. Guaranteed by design and characterization, not 100% tested in production

2. Additive jitter RMS value is calculated by the following equation = SQRT [ $(total jitter)^{*2}$  -  $(input jitter)^{*2}$ ]

3. See http://www.pcisig.com for complete specs

4. PCIe 5.0 v0.9 specification

5. Not available





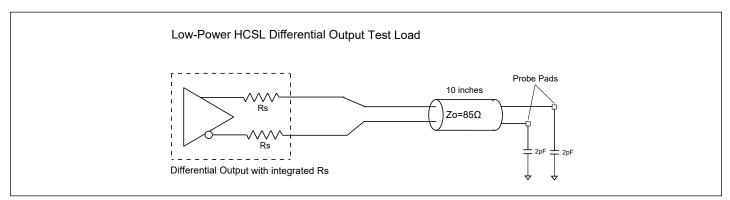
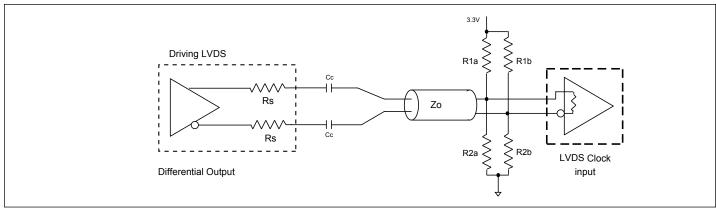




Figure 3. Low Power HCSL Test Circuit



**Figure 4. Differential Output Driving LVDS** 

## Differential Output Terminations Driving LVDS (Z<sub>0</sub> =85Ω)

| Component                         | Receiver with termination | Receiver without termination | Unit |
|-----------------------------------|---------------------------|------------------------------|------|
| $R_{1a}, R_{1b}$                  | 10,000                    | 130                          | Ω    |
| R <sub>2a</sub> , R <sub>2b</sub> | 5,600                     | 64                           | Ω    |
| C <sub>C</sub>                    | 0.1                       | 0.1                          | μF   |
| V <sub>CM</sub>                   | 1.2                       | 1.2                          | V    |





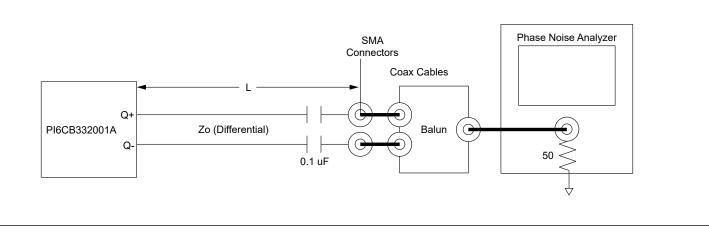



Figure 5. Test Setup for PI6CB332001A Additive Phase Jitter Measurement

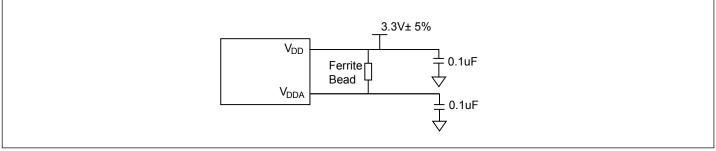



Figure 6. Power Supply Filter





#### **SMBus Serial Data Interface**

PI6CB332001A is a slave only device that supports block read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte transfer.

#### **Address Assignment**

| A6 | A5 | A4 | A3 | A2           | A1              | A0    | R/W |
|----|----|----|----|--------------|-----------------|-------|-----|
| 1  | 1  | 0  | 1  | See SMBus Ad | dress Selection | table | 1/0 |

Note: SMBus address is latched on SADR pin

#### How to Write

| 1 bit     | 7 bits | 1 bit | 1 bit | 8 bits                              | 1 bit | 8 bits                 | 1 bit | 8 bits                        | 1 bit | 8 bits                   | 1 bit | 1 bit    |
|-----------|--------|-------|-------|-------------------------------------|-------|------------------------|-------|-------------------------------|-------|--------------------------|-------|----------|
| Start bit | Add.   | W(0)  | Ack   | Beginning<br>Byte loca-<br>tion = N | Ack   | Data Byte<br>count = X | Ack   | Beginning<br>Data Byte<br>(N) | Ack   | <br>Data Byte<br>(N+X-1) | Ack   | Stop bit |

#### How to Read

| 1 bit     | 7 bits  | 1 bit | 1 bit | 8 bits                              | 1 bit | 1 bit               | 7 bits  | 1 bit | 1 bit | 8 bits                 | 1 bit | 8 bits                        | 1 bit |
|-----------|---------|-------|-------|-------------------------------------|-------|---------------------|---------|-------|-------|------------------------|-------|-------------------------------|-------|
| Start bit | Address | W(0)  | Ack   | Beginning<br>Byte loca-<br>tion = N | Ack   | Repeat<br>Start bit | Address | R(1)  | Ack   | Data Byte<br>count = X | Ack   | Beginning<br>Data Byte<br>(N) | Ack   |

| 8 bits    | 1 bit | 1 bit    |
|-----------|-------|----------|
| Data Byte | NAck  | Stop hit |
| (N+X-1)   | INACK | Stop bit |





#### **Byte 0: Output Enable Register**

| Bit | Control Function | Description       | Туре | Power Up<br>Condition | 0       | 1      |
|-----|------------------|-------------------|------|-----------------------|---------|--------|
| 7   | Reserved         |                   |      | 0                     |         |        |
| 6   | Q19_OE           | Q19 output enable | RW   | 1                     | Low/Low | Enable |
| 5   | Q18_OE           | Q18 output enable | RW   | 1                     | Low/Low | Enable |
| 4   | Q17_OE           | Q17 output enable | RW   | 1                     | Low/Low | Enable |
| 3   | Q16_OE           | Q16 output enable | RW   | 1                     | Low/Low | Enable |
| 2   | Reserved         |                   |      | 0                     |         |        |
| 1   | Reserved         |                   |      | 0                     |         |        |
| 0   | Reserved         |                   |      | 0                     |         |        |

#### **Byte 1: Output Enable Register**

| Bit | Control Function | Description      | Туре | Power Up<br>Condition | 0       | 1            |
|-----|------------------|------------------|------|-----------------------|---------|--------------|
| 7   | Q7_OE            | Q7 output enable | RW   | 1                     | Low/Low | OE7# control |
| 6   | Q6_OE            | Q6 output enable | RW   | 1                     | Low/Low | OE6# control |
| 5   | Q5_OE            | Q5 output enable | RW   | 1                     | Low/Low | OE5# control |
| 4   | Q4_OE            | Q4 output enable | RW   | 1                     | Low/Low | Enable       |
| 3   | Q3_OE            | Q3 output enable | RW   | 1                     | Low/Low | Enable       |
| 2   | Q2_OE            | Q2 output enable | RW   | 1                     | Low/Low | Enable       |
| 1   | Q1_OE            | Q1 output enable | RW   | 1                     | Low/Low | Enable       |
| 0   | Q0_OE            | Q0 output enable | RW   | 1                     | Low/Low | Enable       |

#### **Byte 2: Output Enable Register**

| Bit | Control Function | Description       | Туре | Power Up<br>Condition | 0       | 1             |
|-----|------------------|-------------------|------|-----------------------|---------|---------------|
| 7   | Q15_OE           | Q15 output enable | RW   | 1                     | Low/Low | Enable        |
| 6   | Q14_OE           | Q14 output enable | RW   | 1                     | Low/Low | Enable        |
| 5   | Q13_OE           | Q13 output enable | RW   | 1                     | Low/Low | Enable        |
| 4   | Q12_OE           | Q12 output enable | RW   | 1                     | Low/Low | OE12# control |
| 3   | Q11_OE           | Q11 output enable | RW   | 1                     | Low/Low | OE11# control |
| 2   | Q10_OE           | Q10 output enable | RW   | 1                     | Low/Low | OE10# control |
| 1   | Q9_OE            | Q9 output enable  | RW   | 1                     | Low/Low | OE9# control  |
| 0   | Q8_OE            | Q8 output enable  | RW   | 1                     | Low/Low | OE8# control  |





| Bit | Control Function | Description                | Туре | Power Up<br>Condition | 0           | 1            |
|-----|------------------|----------------------------|------|-----------------------|-------------|--------------|
| 7   | OE12#            | Realtime Readback of OE12# | R    | Realtime              | OE12# = Low | OE12# = High |
| 6   | OE11#            | Realtime Readback of OE11# | R    | Realtime              | OE11# = Low | OE11# = High |
| 5   | OE10#            | Realtime Readback of OE10# | R    | Realtime              | OE10# = Low | OE10# = High |
| 4   | OE9#             | Realtime Readback of OE9#  | R    | Realtime              | OE9# = Low  | OE9# = High  |
| 3   | OE8#             | Realtime Readback of OE8#  | R    | Realtime              | OE8# = Low  | OE8# = High  |
| 2   | OE7#             | Realtime Readback of OE7#  | R    | Realtime              | OE7# = Low  | OE7# = High  |
| 1   | OE6#             | Realtime Readback of OE6#  | R    | Realtime              | OE6# = Low  | OE6# = High  |
| 0   | OE5#             | Realtime Readback of OE5#  | R    | Realtime              | OE5# = Low  | OE5# = High  |

#### Byte 3: OE# Pin Realtime Readback Control Register

#### Byte 4: SBEN

| Bit | Control Function | Description      | Туре | Power Up<br>Condition | 0        | 1         |
|-----|------------------|------------------|------|-----------------------|----------|-----------|
| 7:1 | Reserved         |                  |      | 0                     |          |           |
| 0   | RB_SBEN          | Readback of SBEN | R    | Realtime              | SBEN=Low | SBEN=High |

### **Byte 5: Revision and Vendor ID Register**

| Bit | <b>Control Function</b> | Description | Туре | Power Up<br>Condition | 0 1            |  |  |
|-----|-------------------------|-------------|------|-----------------------|----------------|--|--|
| 7   | RID3                    |             | R    | 0                     |                |  |  |
| 6   | RID2                    |             | R    | 0                     |                |  |  |
| 5   | RID1                    | evision ID  | R    | 0                     | rev = 0000     |  |  |
| 4   | RID0                    |             | R    | 0                     |                |  |  |
| 3   | PVID3                   |             | R    | 0                     |                |  |  |
| 2   | PVID2                   |             | R    | 0                     | <b>D</b>       |  |  |
| 1   | PVID1                   | Vendor ID   | R    | 1                     | Pericom = 0011 |  |  |
| 0   | PVID0                   |             | R    | 1                     |                |  |  |





#### Power Up Туре Bit **Control Function** 0 1 Description Condition 7 DID7 R 0 6 DID6 R 1 R 0 5 DID5 4 DID4 R 0 Device ID R 3 DID3 1 2 DID2 R 0 1 DID1 R 0 R 0 0 DID0

### Byte 6: Device Type/Device ID Register

#### **Byte 7: Byte Count Register**

| Bit | <b>Control Function</b> | Description            | Туре | Power Up<br>Condition | 0                                                           | 1             |
|-----|-------------------------|------------------------|------|-----------------------|-------------------------------------------------------------|---------------|
| 7   | Reserved                |                        |      | 0                     |                                                             |               |
| 6   | Reserved                |                        |      | 0                     |                                                             |               |
| 5   | Reserved                |                        |      | 0                     |                                                             |               |
| 4   | BC4                     |                        | RW   | 0                     |                                                             |               |
| 3   | BC3                     |                        | RW   | 1                     | Writing to this                                             | register will |
| 2   | BC2                     | Byte count programming | RW   | 0                     | configure how many bytes v<br>be read back, default is 8 by |               |
| 1   | BC1                     |                        | RW   | 0                     |                                                             |               |
| 0   | BC0                     |                        | RW   | 0                     |                                                             |               |

#### Byte 8: Side-band Mask Register only when SBEN=1

| Bit | Control Function | Description                | Туре | Power Up<br>Condition | 0              | 1                                                                                      |
|-----|------------------|----------------------------|------|-----------------------|----------------|----------------------------------------------------------------------------------------|
| 7   | Mask7            | Mask off Side-band Disable | RW   | 0                     |                | Force output<br>to be enabled<br>regardless<br>of side-band<br>shift register<br>value |
| 6   | Mask6            | Mask off Side-band Disable | RW   | 0                     |                |                                                                                        |
| 5   | Mask5            | Mask off Side-band Disable | RW   | 0                     | Side-band      |                                                                                        |
| 4   | Mask4            | Mask off Side-band Disable | RW   | 0                     | shift register |                                                                                        |
| 3   | Mask3            | Mask off Side-band Disable | RW   | 0                     | may disable    |                                                                                        |
| 2   | Mask2            | Mask off Side-band Disable | RW   | 0                     | the output     |                                                                                        |
| 1   | Mask1            | Mask off Side-band Disable | RW   | 0                     |                |                                                                                        |
| 0   | Mask0            | Mask off Side-band Disable | RW   | 0                     |                |                                                                                        |





| Bit | Control Function | Description                | Туре | Power Up<br>Condition | 0              | 1                                                                                      |
|-----|------------------|----------------------------|------|-----------------------|----------------|----------------------------------------------------------------------------------------|
| 7   | Mask15           | Mask off Side-band Disable | RW   | 0                     |                | Force output<br>to be enabled<br>regardless<br>of side-band<br>shift register<br>value |
| 6   | Mask14           | Mask off Side-band Disable | RW   | 0                     |                |                                                                                        |
| 5   | Mask13           | Mask off Side-band Disable | RW   | 0                     | Side-band      |                                                                                        |
| 4   | Mask12           | Mask off Side-band Disable | RW   | 0                     | shift register |                                                                                        |
| 3   | Mask11           | Mask off Side-band Disable | RW   | 0                     | may disable    |                                                                                        |
| 2   | Mask10           | Mask off Side-band Disable | RW   | 0                     | the output     |                                                                                        |
| 1   | Mask9            | Mask off Side-band Disable | RW   | 0                     |                |                                                                                        |
| 0   | Mask8            | Mask off Side-band Disable | RW   | 0                     |                |                                                                                        |

#### Byte 9: Side-band Mask Register only when SBEN=1

### Byte 10: Side-band Mask Register only when SBEN=1

| Bit | Control Function | Description                | Туре | Power Up<br>Condition | 0                                           | 1                          |
|-----|------------------|----------------------------|------|-----------------------|---------------------------------------------|----------------------------|
| 7   | Reserved         |                            |      | 0                     |                                             |                            |
| 6   | Reserved         |                            |      | 0                     |                                             |                            |
| 5   | Reserved         |                            |      | 0                     |                                             |                            |
| 4   | Reserved         |                            |      | 0                     |                                             |                            |
| 3   | Mask19           | Mask off Side-band Disable | RW   | 0                     |                                             | Force output               |
| 2   | Mask18           | Mask off Side-band Disable | RW   | 0                     | Side-band                                   | to be enabled              |
| 1   | Mask17           | Mask off Side-band Disable | RW   | 0                     | shift register<br>may disable<br>the output | regardless<br>of side-band |
| 0   | Mask16           | Mask off Side-band Disable | RW   | 0                     |                                             | shift register<br>value    |

#### **Byte 11: Output Impedance Selection Register**

| Bit | Control Function | Description                  | Туре | Power Up<br>Condition | 0              | 1    |
|-----|------------------|------------------------------|------|-----------------------|----------------|------|
| 7   | Z0_Q19           | In the second section of Q10 | RW   | 0                     | 00 or 11 = Nom | inal |
| 6   | Z1_Q19           | Impedance selection of Q19   | RW   | 0                     | 01=-5%, 10=+5% |      |
| 5   | Reserved         |                              |      | 0                     |                |      |
| 4   | Z0_Q18           |                              | RW   | 0                     | 00 or 11 = Nom | inal |
| 3   | Z1_Q18           | Impedance selection of Q18   | RW   | 0                     | 01=-5%, 10=+5  | %    |
| 2   | Reserved         |                              |      | 0                     |                |      |
| 1   | Z0_Q17           | In the second strengt O17    | RW   | 0                     | 00 or 11 = Nom | inal |
| 0   | Z1_Q17           | Impedance selection of Q17   | RW   | 0                     | 01=-5%, 10=+5  | %    |





| Bit | Control Function | Description                | Туре | Power Up<br>Condition | 0              | 1    |
|-----|------------------|----------------------------|------|-----------------------|----------------|------|
| 7   | Reserved         |                            |      | 0                     |                |      |
| 6   | Z0_Q16           |                            | RW   | 0                     | 00 or 11 = Nom | inal |
| 5   | Z1_Q16           | Impedance selection of Q16 | RW   | 0                     | 01=-5%, 10=+5% |      |
| 4   | Reserved         |                            |      | 0                     |                |      |
| 3   | Z0_Q15           | Inclusion address of Q15   | RW   | 0                     | 00 or 11 = Nom | inal |
| 2   | Z1_Q15           | Impedance selection of Q15 | RW   | 0                     | 01=-5%, 10=+5% |      |
| 1   | Reserved         |                            |      | 0                     |                |      |
| 0   | Reserved         |                            |      | 0                     |                |      |

### **Byte 12: Output Impedance Selection Register**

## **Byte 13: Output Impedance Selection Register**

| Bit | Control Function | Description                 | Туре | Power Up<br>Condition | 0              | 1    |
|-----|------------------|-----------------------------|------|-----------------------|----------------|------|
| 7   | Z0_Q14           | Inclusion all of the second | RW   | 0                     | 00 or 11 = Nom | inal |
| 6   | Z1_Q14           | Impedance selection of Q14  | RW   | 0                     | 01=-5%, 10=+5% |      |
| 5   | Reserved         |                             |      | 0                     |                |      |
| 4   | Z0_Q13           |                             | RW   | 0                     | 00 or 11 = Nom | inal |
| 3   | Z1_Q13           | Impedance selection of Q13  | RW   | 0                     | 01=-5%, 10=+5% | 6    |
| 2   | Reserved         |                             |      | 0                     |                |      |
| 1   | Z0_Q12           |                             | RW   | 0                     | 00 or 11 = Nom | inal |
| 0   | Z1_Q12           | Impedance selection of Q12  | RW   | 0                     | 01=-5%, 10=+5% | 6    |

#### **Byte 14: Output Impedance Selection Register**

| Bit | Control Function | Description                | Туре | Power Up<br>Condition | 0              | 1    |
|-----|------------------|----------------------------|------|-----------------------|----------------|------|
| 7   | Reserved         |                            |      | 0                     |                |      |
| 6   | Z0_Q11           | Inclusion adjustice of Old | RW   | 0                     | 00 or 11 = Nom | inal |
| 5   | Z1_Q11           | Impedance selection of Q11 | RW   | 0                     | 01=-5%, 10=+5% |      |
| 4   | Reserved         |                            |      | 0                     |                |      |
| 3   | Z0_Q10           | Inclusion address of Q10   | RW   | 0                     | 00 or 11 = Nom | inal |
| 2   | Z1_Q10           | Impedance selection of Q10 | RW   | 0                     | 01=-5%, 10=+5% |      |
| 1   | Reserved         |                            |      | 0                     |                |      |
| 0   | Reserved         |                            |      | 0                     |                |      |





| Bit | Control Function | Description               | Туре | Power Up<br>Condition | 0              | 1    |
|-----|------------------|---------------------------|------|-----------------------|----------------|------|
| 7   | Z0_Q9            |                           | RW   | 0                     | 00 or 11 = Nom | inal |
| 6   | Z1_Q9            | Impedance selection of Q9 | RW   | 0                     | 01=-5%, 10=+5% |      |
| 5   | Reserved         |                           |      | 0                     |                |      |
| 4   | Z0_Q8            |                           | RW   | 0                     | 00 or 11 = Nom | inal |
| 3   | Z1_Q8            | Impedance selection of Q8 | RW   | 0                     | 01=-5%, 10=+5% | %    |
| 2   | Reserved         |                           |      | 0                     |                |      |
| 1   | Z0_Q7            |                           | RW   | 0                     | 00 or 11 = Nom | inal |
| 0   | Z1_Q7            | Impedance selection of Q7 | RW   | 0                     | 01=-5%, 10=+5% | %    |

## **Byte 15: Output Impedance Selection Register**

## **Byte 16: Output Impedance Selection Register**

| Bit | Control Function | Description                         | Туре | Power Up<br>Condition | 0              | 1    |
|-----|------------------|-------------------------------------|------|-----------------------|----------------|------|
| 7   | Reserved         |                                     |      | 0                     |                |      |
| 6   | Z0_Q6            | I may do not a classification of OC | RW   | 0                     | 00 or 11 = Nom | inal |
| 5   | Z1_Q6            | Impedance selection of Q6           | RW   | 0                     | 01=-5%, 10=+5% |      |
| 4   | Reserved         |                                     |      | 0                     |                |      |
| 3   | Z0_Q5            | In the second stress of OF          | RW   | 0                     | 00 or 11 = Nom | inal |
| 2   | Z1_Q5            | Impedance selection of Q5           | RW   | 0                     | 01=-5%, 10=+5% |      |
| 1   | Reserved         |                                     |      | 0                     |                |      |
| 0   | Reserved         |                                     |      | 0                     |                |      |

#### **Byte 17: Output Impedance Selection Register**

| Bit | Control Function | Description                 | Туре | Power Up<br>Condition | 0              | 1    |
|-----|------------------|-----------------------------|------|-----------------------|----------------|------|
| 7   | Z0_Q4            | Immodel and colorism of Q4  | RW   | 0                     | 00 or 11 = Nom | inal |
| 6   | Z1_Q4            | Impedance selection of Q4   | RW   | 0                     | 01=-5%, 10=+5% |      |
| 5   | Reserved         |                             |      | 0                     |                |      |
| 4   | Z0_Q3            | In the second section of O2 | RW   | 0                     | 00 or 11 = Nom | inal |
| 3   | Z1_Q3            | Impedance selection of Q3   | RW   | 0                     | 01=-5%, 10=+59 | %    |
| 2   | Reserved         |                             |      | 0                     |                |      |
| 1   | Z0_Q2            |                             | RW   | 0                     | 00 or 11 = Nom | inal |
| 0   | Z1_Q2            | Impedance selection of Q2   | RW   | 0                     | 01=-5%, 10=+59 | %    |





| Bit | Control Function | Description               | Туре | Power Up<br>Condition | 0              | 1    |
|-----|------------------|---------------------------|------|-----------------------|----------------|------|
| 7   | Reserved         |                           |      | 0                     |                |      |
| 6   | Z0_Q1            |                           | RW   | 0                     | 00 or 11 = Nom | inal |
| 5   | Z1_Q1            | Impedance selection of Q1 | RW   | 0                     | 01=-5%, 10=+59 | %    |
| 4   | Reserved         |                           |      | 0                     |                |      |
| 3   | Z0_Q0            |                           | RW   | 0                     | 00 or 11 = Nom | inal |
| 2   | Z1_Q0            | Impedance selection of Q0 | RW   | 0                     | 01=-5%, 10=+5% |      |
| 1   | Reserved         |                           |      | 0                     |                |      |
| 0   | Reserved         |                           |      | 0                     |                |      |

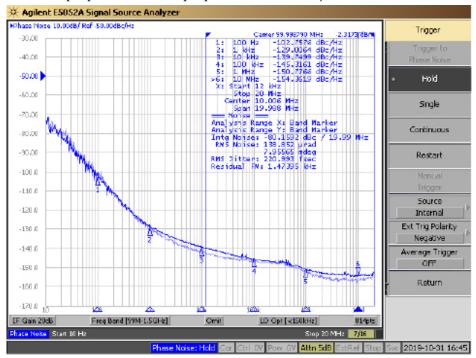
### **Byte 18: Output Impedance Selection Register**

### **Byte 19: Reserved**

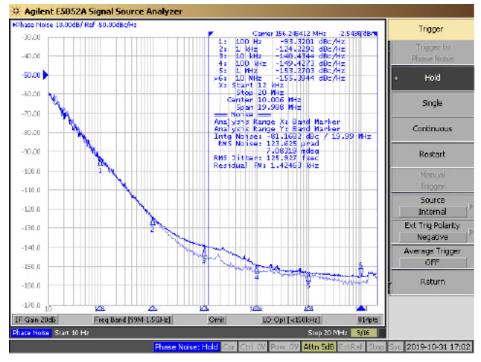
#### **Byte 20: Stop State Configuration Register**

| Bit | Control Function | Description                              | Туре | Power Up<br>Condition | 0             | 1          |
|-----|------------------|------------------------------------------|------|-----------------------|---------------|------------|
| 7   | VSW[2]           |                                          | RW   | 1                     | Default=750mV | 7          |
| 6   | VSW[1]           | Global differential output swing control | RW   | 0                     | 0.3V-1.0V     |            |
| 5   | VSW[0]           |                                          | RW   | 1                     | 100mV/Step    |            |
| 4   | Reserved         |                                          |      | 0                     |               |            |
| 3   | Reserved         |                                          |      | 0                     |               |            |
| 2   | Reserved         |                                          |      | 1                     |               |            |
| 1   | STOPST[1]        |                                          | RW   | 0                     | 00=Low/Low; 1 | 0=High/Low |
| 0   | STOPST[0]        | Differential Stop Mode State             | RW   | 0                     | 01=HiZ/HiZ; 1 | l=Low/High |

#### **Byte 21: Power Down Restore Configuration Register**


| Bit | Control Function | Description                           | Туре | Power Up<br>Condition | 0              | 1            |
|-----|------------------|---------------------------------------|------|-----------------------|----------------|--------------|
| 7   | Reserved         |                                       |      | 0                     |                |              |
| 6   | Reserved         |                                       |      | 0                     |                |              |
| 5   | Reserved         |                                       |      | 0                     |                |              |
| 4   | Reserved         |                                       |      | 0                     |                |              |
| 3   | PD_RESTORE#      | Save configuration in power down mode | RW   | 1                     | Config cleared | Config saved |
| 2   | Reserved         |                                       |      | 0                     |                |              |
| 1   | Reserved         |                                       |      | 0                     |                |              |
| 0   | Reserved         |                                       |      | 0                     |                |              |






#### **Phase Noise Plots**

100MHz input phase noise vs output phase noise. Additive jitter<sup>1</sup> 67fs.



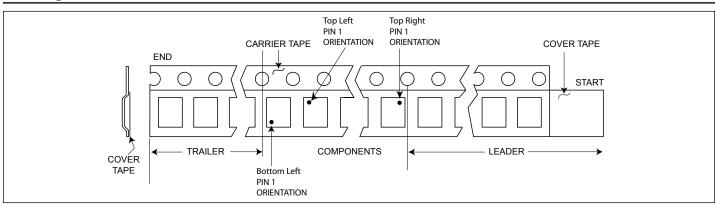
156.25MHz input phase noise vs output phase noise. Additive jitter<sup>1</sup> 51fs.

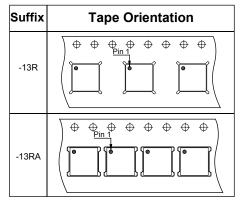


#### Note:

1. Additive jitter RMS value is calculated by the following equation = SQRT  $[(\text{total jitter})^{*2} - (\text{input jitter})^{*2}]$ 





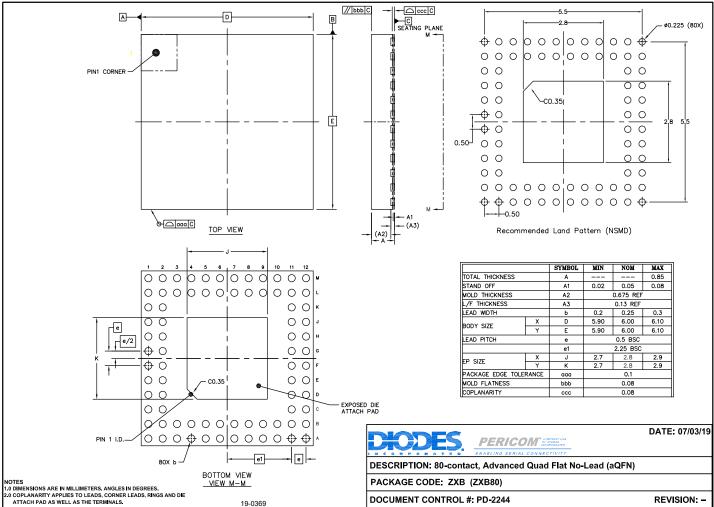


## **Part Marking**



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

### **Package Information**










#### **Packaging Mechanical**





For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

## **Ordering Information**

| Ordering Code Package Code Package Descripti |     | Package Description                           | Pin 1 Location   | Tape Pitch |
|----------------------------------------------|-----|-----------------------------------------------|------------------|------------|
| PI6CB332001AZXBIEX                           | ZXB | 80-contact, Advanced Quad Flat No-Lead (aQFN) | Top Right Corner | 12mm       |
| PI6CB332001AZXBIEX-13R                       | ZXB | 80-contact, Advanced Quad Flat No-Lead (aQFN) | Top Left Corner  | 12mm       |
| PI6CB332001AZXBIEX-13RA                      | ZXB | 80-contact, Advanced Quad Flat No-Lead (aQFN) | Top Left Corner  | 8mm        |

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. I = Industrial

5. E = Pb-free and Green

6. X suffix = Tape/Reel

7. For packaging detail, go to our website at: https://www.diodes.com/assets/MediaList-Attachments/Diodes-Package-Information.pdf





#### IMPORTANT NOTICE

DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS 1. TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-NESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3 Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product 4. names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5 Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7 While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes 8. assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2022 Diodes Incorporated

#### www.diodes.com