CCS C Compiler Manual
PCB, PCM, PCH, and PCD

A% % aE
A)\

November2021

ing

ALL RIGHTS RESERVED.
Copyright Cusom Computer Services, Inc. 2021

Table of Contents

OVEBIVIBW ...ttt ettt h et 4 kbt e oottt oo et e e o4k b e oo b bt e e 1a et e e bbb e e e b bt e e s et et e e bbb e e e sab e e e s et e e eaneees 20
PCB, PCM, PCH AN0 PCD ..ottt ettt ettt n stttk bt bt na bbbt abe e r e e e nne e 20
L1 7= 1= T o PO PSP 21
LI LT (or= TS 101 o] o Jo 4 AP OO PP P OUPRPPPROE 21
(D £=Tot (o] (=T ST T T PO T PO O PP PP TR OUPPPPPPRN 22
FHlE FOMMALS ...ttt ettt e e et s et e s bbb e e e e e e e 22
Invoking the Command LiNe COMPIIETo.uuuiiiiieiiiiiee ettt e e et e e e e e enbereeaeeaeanes 24
=T 1O OO PP P OP R OPPRN 26
o) g =T o PP PTR PRI 26
SlIAE OUE WINUOWS ...ttt ns et s e ser et e et e s e e ne e e sn e e nneeeneenneeenree s 26
o1 (o T T T T T P T T PO OO PP PP PP P OPPPTPPPPPN 26
DEDUGGING WINTOWS ...ttt ettt ettt e et e e s et e ekt e e s bt e e s e e e e abeeeeeas 26
STALUS B ... eeiiiiiie it er e e e e e s s r e a e e a e 27
OULPUL MESSBUESeeeeeeee e ettt e e e e ettt e e e e ekt e e e e e e ek bttt e e e e 4 s R b e e et e a2 e e s R b b et e e e e e e nnb e s et e e e e e nnnnbe e e e e e e aanrnneeeeeas 27
Lol [T IS 1] - V. PO RP PP 28
COMIMENT ...ttt st e e s bt e e s e b e e e s e e e e s b b e e s s et et e s b b e e e s ab e e e s e e e e eaneeas 28
THGrAPN SEOUENCES ...ttt ettt ettt oot e e bbbt e e e et e sb et e e e tn e e e nabe e e s bneeeeene 29
MUIEIPIE PrOJECT FIES ...ttt ettt e e et e st e s nbee e e 30
Multiple COMPIIALION UNIEScooiuiiiiiiii ettt ettt e e e st e s abeeeeens 30
FUI EXAMPIE PTOGIAIM ... uiiiieiitie ettt ettt h e e et e e e st e e s s bt e e e bb e e e e nbb e e e embe e e e bbe e e e nbeeesnbeeeeanbeaeenn 31
] t= L=T 0 0 T=T] PP PP PP PPPRRPP 33

(0] 153 = £ PN 39

(16 =T 1 11T £ ST PRPTRS PR 39
(©]0]=T 1= 10] £ T TP P PP P PP PP PR PP PTPRPTON 40
(@1 o (o g (=Tt =To (=T o Tod PP PT PO 41
Data DEfINILIONS ..ottt e et 42
= CY (o Y] o O PSP OTSOP PP OPPPRN 42

Type Qualifiers........... ...44
a0 L=t Y o PP OPPPOPPPRN 45
SEIUCTUIES AN UNIONS ...ttt ettt e s e e e e e bbb e e s et e e e abe e e e sab e e e sbe e e e aeaeees 45
1877 010 = T T TP PP PO T PO PP PP PR OPPPPPOPPPOY 46
NON-RAM Data DEFINITIONScuviiiiiiieiiiii ettt e e sbe e e s aeeeee e 47
Using Program MEmMOTY fOF DAtAcooueiiiiiiiieiiiie ettt ettt ettt et e ettt e e e bb e e e sbeeeaaneeeeenn 48
N T =To I o L] (=] £ TP PPOPPPRN 50
FUNCHON DEFINIION ...ttt ettt r e s e et e e r e s e e ne e e e e s e e neennnas 51
OVEOAAEA FUNCHIONS ...ttt ettt et e e bt s bt e e abe e e et et e nbe e e e aineees 52
REFEIENCE PArGMELEIS ...ttt e et e s e e 52
DEfaUIt PArQMELEISeiiiiiiieitie ettt e et b et e st e e et e e s et e s e e e 53
Variable ATQUMENT LISESeeeiuiiiiiiiiie ittt ettt ettt et b e e e bt e e st e e e e bt e e e e b bt e e sabb e e e entb e e e anbeeeabbeeeannne 53
FUNCHONEAI OVEIVIEW ...ttt se et b e s e ekt b e st e b e et eenereeneennnas 55
[TP PO TP P PPPPPPPPPON 55
ADC 56
ANAIOG COMPATALOTeiiiiiie ettt e e ettt e e bt e e e e bt e e e et et e e esb et e e nab et e e bbb e e e ab e e e nab et e aeneeeeas 58
(07 A I = T LSO ON 59
L0101 T PO EOTTP U R U TP PP PSPPI 64
(OfeTe [l o (o) 11 O O P TR TP PPRPTRPPR 65
CONFIGUIALION IMEBIMIOTY ...ttt ettt e et e ekt e e e bb e e e bt e e e ea bt e e e bb e e e e bb e e e ambe e e e anbe e e e anbeeesnbbeeeanneeas 66
(01 L O TP UT PR PRSPPI 67
DA C 68
(D= =l =TT o] (o] 1 1 TP TR PPPUPPRPTN 69
Dl 71
D A 72
Data Signal Modulator73
EXIENOEA RAM ...ttt e et s e e st e e s e e e e aiee e 74
EXEEINAI IMBIMOIY ...ttt et a ettt e e ekt e s bt e ekt e e et e e e nb et e aaineeeens 75
GENETAl PUIPOSE 1O ...ttt ettt e e bt e bt e et e e st e st e e eas 75
g o U L OF=T o 1F [TP PR P PP UPPRPTN 76

L a 1= = 1K PPN 77

INEEINAT OSCHIALOT ...ttt ser e e r e e e nne e s e e nne e e neennreanne 78
P B U DTS e 80
[VA o] | = Yo =T B = (=Tt TP U OO P PPRPTN 81
Output COMPATE/PWIM OVEIVIEWciieiiiiiiie ettt e e e e ettt et e e e ettt e e e e e s aabb b et e e e e e s s nbbbe e e e e e e sbnbeeeeaeesannaneeaeeas 82
MOLOT CONEIOI PWIM.......iiiiiieieic ettt st et nn e e n et e nne e s e e n e e e e nereenne 83
PIMPIEPMP ...ttt etttk h etk h et h et Rtttk £ R Rt E bR Rttt E e bt bt nn et e r e ae 84
POWET PWIM ... e 85
Program EEPROM ... 87
P P 89
(o] =1 SOOI 90
RS23B2 /O ..ttt bt h bR R bR R R R e bRt h R e bt bt ettt e bt e nne e 91
2 I ST T PO TS TP TP PP RO PP PTTPROPTRTN 92
L O T T TP OO TP O TP PP PR PP PR PTTPROPTRINt 93
] OSSO OT PSP
Timers....
Timero0....
Timerl....
Timer2....
Timer3
Timer4
Timer5
L= 7 OO T P T SO O OO PP PT POV PPPRPPPPN 102
THMEIB et 103
L6 = TP OO P PP PPPPPPPPPN 104
VORAGE REFEIEINCE.ttt et a bt e e bt e e e bb e e e s abb e e e anbe e e e enb e e e snbeeeeanneeas 107
WDT OF WALCH DOQG TIMIET ...eeeiieeieiiiie ettt e e sttt e e e e e st b et e e e e e s s bbb e e e e e e e e ambnbe e e e e e e aannbnreeeaeaannes 107
SETEAM 1Otttk h e h ettt e e en e e e e e 109
PIEPIOCESSON. ...ttt oottt e et oottt e e e ettt e e e e e e et e e e e e e e e e e e e e e e e e e a e 112
B 1o (0| (XS] TP O PP TP PT PP PUPPPPPI 112
I L1 o1V L= TP PP UOTUPPPPTRNN 112
#asm, HENAASIM, HASIM @SSuiiiiiiiiiiiii et s 113
Fzd oT=T a1 Qo [0 o - PSP PP UOPPPPPPTRON 124
FEDANKX ettt e et e es 124
22 0= T 0] PPN 125
2 o TSP TS PO PP T P PR PR URPTRPON 125

FEOUIIT <. E ettt 126
22 0)Y1 (TSP PT PO PPPPTN 129
F22 022 1SN 130

[0 (= O T T TP PP PP PO PP R PPPPPPUPRPTON 130
0[S 1= PSPPSR PP 131
o [T 0= 1 o T PSPPSR PP 132
FHABVICE ..ottt e e 133
e (=Y, (o] TS PP UUUUPPPPTN 136
H#if Helse Helif HENif... ..o 136

#ifdef #ifndef #else #endif

1o o Lo EC R 1 a1 o [PPSR OU PRI

FHMPOIT(OPLIONS) ...ttt et a ettt e ettt e nab et e et e e e et e st e e ees 145
FHNCIUAR. ...ttt et a bttt e et ettt e e es 146
2101 1 TSRO PPRPRN 147
21| G G PSPPSR OUPRPRPI 147
E2 10 e (<1 1= T | PP RPOUPRPPPI 154
210 o[[o] o Y- 1 PP RPOUPRPPPI 155
T |10 1= TP PP UOTPPPPPTNN 156
21 OSSOSO 156
1101 TP O PP PP PT PP PUPPPPPI 157
FHIOCALE ...ttt e et e e eas 157
Fz2 10 To Lo (1] [T TP PO PP P PPPPTON 158
2 00 11 T PSP PO UOPPPPPPTRNN 159
2010 TSP P PO UOUPPPPPTRNN 159
F20] o1 S PP PP POUUPPRPTN 160
0] (o T PSP PR PPPPPTRPPN 160
FEDIN_SEIBC. ...ttt e bbb es 162

B o 1o [PPSR OUPRPPPI 167
0] 1 TP 168
T o1+ o KPP PO PPPPTN 168
2 o] = To | 1 1T D O PP P PP PP PPPPPPPPPPPPNt 169
E22 o]0 11172 PP RPOPPRPPPI 169
E22 o] 0] 1L PP OUPRPPPI 170
2 1=To1U] 1Y PSPPSR PPRRPR 171
E22 CSTST=T TP 171
22 (0] 1 £ TP PP PPN 172
FaSTS] 6oL = (PP PP PPN 173
FESEBIIANIZE ...ttt 174
2 L] PO ROP PR PPRPPR 176
L1 = 177
2 (oo [o TP T T T T T PP P PP P TP PT SR PPPPPPPI
#type......
#undef..........

__unicode__ ...
#use capture
E TR o [T PP RPOUPRRRPI

#use dynamic_memory

FEUSE FAST H0. ..ttt ettt
FEUSE FIXEO_I0 ..ottt ettt
FEUSE H2C ettt ettt R e E Rt E et nhe e e et nar e s e rn e
E T Yl o] o] 11T USSP OUPRRRPI
FEUSE PWIMI() .ttt ettt ettt ettt ettt ettt ettt e ekttt oo a et a4kttt e ook bt e4a b e £ e 4R b bt e oA ke e e oA R b £ e e AR bt e e eR bt e e e Rt e e e e nb e e e nbeeeeanneeas
FHUSE IS232 ...ttt e e e e e e s e e
LU 4 (0 LT PP P P OO O PP PP PP PT PP PP PP PP PTOTPPPTOION 196
E T Y] o TP TP PP PRSP PP OUPPPPPI 197
E T Y r=Ta o - 1o [o T TSSO PSP PP PPPPPPPI 199
FHUSE TIMIET L.t e et e e h bt e a bt e e s et e e e b et e e s ab e e e s b e e e s ar e e e 200
Fi VRS (01U o] o] o - To PSP O UOUUPPPPTNN 201
F22TT= 1 01T o To T PSP PP UOPUPPPPTON 202
2o o BT PO PP TR TPT PP PUPPPPPI 203
Ezor = (o TR (o o= I -y o TSSO PPRPRS 204
FZEIO _TIM e 205

F= Lo (o (=T To | (3 O ST SP R OUPPPOPPRN

adc_status()

F= Lo (o 41 (=T O SO P PO UPPPOPPRN
TS () T TP P OT PO PPRPPOROY 212
L0 1= () P O T T T O O ST PP PP PP OUPPPPPPRN
atof() atof48() atof64() strtofd8()coceeveuvvene

atoi() atol() atoi32() atol32() atoi48() atoi64()-.....

Lo (- L a1 (=T U o]] (OO P RO PROPRRN

F Lo [F= Vo] SR a1 (= 0 o1 €] () OO P RO PPPOPPRN

At ENADIE_INTEITUDES() 1eteteiiii ittt ettt s bbb e e et e s e e e bnre e 218
Lo L= o= o1 U1 (=T (O O O T PP P TP PP PP PP OUPPPPPPPN 219
at_get._ MISSING_PUISE_AEIAY() .eeeurrieiiiiieiitie ettt e e e iare e 220
E Lo (<Al o 1= 4 To T [TR PRSP OUPRPOPPRN
at_get_phase_counter()

E Lo (< Al (1T 1o} o T PP PP OUPPUPRPN

E Lo (= Y=l oJo o1 () PP SO O T SO PP PT P OUPPPOPPPRN
at_get_set_point_error()

E Lo = S = LU] () I TP PP TSP PP PT P OUPPPPPPPN

L 0 0] oA Tt (Y=Y () I PP PP OUPPUPPRN

AL ST COMPAIE_TIME() uteeeeiittie et ettt ettt ettt e e h e e et e e e hb et e e aa bt e e aabb e e e enbb e e e aab e e e e bbeeeebbeeesnbeeeaanneaeaan
at_set_MISSING_PUISE_AEIAY() +eeeureeeiiiiieiitie ettt ettt e et e sab e e e et e e e nbb e e e snbeeeeaneeeeean 227
LT O (=1 o (1o o1 () TP U RO PP PPRPPOROINY 228
E L= Y= 1oL L{ () TP O PP PSP P OUPPPPPPRN 228
E L= (0] o o] o () PP TSP P PP OUPPPPPPRN 229
oL ol [T () PO P PP P PP P OUPPPUPUPPOE 230
oA 15 [TSROSO RV PRUROPPRRPPITN 231
oL = TSROSO PRV PRUROPPRRPPIONN 232
bit_set()

oL (=1 () PSP U PP P PPV P PP OUPPUPUPPOE 233
L]0 101 o U | =T a F= o] =Y (O USSP SRP 234
Y=Y U] T OSSPSR 235

(o1 L= 1o (101 () TP PP PP PPRPPORONt 239
(o= g a1 0=T o (U] o] () T PP OUPPPOPPRN 240

clear_pwm1_interrupt() clear_pwm2_interrupt() clear_pwm3_interrupt() clear_pwm4_interrupt()
clear_pwmb5_interrupt() clear_pwme6_INEEITUPL()......evereeiiiiieiiie ettt e e e e e e e 241

cog_restart() cog2_restart() cog3_restart() COg4_reStart()coueeeeeeiiiiiereeeeeiaiiieiee e e e sriereee e 242
cog_status() cog2_status() c0og3_Status() COGA_STALUS() ..eeeerirriurrrrieeeeiiiiiieieeeeeiiiteieeeesseirereeee e e s sinnees 242
(o (o o= (o] (3 T Lo [T PP PR OUPRPOPPRN
(o (o a1 (T e [OO PR OUPRPOPRRN
(o (o (T Vo [T SO P ROV PRSPPI
(o (o 1 (=T (O I O PP SO PP PO PP OUPPPPPPRN
cwg_restart() cwg2_restart() cwg3_restart() ..
cwg_status() cwg2_sStatus() CWO3_ STALUS() «.uvveeiurrieriiieeiiiie ettt iare e
(o E Lo 41 (T () SO P PP P OUPRPOPRRN
(o (oo F= W =T oT =T AV T [TR OO OUPRPPPPRN
(o [T =T Uo [) TP R OUPPUPPRN
(o [T = L4 (TP U PO ST PP TSP OUPPPTPPPPN 251
(o [(=T E] 0 T == 10 V() O TP SO TP SO P PP PSPV PPPOPPPPN 252

(o [11 (= PP T P O SO U PRSP OUPPPTPPPPN

(o L2 N o Yo (=T) I PP PR OUPPPOPRRN
(o L N 11T (O TP P P OUPPOPPRN
(o L N VL] (O I OO OUPPUPPRN
disable_dmt()
disable_interrupts()

disable_pwm1_interrupt() disable_pwm2_interrupt() disable_pwm3_interrupt() disable_pwm4_interrupt()
disable_pwm5_interrupt() disable_pwm6_interrupt() .. 259

V() TAIVE) o 260
(o 0= NS = Ly () P TSP PT TR PO PP PPUPPOROINY 261
(o g aF=] e= (0 L] () IR T OO P PP OUPPPPPPRN 263
(o a0 LA = LU L] () T O PSP PP OUPPPPPPRN 264
[eTaE= o L= [0 1 { () T O O P PP OUPPPPPPRN 264
(ea o) SR L =T (U o] £ () PP PP UP PP PPPPPOROINY 265
€raSE_PrOGIAM_IMEMIOIY() «eteeeiiuttteteteeaattetteaeaaaattteteaeeaaassbeeeaaeaaaaatsbeeeeeeaasnbeseeaeeaaasbsbeeeaeesaannbeneeaeeaaasnrne 267

enable_pwm1_interrupt() enable_pwm?2_interrupt() enable_pwm3_interrupt() enable_pwm4_interrupt()
enable_pwmb5_interrupt() enable_pwm6 _INtEITUPL()ocuuvriiieeiiiiiei e 268

erase_eeprom()

free()....

LLEE (o1 (O I T OO T TP OO P PP PP PT PP OUPPPPPPRN
(o= 101 { (I 5T07= L | () OO P R OUPR ORI 282
[o (<A To [o To] 4 1 () IO P R OUPRPOPPRN 284
[o [o= o101 (T (O PP OUPPPOPPRN 285
[PCD] GO CAPLUIE() c.eieteeiie ettt ettt ettt ettt e e bttt e e bttt e et et e e e e e e s et e sbneeeannne 286
get_capture32_ccpl() get_capture_ccpl() get capture_ccp2() get capture_ccp3() get_capture_ccp4()
[o [o T o 0 (Y ol o LT () T PP PR OUPPPUPPR 287
[PCD] get_capture32_ccpl() get_capture32_ccp2() get_capture32_ccp3() get_capture32_ccp4()

[o = o= T o0 (X v olot o 1T () T SO SO P PP PP OUPPPPPPPN 288
L CAPLUME_BVEINT() -reeiiuiiieieiit ettt e bt e e et e et e e ab et e e ettt e et e e e ettt et e e e e e 289
GEL CAPTUME_TIME([) 1.ttt e bt e e et e ettt e e st e e ettt e et e e e et et e e b e e 289
[PCD] GO CAPLUIE32()..eeiittieiitee ettt ettt ettt ettt e ekt e e bt e e st eeesan e e e naneeesbneeennnne 290
(o= B 0] o o= T o LU = () TP PP UP PP PPUPPOROPNY 291
get_NSPWIM_FEEADACK() ...eeeeeeeiiiiiiei ettt e e et e e e e e e st e e e e e e e annnnees 291
(o= B 0] T JES) = LU (TP PP UP PP PPUPPOROINY 292
[o L= o 4o (o o1V T o1 10 Lo L () O PP P PP OUPPPOPPRN 293
L NCO_ACCUMUIALON(). ..teteeeti ettt ettt ettt ettt e et e e et e e et e e e nab e e e s nbneeeeas 294

get_nco_inc_value()...
(o= T ST () PSP PR POPUPPPPPPOROINY
(o= AT 0 [=T AN G T TP P PU T UPOPPPRPPOROINY
(o= BT =11 =T TP P PU T OP PP PPUPPOROPNt

[o 1= 1 1= ot SRRt

get_timerxy()

get_timer_ccpl() get_timer_ccp2() get_timer_ccp3() get timer_ccp4() get_timer_ccp5() ...cccccccvveenne 300
(o= (ST () PP TP PP OO PPRPPUROINY 301
(o= o L TP PO O PPRPPORONY 301
(o=] 1Y/ (O TP PO PPRPPORONt 302
[o o] T = To [0 | {1t () TP OUPPPOPPRN 307
a1l | IS oT=TTo JE=To (oo [0 T (O H O PO OUPPUUPPPNE 308
NSPWIM_A0O_CAPLUIE(). uveeeeiiiee ettt ettt e ab e s ettt e e bt e e e b bt e e st et e e e nbn e e e snbeeesbeeeeannne 309
NSPWIM_STOP_ PWITI() 1ottt ete e ettt ettt ettt e e e ekttt e e e e e sk bttt e e e e e e ab b be e e e e e e aannbe e e e e e e eanbebaeaeeas 310
NSPWIM_ GO PWIMI() ettt ettt e e bt e ek et e st et e e e b e e e s e e e sbeeeenanne 310
hspwm_update()

i2c_init()

[S) v= LT (O O SO PPTPPOUPPUUUPRNE
[2Zog o o] | OO OUPPUPPPROE
(Lo (== o [TR P TP T P PP PP P PP O U PP OUPPPPOPPPPOE
(Ao AV =T Te o [() TP T T PO P PP P PP PO PP PP OUPPPPPPPPPOE
(o] o1=TTo [I P T P T P T PP P PP PP T PP OUPPPPPPPPOE

[S) v= 11 () O SO P PP OUPPUPPPTNE

2L ogE) (o] o] (O ISP P PP UUUPROE
Ao - L (11 () PSP OUPPOUUPROE

120 trANSTEI_IN() 1ottt ettt et e et e e e

i2c_transfer_out()
[(1 (=T (O IR PO S TP ST SO P PP OO U PP OUPPPPPPPROE
1] o101 { () TSP OUPPUUPPPOE
input_change_x()
1] 01U] = (T I PSP OUPPUUPPPOE
(1] o101 () TP PP PP PPUP T OPPPPPPP

interrupt_active()
INEEITUPL_EN@DIEA() -+ttt ettt e e st e st e e et e e e e st e e e anene 329

isalnum(char) isalpha(char) iscntrl(x) isdigit(char) isgraph(x) islower(char) isspace(char)
isupper(char) isxdigit(char) — iSprint(X) ISPUNCL(X)....uuurrreeeeeiaiiiii ettt e e e 330

make32()....

malloc()......
memcpy() memmove()

0L 00 L1 { () T SO P PP OUPPUPPPRNE

LTI (L= o I 1 T ISP OUPPUPPPPOE
IS I L= o I 11 F= V1 oo) G PSP PP OUPPUUPPROE
I IS =L L0 Y () PSP OTPPOUPPPOE
MNST_WITEE_FITO() 1ttt ettt e et sb et e e et rar e sbeeeeaaene

msi_write_mailbox() ...

Lo E: 1o] () SO OTPPUUUPTOE
OFffSEL() OFFSELOTII() .veeeieiiiieiit ettt e ettt e e et e et e e e nneeeeeas
{01011 10t PO SOUPPUPPRN
(o101 o181 A o] { () TP PO PP PPUPPPOROINY
(o101 10101 a1 =T (O T PO PP PT P OUPPPOPPRN
(o101 10101 ([0 T= () T OO P PP PP OUPPPPPPRN
[o10110 101 oTTe] o1 () BT O OO P PP OUPPPPPPRN

(o101 o 18 1A (o)1 G T TP PU U PUPPPUPPOROPNt

(o101 o 18 1A (oo o | [=T () TP TP PU OO PPRPPROROINY
perror()
o1 Lo I o103/ (O I PO PO PP PPV P P OUPPUPUPPOE 364
oL Lo I [A (SIS (IO PSP PP PSPPI OUPPUPUPPOE 364
1[0 I =T To) TP PO PP TP POUPPUPUPPOE 366

pid_write()

o L TET=] =Tl o TSP PP OUPPOUUPPOE 368
L1 (o Tod =T [PR PPUPT PP 369
ol a] = Te (o [(=S Vo (o [(=1 TP UP RO TPTPPR 370
pmp_output_full() pmp_input_full() pmp_overflow() pmp_error() pmp_timeout()cccuveeeeeriniiiiieeeenn. 370
oLl oI (=T Vo [PSP OUPPUUUPPOE 371
L0l oI (1 T (O PSSP OUPPUPPPPOE 372
POI_ A CUITENT_SOUTCE(|)+ttt euteeeauttte e ettt e ettt e ettt e e e bt e e asb e e e e be e e e e ab e e e aabe e e e bbb e e e s bt e e aabe e e e anbneeennbeeeaabeeeeannne 374
port_x_pullups()

POW() PWWI() ettt ettt ettt ettt et e ket e okt oo b et oo et e ekt e na et s b et e e et e e st eneeaanne

prgx_status()

printf() fprintf()

L0} {1 =T o101 1 SO P PP OUPPUPPPTNE

oS (o o] =101 To) PP OUPPUUPPPNE 380
PSMC_AEAADANU() ..ttt ettt et e e 381
PSIMC_AULY()+ttt ittt ettt e ettt e e bbbt oo bt e e et e e bbb et ea et s b et e e e e e e e st neeeaaane 382
PSMC_FIEO_BAJUSE().veeeetrieeiiete ittt e e bt e e bt e st e e e et e e e 383
PSMC_MOAUIBION() 1ttt ettt ettt ettt et ettt e ekt e e e ab e e e eate e e e bbb e e e bt e e e sabb e e e anbbeeesnbeeesbeeeeannne 384
oS L[o1 Y () PSP OUPPUUPPTOE 385
PSMC_SHULAOWN() .ttt ettt e ettt e e hb e e ettt e e b bt e e e anb e e e eabb e e e anbb e e e snbeeesbeeeeannne 386
oS L[(o] () P PP O SO P P PP P PP OUPPPPPPPPOE 387
psp_output_full() psp_input_full() psp_overflow() psp_error() psp_timeout().....ccccceriverrreeeiniienrennnnn. 388
o =T Lo [) TP PP TP PP PP T PP OUPPPPPPPPROE 389
OS] o T L1 L (= T SO P PP P PP UUUPROE 390
PULC_SENA() FPULC_SENA()...neteeeiiiie ittt ettt ettt et e ettt e e bb e e e bt e e smbe e e e annb e e e snbeeesbeeeeannne 390
L1V I 01 PP OUPPUUPPROE 392
[ST Ao 011/ () T T PO PP PPUP T OUPPPPP 392
PWM_SEE_AULY PEICENE() 1netteeiiiee ettt ettt et e bt e e bttt e et e e et e e e nabe e e abneeeannne 393
PWIM_SEE FTEOUEICY() c.uteteeitiee ettt ettt ettt e ettt e e bt e e ettt e et e e entn e e e s e e e sbneeeannne 394
pwm1_interrupt_active() pwm2_interrupt_active() pwm3_interrupt_active() pwm4_interrupt_active()
pwmb5_interrupt_active() pwm6_iNterrupt_aCtIVE() «.o.ooueeereeeeeieiiiie ettt 394
2001 e L= o T i o= 1o U] (=T D SO PPUPROUPPUUUPTOE 395
(o =TI o = A oo 1U L TSP PT P OUPPPPPPRN
[PCD] g€i_get iNAEX_COUNT(). .. uteteiuiiieeiiiee ettt ettt ettt e e bt e e sttt e e st e e nab e e e sbneeeanene

[PCD] qei_get_interval_count()
[PCD] qei_get_velocity_count()

gei_set_count()

[PCD] gei_set_index_count()

(o =TS c= (U] () OO PP OUPPPOPPRN
(oo (0 I TP UTUO U PPRPPRORUINY

L= 1000 [() I PP UPUPT PP 402
(VA o101 (=T o)V (5] (O PO UPUP TSP 403
LoV o101 1=) i 01 I PSP OUPPUPUPPNE 404
(= To [o (o1 @ I [@1 B) I =T Vo[- Vo (032 (O OO TSP OUPPOPUPPOE 404
=T To [l o=V | PP ST P PP OUPP PPN 406
(2= Vo Ior=] o] = 11T o [I PP UPT TP
read_Calibration_MEMOIY().....coouiieiiiie ettt
read_config_info()cceeernnn.

read_configuration_memory()..

=T To o LoV (ot 1) (o] PP OTPPUUUPPNE

=T To [e 1001 (0 TP SO P PP OUPPUPPPTNE

=T To J=T=To] (o]0 01 TP T TP O T P TP PP PP P PP OUPPPPPPPPOE 412
FEAM_EXIENAEU_TAM() 1.uttteiiiite ettt ettt et e e bbbt e e b et e s be e e e e sbr e e e nab et e nbneeenanne 413
FEAA_PrOGrAM_ITIEIMOIY() uttttietiteiiite ettt ettt ettt e e ettt e sttt e e ab e e e sttt e e bbbt e e bttt e sabe e e e esbn e e e saneeesbeeeeaanne 414
=T Vo [g To [T o TT=To [Te (o] G T PSP P OUPPUUPPTNE 414
= To [o] qoTe = 1o 0 I 001100 L] Y (O TSP OUPPUUUPROE 416
[To [o] qoTe = 1o 0 I 001100 To] Y (O TSP PP OTPPUUUPRNE 417
read_Program_IMEMOTYB(). .. ccoiuiie ittt ettt ettt ettt et et e ettt e et et e ettt e e e st e e aabe e e e asbn e e e sebeeesbneeeannne 418
read_rom_memory()...

=T To JE=To [To (ol G P OO T PO ST P PP PP P PP OUPPPPUPPROE

=T oo (O T OO OUPPUUUPPOE
(=1L Y (o (PSSP OUPPUUPPROE
L(SET<] o o1 SRR OUPPUUPPROE

(SRS = L o= U1 (O OO PP PP PPUPT R OUPPPPPP
Ly L o L { () PO PO PP PP T PP OUPPUPUPPOE
o1 C= (=1 () TP PO P PP P PPV P P PUPPUPPPPNE

o1 C= T | () TP P U PSP PP T PP OUPPUPUPPOE 425
(o= = g (I (== To [PO PO PP UPTOPPPPPP 426
(o= 1= g (1 (=T (O IO PP PP UPT R OUPPPPPP 427

rtc_read()

[PCD] FEC_STALUS()-tveeeutreeeiteee ettt e ettt ettt e et et e e bttt e e st e e aat et e e bt e e e e s et e eabe e e e enbn e e e nabeeeabneeeanene 429
5O I (o 3 G (=T Vo [T O PSP P PP T PP OUPPPPPPPOE 429
LT) (= () I OSSPSR 430

rtos_await()

(o e (5= o] (=T T PSP OUPPUUPPPOE 432
10T =T g = To] (=T () PP UPT PP 432
[t TSI oIS To [o Lo]| PR UPUP TP 433
[0 TSI g LT [(== Vo [OO P UPUPT TP 434
(o S 1 Yo Y= o [TSRO OUPPOUPPPNE 434
(o)Y 0 o PSSP OUPPUUPPPNE 435
(o S (V] T () T SO PP ROUPPOUPPPOE 436
LTI (o T 1 I PP UPT PP 437
TEOS_SEAES() ¢ttt ittt ettt ettt ekt b e e h e e b et n et e e r e e st e e e aaane

rtos_terminate()

rtos_wait()

(0 Y (o [TSP P PP OUPPUPPPPNE
set_adc_channel() set_adc2_Channel(()ccuueiiiiiiiiii e e 441
1= A= o o o o T=T (O OO PP OO P PSP PP OUPPPPPPPN 442
SEL_ANAIOG_PINS()1 utrteiiitiieeitt ittt ettt e st e e e e 443
SCANT() FSCANT() 1ottt ettt et 443
5 O1) =10 LA 1= o [OO OUPPUUPPTOE 446
201 =T oL o1V o [PSP OUPPUUPPROE 447
[PCD] SENE_STALUS() «eutveeeutreeeiuteeeaiiteeastteeesttteeateeeeasabee e s sbeee sttt e e e sbeeeaabeeeeabbeeeaanbeeeaabbeeeannneeeanbeeesbeeeeannnn 448
set_ccpl_compare_time() set_ccp2_compare_time() set_ccp3_compare_time()
set_ccp5_compare_time() set_ccp5_compare_tiMeE().....cocveeerureeriiiieiiiie ettt 449
set_cog_blanking() set_cog2_blanking() set_cog3_ blanking() set _cog4_blanking()........cccccoeeuveenne 450
set_cog_dead_band() set cog2 dead_band() set cog3 dead_band() set cog4 dead_band()....... 451

set_cog_phase() set_cog2_phase() set _cog3 phase() set_cog4 phase()

set_compare_time()ccceeu..
set_dedicated_adc_channel()
set_hspwm_event() set_hspwm_sSecondary EVENL() ...ccuueveeeiiiiiiiieeeeeiiiiiieeeeeesiiieee e e e e ssreeeee e e e e snneees
SEE NSPWIM_AULY() ettt ettt ettt e ea et e ettt e e st e e eab et e sttt e e et e nab e e e i e e
Set_NSPWM_dUty_AGJUSTMENT()eeiiieeiiiiiiiii ettt e e et e e e e e e nb b et e e e e e snnbe e e e e e e e e annnnees
S NSPWIM_OVEITIAE() 1.ttttetee ettt ettt e ettt e e e e e ettt et e e e s s bt e e e e e e e e e nbbbe e e e e e e annbeneeeeeeaannnnnes 457
SIS IS o1V I 1= oL [() TP PP U U PP PPUPPOROPNY 458
SEL NSPWIM_PRASE() -+t eiuttteeeiit ettt ettt ea et e ket a e a e e e e e
SELNSPWIM_SCAING()+t ntreeeemttee ettt ettt e e ea et e et e e st e e ettt e sttt e e ettt e st e e s nineeeeas
S A S o1V ESTor= LT o o T T T OO PP PP OUPPPOUPRN

L A L] oL Lo (= =] D () IR UPUUPPRPPORUINt

set_motor_pwm_duty()

set_motor_pwm_event()

(1= Lo (o] (U 01 { () T TP RO OUPPPOPPRN
SEL_NCO_ACCUMUIBLON() -.tttteteeeiiiittit et e e e ettt e e e e ettt e e e e e st te e e e e e e e sttt et e e e e e s sbbe e e e e e e e e nbbbaeeeeeeaannbeneeaeeeaannnnees

1 g (oo [(o V-1 (U =T (O I PP PPRPPROINY 466
SEL_OPEN_AIAIN_X(VBIUL)eiiieiieiiiii et e ettt ettt ettt e e e e ettt e e e e s bbbt e e e e e e e nbbbe e e e e e e sannbeneeaeeeesnbnbees 466
SEt_POWET_PWIM_OVETTIAE() 1.uvtteietiteiiiee e et ee e ettt ettt ettt st e ettt e e ea et e et et e e eabe e e e aab e e e sabe e e e enbb e e e nnbeeeanbneeeeas 467
SEt_POWET_PWIMIX_AULY() +eeeentteeiiitiee ittt e ettt ettt e ettt ettt e st e e ettt e e ea et e aab e e e aabb e e e st et e aabe e e e e bt e e e nnbeeeebneeeean 468
(1= o101 1o o1 o T T O P PP OU PRSPPI 469
ST A o1V 10T o] I PP PPRPPORONt 470
set_pwml_duty() set_pwm2_duty() set_pwm3_duty() set_pwm4_duty() set_pwm5_duty()coc.... 470
set_pwml_offset() set_pwm?2_offset() set_pwm3_offset() set_pwm4_offset() set_pwm5_offset()

S A N a TSI 15T () OO PR OTPROPPRN 472
set_pwml_period() set_pwm2_period() set_pwm3_period() set_pwm4_period() set_pwm5_period()
SEL_PWIMIB_PEIIOO().ttt ettt ea ettt e e ab et e et e e bt e e e e e e 473
SEE PWIMIX _PRASE() 1.ttt ettt e et h ettt s bt e e et en e 474
set_timerx() set_rtcc() set_timerO() set_timerl() set_timer2() set_timer3() set_timer4() set_timer5()
.. 475
1= A (o] (O PO T TP P PP P PP PP OUPPPPPPRN 476
SetuP_SA_AdC_CAlDIALION()veiiiiiieiiii ettt 477
Set_SU_AAC_CRANNEI() ...ttt ettt s bt e e et e s 478
SO SIOW_SIBW._ X() 1.ttt ittt ettt h e e e e e b e e e bt e e e bt e e e nb e e e nbe e e e aneeeeean 479

set_timerA()

set_timerB()
S HIMIEIXY () 1otettte ettt ettt e e a et e e e bt e a et e et b e e et e e 481

set_timer_ccpl() set_timer_ccp2() set_timer_ccp3() set_timer_ccp4() set_timer_ccp5() set_timer_ccp6()

set_timer_period_ccpl() set_timer_period_ccp2() set_timer_period_ccp3() set_timer_period_ccp4()
set_timer_period_ccp5() set_timer_period_ccp6()

set_tris()
S A T Y o1 T=To [T OO OO PP OUPPPOPPRN
1= 00] o1 () T SO PP U PP OUPPPOPPRN
SIS (U] o = ot (TP PP OO PPRPPOROPNY
SIS (U] o= Vo o1 (19T o =) IR T TSP UP PP PPUPPOROINY
[PCD] SEtUP_AdC2(IMOTE)eeiuiiieiiiieeettee ettt e ettt et e e e kbt e e e ab e e e sttt e e asbeeeeabbeeeamteeeeansneeeanbeaeaseeaaannen
1= 0] o J= Lo (o3 o o] (] (O I SO OO P PP OUPPPOPPRN 489
[PCD] SELUP_AAC_POIMS2(() ..reeieteeeiutiieeeiteee ettt ettt ettt e ettt e e bt e e e sttt e st e e st e e e s e e e sbeeeeannne 489
setup_adc_reference() setup_adC_referenCe2(()ccoouiieiiiieiiiiiei ittt 490

setup_adc_reference() Setup_adC_referEnNCE2(()cuu i uieiiiiie e e e 491

setup_at()

setup_capture()

setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4() setup_ccp5() setup_ccpb() setup_ccp8()
setup_ccp9() setup_ccplO()

setup_clcl() setup_clc2() setup_clC3() SEIUP_CICA() ..eeeiureiiiieieiiiiee ettt 497
SELUP_COMIPATALON() -+tteettteeeitteeettee e ettt e e ettt ekttt e e et e e e bt e e e sa bt e e e sb e e e e s b et e aa b et e e esbb e e e s bt e e eabe e e e e bt e e e nabeeeeabneeeeas 498
|5 ®1) Y= (0 o I elo)aq] o F=T =1 (o] g F= Uo] (3 IO SO PP POUPPUUPPPNE 500
SIS 0 o efolaqT o L= = o] gl 11 (=1 o (O I TP PU OO PPUPPORONY 501
SELUP_COMPAIALOT _MASK() .eeeeeiiiiitiiiee e e ittt e e e ettt e e e ettt e e e e et bbe e e e e e e s sbbe e e e e e e e anbbbeeeaeeeaannbeneeaeeeeannnrees 502
[PCD] setup_cOmMPAarator_SIOPE() «....uveeiurieiiiiieiiii ettt ettt e s e st e e 503
SELUP_COMIPATALOT_X()« uttteeeutteeeeiteeeattee e ettt e e sttt e e ettt e e e bt e e e sabe e e e abe e e e aa bt e e aabe e e e ambb e e e aab e e e eabbeeeenbbeeesnbeeesnnneaeean
SELUP_COMIPATE()+ tutteteautiteeeittee ettt e e ettt e e e bt ee e ekt e e e s tb e e e e bt e e e oabe e e e se e e e e s b e e e eabe e e e ehbb e e e ea b e e e eabbeeeenbbeeesnbeeeennneaeean
=0 T oo 10101 (=Y £ () [P PR PP OUPRPUPPRN
=10 oI (ol (30 To T (=) T O TP PP PO OO PP PP PP OUPPPPPPPN

setup_cog()setup_cog2()

setup_cwg() SEtUP_CWO2() SELUP_CWOS(() «eerurreeiirrieiirieeiieie ettt e sttt sttt et e e e s e e s inee e 509
[PCD] SEtUP_CUITENE_SOUICE() .. .uteteiutrieaiutieeeaiteeeateee e ettt e e sste e e e atte e e e sab e e e aabe e e e bbb e e e anbeeeambeeeeasbeeeesnbeeesbeeeeannne 510
(= 0] o T e F= Yo () OO P OUPPPOPRRN 510
(=0T o T (o1 SO OUPPOPRRN 511
=10 oI o [=To [[or= 1 C=To [=To (o () T SO OO O PP PT POV PPPPPPPN 513
51100 oI 10 F= T O T PP ST ETOP PP PP OUPPPPPPPN 514
1= 00T oI 401 (O O P T P PP OO PP PP OUPPPOPPPRN 515
=10 o T e £ 13T PP OUPPPUPPRN 516
SELUP_EXEEIMAL_IMEIMOTY().ttt ittteeiiieie ettt ettt e et e ettt e e hb e e aabe e e e e abe e e e amb e e e anbe e e e abbeeesnbeeeaaneeaeean
=0 oI 1o [Y o T T=To I Uo (o () OO PSP UPPRN
setup_high_speed_adc_pair()

setup_hspwm() setup_hSPWM_SECONAAIY().....cciouurieiimiiieiiiie ettt 520
SELUP_NSPWIM_BIANKING().+ttt ettt e e ettt e e 521
SEtUP_NSPWM_CHOP_CIOCK() .vteeeitieeiiet ettt e s inee e 522
SetuP_NSPWM_CUITENT_IIMIE()ittt e e e e e et b et e e e e e s e r e e e e e e e annnbees 523
SEEUP_NSPWIMI_EVEINE() ..tttteteeeieititet et ettt ettt e e e e sttt e e e e e e abb et e e e e e s sbbe et e e e e e e nbebe e e e e e e annbebeeeeeeaannnnnes 524
SELUP_NSPWIM_FAUIL() .ottt ettt e e e e st e e e e e e e sbb b e e e e e e e snnbeneeeeeaaannnnees 525
Setup_NSPWM_fEEA_FOMWAIT() «eeoeeeieiiiie ettt et et esnbnee e 525
SELUP_NSPWIMI_IOGIC_X() 1-tvteeemttte ettt ettt et a e et e e st e et e et e e et e e e st e e s e e 526
SELUP_NSPWIMI_SYNC() +uttteeiittee ettt ettt ettt ettt a ettt e sttt e ettt e ettt e e et e e nab e e e e e 527
SEEUP_NSPWIM_EFIGGEI() - tttteteeeieiittet e e e ettt e ettt e e e e ekttt e e e e e e e sttt et e e e e e s sabe b e e e e e e e sbbbe e e e e e e annbeneeaeeeaannnbnes 528

setup_hspwm_unit()

setup_hspwm_unit_chop_clock()

L= 0] T oo [PO P P OUPPPOPPRN
SIS (U] oI (o LAY o | o [(=T () T PP PPRPPUROINY
100 o Tl (o] il 11170 11 () P PP UUPPRPPRONY 534
SIS (U] T 1 0 T TP TP PU U PPRPPOROY 535
L= 0] oI (oo (O O P PP OUPPPOPPRN 535
setup_opampl() setup_opamp2() setup_opamp3() Setup_0PampPa()....ccccerrureirririeiiiieeniieeenieee e 536
setup_opampl() setup_opamp2() setup_opamp3() Setup_0PamPA(). .cceeeruriiiriieeiiiieeniiee e 537
SIS (U] oo {od 1| =1 (o] { () TP PP PPRPPURONY 538
=10 oI oo - T O O O O T TP P P OO O PP PP PP OUPPPPPPRN

setup_pid()

setup_pmp(option,address_mask)

SELUP_POWET_PWITI() 1ttteiuttteeentteeeaiteee ettt e e ettt e e st e e sttt e e e bt e e e aa ket e e st et e e sttt e amb et e e embb e e e en b e e e e abbeeeenbbeeesnbeeeannneaeean
SELUP_POWET_PWIM_TAUIS() 1.eeeeeiiiiieiiiie ettt et e et e e et e e e st e e s nnaeeeeas 544
SELUP_POWET_PWIM_PINS() 1etuttteiiteieitit ettt ettt ettt ettt et e ettt e e ettt sab et e e abe e e e e et e s et e e e bb e e e nabeeesabnreeeas 545
=10 oI o0 D O O T T PP OO PP PP PP OUPPPPPPRN 545
SEEUP_PSIMIC()+ttt ettt ettt ettt ettt ettt ekttt e e bt e ettt e 4 a4 e bttt e ek et ea bt e oottt e e b et e e e e e e 546
setup_pSp(OPtioN,addreSS_MASK)uuiieiiiiieiiiie ittt e e 548
setup_pwm1() setup_pwm2() setup_pwm3() SEIUP_PWIMZA() .eoiuurieiiiiieiiiieeiiiee e eitee st e s 550
=0T o T e (=Y () PP P OUPPUPPRN
=10 oI (o () T O PP T SO PP PRSP P T OUPPPPPPRN
setup_rtc_alarm()

=10 oI - Uo o () I O T T S TSSO PP PF P OUPPPTPPPRN
501 = 0] o T T= 0L (T PSP OUPP PPNt 554
=0 oI 1 (O TP OO PP OPPRN 555
setup_spi() setup_spi2() Setup_SPi3() SELUP_SPIA()-reeeiruueeaimrieaiiiieiiiie ettt e sseee e 556
SIS (E] 0 =T o TP TP P PU U P OPPPUPPROROPNt 557
=10 T 1 =T Y (O TP OO PP PP OUPPPPPPRN 559
SELUP_HIMEIB().ttt a ettt et e et 560

setup_timer0()
setup_timer1()
setup_timer2()
setup_timer3()
setup_timer4()

setup_timer5()

10 T = () T O OO P PP OUPPPPPPPN

setup_vref() setup_vref2()

=0 T L IR PP OUPPPOPPRN
SIS (U] o oo [(O TP P PU U PPRPPORONt
L1 =] 1 T PO PP PP PP VPOV PPPPPPIN 571
L] a1 T | L P T PP PPRPPOROIN 572
LS [T=] o] O PO OUPPPOPPRN 573
LS L= o 0oL T O PP OUPPPOPPRN 574
[0 e =T To [() PP OUPPPOPPRN 575
S (L= A0 0 =T o (PP PU U PPRPPTRUINt 576
] 101 P = T () IO OO T P T P PP OO PP PP OUPPPPPPRN

smtx_status()....
smtx_stop() ...
[01 11 (=T T OO RO U PRSPPI
(01 e U oo = L= (O TSP PP OUPR PRI
spi_data_is_in() spi_data_is_in2()Spi_data_iS_IN3().....ceercuieiruiiiiiiiieiiiieeeie et
L] TIPS PP PSP PP OUPPPPPPPN
S oI o1 (=11 (=T (O OO T P T PP TSP PP PP PP OUPPPPPPRN
spi_read() spi_read2() spi_read3() SPIi_TEAUA()....cccuiiiiuiiiiiiieiiiie ettt
LS oY= Al (o] 1 () PP PR OUPPOPPRN
LS oL o LT [PP P P OUPPOPPRN
[PCD] SPi_transSfer_WIEE() .. .eeeeureieiiiie ettt ettt e et st e e e
spi_write() spi_write2() spi_write3() spi_writed()....

LS oI (=1 (O P O T P OO T O PP U PRSP OUPPPPPPPN

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr() stremp()
strcoll() strcspn() strerror() stricmp() strlen() striwr() strncat() strncmp() strncpy()
strpbrk() strrchr() strspn() strstr() strxfrm(')

S 1(o1)Y @ IES1 1 (0] o)/ (O [P P PP U UU PP PPUPPOROINY
strtod() [PCD] Strtof() [PCD] StTOAB() ..eeeierieiiiieeiiiie ettt
5] 14 1oL P O TP U PSPPSR OUPPPOPPRN
L] 14 1o [T O TP TP PP OUPPPOPPRN

Lol 0 ol] oF= Lo I o T (o] () OO TP PP OUPPPPPPRN 599

(o]0 od] oF= Lo I 111 { () I PP PP OUPPPOPPRN 600
(e T0 el gl o L= o JKS) c= 1 (=1 () I PP U R UR U PPRPPTROINt 601
Lo o101 (=T o\ = 11 = o] T G U PP PPRPPRRONY 602
Lo o101 (=Tl o) (=] () I PP PPRPPUROINY 603
Lo o101 (=T (U] I TP OUPPPOPPRN 604
(VT Lo (3 O PP RPOPPRPPPI 605
LV =] 2 o [T PP OUPRPPPI 605
(T) = Lt PP P OT OO PPRPPORONt 606
VETIfY _SIAVE PrOGIAM(). ..eiieiiiiiiiiiiie ettt ettt e et e ea et e s bbb e e et e e st e s abnreeeas 607
LI o= L | O T T TP T PP P PP P PP PT PP PPPPPPPI 608
WIite_CONFIGUIAtION_MEMIOTY() -.eeiiitiieiiiiee ittt ettt ettt e et e et e e ettt e e sabe e e e bt e e e e nb e e e snbeeeeaneeeas 609
L CI=T] o] (o] 11 PO PSP OUPRPRPI 610
WHEE_@XEEINAL_IMEIMOIY() 1-ttteeiittte ettt ettt ettt ettt ettt ettt e ettt e e ab e e e bb e e e ekt e e e sabe e e e bbb e e e enbeeesnbeeeeanneeas 611
= (=T pTo (=T I =T o T I T T TP O TP P PP PP PP RPPPPPPPPI

write_program_eeprom()....
write_program_memory()

write_program_memory8()

zed_status() .ooooeeveeeiennn.

Standard C INCIUAE FIESiiiiiiieeii ettt st r e et e e s
EITNI0.N Lot e et e e et e e e e 618
FlOBE N e et e et 618
110 011 S o P PSP TSP PP PO TP PP OUPPUPPPPPOE 619
[[oTor= 1[N o LT TR PR U RO PR PR 620
=1 [00] o ISP UPPUPPRN 620
LS o [0 =) 1 o TSRO PR PPR P PP PP PPRPPRTN 620
SEAIOL e e 620
£ o T o PSRRI 620

SOftWAre LICENSE AGIEEIMENT.......eiiitiieiiii ettt ettt ettt e et e ekt e e aa bt e e bttt e e s et e s bt e e e sbr e e e saneeesbneeeannne 622

19

Overview

OVERVIEW

PCB, PCM, PCH and PCD

The PCB, PCM, and PCH are separate compilers. PCB is for 12-bit opcodes, PCM is for
14-bit opcodes, and PCH is for 16-bit opcode PIC® microcontrollers. Due to many
similarities, all three compilers are covered in this reference manual. Features and
limitations that apply to only specific microcontrollers are indicated within. These
compilers are specifically designed to meet the unique needs of the PIC® microcontroller.
This allows developers to quickly design applications software in a more readable, high-
level language.

PCD is a C Compiler for Microchip's 24bit opcode family of microcontrollers, which
include the dsPIC30, dsPIC33 and PIC24 families. The compiler is specifically designed
to meet the unique needs of the dsPIC® microcontroller. This allows developers to
quickly design applications software in a more readable, high-level language.

The compiler can efficiently implement normal C constructs, input/output operations, and
bit twiddling operations. All normal C data types are supported along with pointers to
constant arrays, fixed point decimal, and arrays of bits.

rep] Special built in functions to perform common functions in the MPU with ease.

ireo] Extended constructs like bit arrays, multiple address space handling and effective
implementation of constant data in Rom make code generation very effective.

IDE Compilers (PCW, PCWH and PCWHD) have the exclusive C Aware integrated
development environment for compiling, analyzing and debugging in real-time. Other
features and integrated tools can be viewed here.

When compared to a more traditional C compiler, PCB, PCM, and PCH have some
limitations. As an example of the limitations, function recursion is not allowed. This is due
to the fact that the PIC® has no stack to push variables onto, and also because of the
way the compilers optimize the code. The compilers can efficiently implement normal C
constructs, input/output operations, and bit twiddling operations. All normal C data types
are supported along with pointers to constant arrays, fixed point decimal, and arrays of
bits.

PIC® MCU, MPLAB® IDE, MPLAB® ICD2, MPLAB® ICD3 and dsPIC® are registered trademarks of Microchip Technology Inc. in the U.S. and other
countries. REAL ICEF, ICSP® and In-Circuit Serial ProgrammingE are trademarks of Microchip Technology Inc. in the U.S. and other countries.

20

http://www.ccsinfo.com/content.php?page=ideoverview

Overview

Installation

Insert the CD ROM, select each of the programs you wish to install and follow the on-
screen instructions.

If the CD does not auto start run the setup program in the root directory.

For help answering the version questions see the "Directories" Help topic.

Key Questions that may come up:
Keep Settings - Unless you are having trouble select this
Link Compiler Extensions - If you select this the file extensions like .c will start
the compiler IDE when you double click on files with that extension. .hex files start

the CCSLOAD program. This selection can be change in the IDE.

Install MP LAB Plug In - If you plan to use MPLAB and you don't select this you
will need to download and manually install the Plug-In.

Install ICD2, ICD3...drivers-select if you use these microchip ICD units.
Delete Demo Files - Always a good idea

Install WIN8 APP- Allows you to start the IDE from the MDL style (AKA Metro)
Start Menus.

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and
minimal, if any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently. It is
recommended to send an email to: support@ccsinfo.com or use the Technical Support
Wizard in PCW. Include the version of the compiler, an outline of the problem and attach
any files with the email request. CCS strives to answer technical support timely and
thoroughly.

Technical Support is available by phone during business hours for urgent needs or if
email responses are not adequate. Please call 262-522-6500 x32.

21

http://www.ccsinfo.com/downloads.php

Overview

Directories

The compiler will search the following directories for Include files.
1 Directories listed on the command line
1 Directories specified in the .CCSPJT file (edit in the IDE under
Options>Project>Include)
1 Directories specified in the ccs.ini file found using Start>All
Programs>PICC>User Data Dir
1 The same directory as the source.directories in the ccsc.ini file

By default, the compiler files are put in C:\Program Files\PICC and the example
programs are in \PICC\EXAMPLES. The include files are in PICC\drivers. The device
header files are in PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in
\PICC\DLL\5.xxX.

It is sometimes helpful to maintain multiple compiler versions. For example, a project
was tested with a specific version, but newer projects use a newer version. When
installing the compiler you are prompted for what version to keep on the PC. IDE users
can change versions using Help>about and clicking "other versions.” Command Line
users use start>all programs>PIC-C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all
programs>PIC-C.

1.) A project directory as a default location for your projects. By default put in "My
Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in
%APPDATA%\PICC

File Formats

.c - This is the source file containing user C source code.

.h - These are standard or custom header files used to define pins, register, register
bits, functions and preprocessor directives.

.pjt - This is the older pre- Version 5 project file which contains information related to
the project.

.ccspijt - This is the project file which contains information related to the project.

st - This is the listing file which shows each C source line and the associated
assembly code generated for that line.

22

Overview

The elements in the .L ST file may be selected in PCW under
Options>Project>Output Files

CCS Basic - Standard assembly

with Opcodes - Includes the HEX opcode for each instruction

Old Standard -

Symbolic - Shows variable names instead of addresses

Mach code - Includes the HEX opcode for each instruction

SRF names - Instead of an address, a name is used. For example, instead of
044, will show CORCON

Symbols - Shows variable names instead of addresses

Interpret - Adds a pseudo code interpretation to the right of assembly
instruction to help understand the operation. For example: LSR
W4 ,#8,W5 : W5=W4>>8

.sym - This is the symbol map which shows each register location and what program
variables are stored in each location.

.Ssta- The statistics file shows the RAM, ROM, and STACK usage. It provides
information on the source codes structural and textual complexities using
Halstead and McCabe metrics.

tre - The tree file shows the call tree. It details each function and what functions it calls
along with the ROM and RAM usage for each function.

.hex - The compiler generates standard HEX files that are compatible with all
programmers. The compiler can output 8-bet hex, 16-bit hex, and binary files.

.cof - This is a binary containing machine code and debugging information. The debug
files may be output as Microchip .COD file for MPLAB 1-5, Advanced Transdata
.MAP file, expanded .COD file for CCS debugging or MPLAB 6 and up .xx .COF
file. All file formats and extensions may be selected via Options File Associations
option in Windows IDE.

.cod - This is the binary file containing debug information.

.rtf - The output of the Documentation Generator is exported in a Rich Text File format
which can be viewed using the RTF editor or Wordpad.

.rvf - The Rich View Format is used by the RTF Editor within the IDE to view the Rich
Text File.

.dgr - The .DGR file is the output of the flowchart maker.

.esym or .xsym - These files are generated for the IDE users. The file contains
Identifiers and Comment information. This data can be used for automatic
documentation generation and for the IDE helpers.

23

Overview

.0 - Relocatable object file.

.0osym - This file is generated when the compiler is set to export a relocatable object file.
This file is a .sym file for just the one unit.

.err - Compiler error file.
.ccsload - Used to link Windows Apps to CCSLoad
.ccssiow - Used to link WindowsApps to Serial Port Monitor

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:

CCSC [options] [cfilename]
Valid options:

+FB Select PCB (12 bit) -D Do not create debug file

+FM | Select PCM (14 bit) +DS Standard .COD format debug file

+FH Select PCH (PIC18XXX) +DM .MAP format debug file

+YX Optimization level x (0-9) +DC Expanded .COD format debug file

+FD Select PCD +DF Enables the output of an COFF debug

(dsPIC30/dsPIC33/PIC24) file.

+FS Select SXC (SX) +EO Old error file format

+ES Standard error file -T Do not generate a tree file

+T Create call tree (. TRE) -A Do not create stats file (.STA)

+A Create stats file (.STA) -EW Suppress warnings (use with +EA)

+EW | Show warning messages -E Only show first error

+EA Show all error messages +EX Error/warning message format uses

and all warnings GCC's "brief format" (compatible with
GCC editor environments)
The xxx in the following are optional. If included it sets the file extension:

+LNxxx | Normal list file +08xxx | 8-bit Intel HEX output file

+LSxxx | MPASM format list file +OWxxx | 16-bit Intel HEX output file

+LOxxx | Old MPASM list file +OBxxx | Binary output file

+LYxxx | Symbolic list file -0 Do not create object file

-L Do not create list file

+P Keep compile status window up after compile

+PXxXx Keep status window up for xx seconds after compile

+PN Keep status window up only if there are no errors

+PE Keep status window up only if there are errors

24

Overview

+Z Keep scratch files on disk after compile

+DF COFF Debug file

+="." Same as I="..." Except the path list is appended to the current list

I=".." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes”
If no I= appears on the command line the .PJT file will be used to supply the
include file paths.

out="di | Use this directory for output files

rIl

-P Close compile window after compile is complete

+M Generate a symbol file (.SYM)

-M Do not create symbol file

+J Create a project file (.PJT)

-J Do not create PJT file

+ICD Compile for use with an ICD

#xxx="y | Set a global #define for id xxx with a value of yyy, example:

yy" #debug="true"

+GxxX= | Same as #xxx="yyy"

"yyy"

+? Brings up a help file

-? Same as +?

+STDO | Outputs errors to STDOUT (for use with third party editors)

uT

+SETU | Install CCSC into MPLAB (no compile is done)

P

sourceli | Allows a source line to be injected at the start of the source file.

ne= Example: CCSC +FM myfile.E8&dbuhx®l i

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read
from the specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line
parameters are read from that file before they are processed on the command line.

25

Oveniew

Examples:
CCSC +FM C:\ PICSTUFR TEST.C
CCSC +FM +P +T TEST.C

The PCW IDE provides the user an easy to use editor and environment for developing
microcontroller applications. The IDE comprises of many components, which are
summarized below. For more information and details, use the Help>PCW in the
compiler..

Many of these windows can be re-arranged and docked into different positions.

Menu

All of the IDE's functions are on the main menu. The main menu is divided into separate
sections, click on a section title ('Edit', 'Search’, etc) to change the section. Double
clicking on the section, or clicking on the chevron on the right, will cause the menu to
minimize and take less space.

Editor Tabs

All of the open files are listed here. The active file, which is the file currently being edited,
is given a different highlight than the other files. Clicking on the X on the right closes the
active file. Right clicking on a tab gives a menu of useful actions for that file.

Slide Out Windows

'Files' shows all the active files in the current project. 'Projects’ shows all the recent
projects worked on. 'ldentifiers' shows all the variables, definitions, prototypes and
identifiers in your current project.

Editor

The editor is the main work area of the IDE and the place where the user enters and edits
source code. Right clicking in this area gives a menu of useful actions for the code being
edited.

Debuqgging Windows

Debugger control is done in the debugging windows. These windows allow you set
breakpoints, single step, watch variables and more.

26

Overview

Status Bar

The status bar gives the user helpful information like the cursor position, project open and
file being edited.

Output Messages

Output messages are displayed here. This includes messages from the compiler during
a build, messages from the programmer tool during programming or the results from find
and searching.

27

Program Syntax

PROGRAM SYNTAX

Every C program must contain a main function which is the starting point of the program
execution. The program can be split into multiple functions according to the their purpose
and the functions could be called from main or the sub-functions. In a large project
functions can also be placed in different C files or header files that can be included in the
main C file to group the related functions by their category. CCS C also requires to
include the appropriate device file using #include directive to include the device specific
functionality. There are also some preprocessor directives like #fuses to specify the fuses
for the chip and #use delay to specify the clock speed. The functions contain the data
declarations,definitions,statements and expressions. The compiler also provides a large
number of standard C libraries as well as other device drivers that can be included and
used in the programs. CCS also provides a large number of built-in functions to access
the various peripherals included in the PIC microcontroller.

Comment

Comments i Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters
between /* and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The
compiler recognizes these special types of comments that can be later exported for use
in the documentation generator. The documentation generator utility uses a user
selectable template to export these comments and create a formatted output document in
Rich Text File Format. This utility is only available in the IDE version of the compiler. The
source code markups are as follows.

Global Comments

These are named comments that appear at the top of your source code. The comment
names are case sensitive and they must match the case used in the documentation
template.

For example:

/FPURPOSE This program implements a Bootloader.

/*AUTHOR John Doe

A''ll' followed by an * will tell the compiler that the keyword which follows it will be the
named comment. The actual comment that follows it will be exported as a paragraph to
the documentation generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES

05/16/06 Added PWM loop

28

Program Syntax

05/27.06 Fixed Flashing problem
*/

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration.
For example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month, /* Current Month */

long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For
example:

/I The following function initializes outputs

void function_foo()

{
}

init_outputs();

Function Named Comments

The named comments can be used for functions in a similar manner to the Global
Comments. These comments appear before the function, and the names are exported
as-is to the documentation generator.

For example:

/*PURPOSE This function displays data in BCD format

void display_BCD(byte n)

{

}

display_routine();

Trigraph Sequences

The compiler accepts three character sequences instead of some special characters not

available on all keyboards as follows:

Sequence Same as
?2?=
?2?2(
??/
?7?)
??'
??<

| S| —|—|F

29

Program Syntax

2?1 |
27> }
?7?- ~

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in
the main file or the sub-files to use the automatic linker included in the compiler. All the
header files, standard libraries and driver files can be included using this method to
automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your project, you
can say in:

main.c:
#include <device header file>
#include<x.c>
#include<y.c>
#include <z.c>

X.C:
#include<x.h>

y.C:
#include<y.h>

Z.C:
#include<z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file
compiled.

Note that the #module directive can be used in any include file to limit the visibility of the
symbol in that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Multiple Compilation Units are only supported in the IDE compilers, PCW, PCWH,
PCHWD and PCDIDE. When using multiple compilation units, care must be given that
pre-processor commands that control the compilation are compatible across all units. It
is recommended that directives such as #FUSES, #USE and the device header file all put

30

Program Syntax

in an include file included by all units. When a unit is compiled it will output a relocatable
object file (*.0) and symbol file (*.osym).

There are several ways to accomplish this with the CCS C Compiler. All of these
methods and example projects are included in the MCU.zip in the examples directory of
the compiler.

Full Example Program

Here is a sample program with explanation using CCS C to read adc samples over
RS232:

#include <16F877A.h> /I Loads chip specific
definitions
#fuses NOPROTECT /I Turn off code protection
#use delay(clock=20000000) I/ Specifies clock speed
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7) // Creates RS232 libraries
void main() {
unsigne d int8 i, value, min, max;
printf("Sampling:"); /I Printf from the RS232 library
setup_adc_ports(ANO); /I Make ANO a analog pin
setup_adc(ADC_CLOCK_INTERNAL); /I Start up the ADC
set_adc_channel(0); /I Set ADC channel to ANO
do{
min=255;
max=0;
for(i=0; i<=30; ++i) {
delay_ms(100); /I delay function from the delay
library
value = read_adc(); /I Built - in A/D read function
if(value<min)
min=value;
if(value>max)
max=value;
}

printf(" \r\nMin: %2X Max: %2X\ n\ r",min,max);
} while (TRUE);

/I This version of the example uses the C++ cout instead of printf
/l and it also shows data streaming through the ICD instead of using
/I an RS232 port

#include <16F877A.h> /l Loads chip specific definitions
#fuses NOPROTECT /I Turn off code protection

#use delay(clock=20000000) /I Specifies clock speed

#use rs232(ICD) /I Creates RS232 libraries (using the ICD)

#include <ios.h>
void ma in() {
unsigned int8 i, value, min, max;

31

cout << "Sampling:" << endl;

setup_adc_ports(ANO);

setup_adc(ADC_CLOCK_INTERNAL);

set_adc_channel(0);

do {
min=255;
max=0;
for(i=0; i<=30; ++i) {
delay_ms(100);
value = read_adc();
if(value<smi n)
min=value;
if(value>max)
max=value;

cout << hex << "Min; " << min << "

} while (TRUE);

Program Syntax

/ Make ANO a analog pin
/Il Start up the ADC
/I'S et ADC channel to ANO

I/ delay function from the delay library
/ Built - in A/D read function

Max: " << max << endl;

32

STATEMENTS

Statements

STATEMENT

if (expr) stmt; [else stmt;]

while (expr) stmt;
do stmt while (expr);

for (expril;expr2;expr3) stmt;

switch (expr) {
case cexpr: stmt; //one or more case
[default:stmt]

2

return [expr];
goto label;
label: stmt;
break;
continue;
expr;

{Istmt])

Zero or more
declaration;

Example
i f(x==25)
x=0;
else
X=X+1;
while (get_rtcc()!=0)
putc(6nd) ;

do {
putc(c=getc());
} while (c!=0);
for (i=1;i< =10;++i)

printf {(ri8ed, i) ;
switch (cmd) {

case 0: printf (fcmd
00) ; break;
case 1: printf (fAcm

10); break;
defaul t:

c md 0 yeakh

}

return (5);
goto loop;
loop: i++;
break;
continue;
i=1;

printf (fAb

{a=1;
b=1;}

int i

Note: Itemsin[] are optional
if

if-else

The if-else statement is used to make decisions.

The syntax is:
if (expr)
stmt-1,

33

Statements

[else
stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:
if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expressions are evaluated in order; if any expression is true, the statement

associated with it is executed and it terminates the chain. If none of the conditions are
satisfied the last else part is executed.

Example:
if (x==25)
x=1;
else
X=X+1;

Also See: Statements

while
Used as a loop/iteration statement.

The syntax is:
while (expr)
statement

The expression is evaluated and the statement is executed until it becomes false in
which case the execution continues after the statement.

Example:
while (get_rtcc()!=0)
putc('n’);

Also See: Statements

34

Statements

do-while

Differs from while and for loop in that the termination condition is checked at the bottom
of the loop rather than at the top and so the body of the loop is always executed at least
once. The syntax is:

do
statement
while (expr);

The statement is executed; the expr is evaluated. If true, the same is repeated and when
it becomes false the loop terminates.

Also See: Statements , While

for

Also used as a loop/iteration statement.
The syntax is:
for (exprl;expr2;expr3)
statement

The expressions are loop control statements. exprl is the initialization, expr2 is the
termination check and expr3 is re-initialization. Any of them can be omitted.

Example:
for (i=1;i<=10;++i)
printf("%u \r\n"i);

Also See: Statements

switch

Also a special multi-way decision maker.
The syntax is
switch (expr) {
case constl: stmt sequence;
break;

[default:stmt]

}

This tests whether the expression matches one of the constant values and branches
accordingly.

35

Statements

If none of the cases are satisfied the default case is executed. The break causes an
immediate exit, otherwise control falls through to the next case.

Example:
switch (cmd) {

case O:printf("cmd 0");
break;

case 1:printf("cmd 1");
break;

default:printf("bad cmd");

break ;}

Also See: Statements

return

A return statement allows an immediate exit from a switch or a loop or function and also
returns a value.

The syntax is:
return(expr);

Example:
retu rn (5);

Also See: Statements

goto

The goto statement cause an unconditional branch to the label.

The syntax is:
goto label;

A label has the same form as a variable name, and is followed by a colon. The goto's are
used sparingly, if at all.

Example:
goto loop;

Also See: Statements

36

Statements

label

The label a goto jumps to.
The syntax is:

label: stmnt;
Example:
loop: i+ +;

Also See: Statements

break

The break statement is used to exit out of a control loop. It provides an early exit from
while, for ,do and switch.
The syntax is

break;
It causes the innermost enclosing loop (or switch) to be exited immediately.

Example:
break;

Also See: Statements

continue

The continue statement causes the next iteration of the enclosing loop(While, For, Do) to
begin.
The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the control
passes the
re-initialization step in case of for.

Example:
continue;

Also See: Statements

37

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

stmt

Zero or more semi-colon separated.

The syntax is:
{[stmt]}

Example:
{a=1;
b=1;}

Also See: Statements

38

Statements

EXPRESSIONS

Constants

123 - Decimal
123L - Forces type to & long (UL also allowed)

123LL - Forces type to & int32;
eep] 123LL - Forces type to & 64 for PCD ULL also allowed

0123 - Octal

0x123 - Hex

0b010010 - Binary

123.456 - Floating Point

123F - Floating Point (FL also allowed)
123.4E-5 - Floating Point in Scientific Notation
'X' - Character

\010' - Octal Character

"\XA5' - Hex Character

"\c' - Special Character. Where c is one of:
\n Line Feed - Same as \x0Oa
\r Return Feed - Same as \x0d
\t TAB - Same as \x09
\b Backspace - Same as \x08
\f Form Feed - Same as x0c
\a Bell - Same as \x07
\v Vertical Space - Same as \xOb
\? Question Mark - Same as \x3f
\' Single Quote - Same as \x22
\" Double Quote - Same as \x22
\\ A Single Backslash - Same as \x5c¢

"abcdef" - String (null is added to the end)

Identifiers

Expressions

ABCDE - Up to 32 characters beginning with a non-numeric. Valid characters are A-Z, O-
9 and _ (underscore). By default not case sensitive Use #CASE to turn on.

ID[X] - Single Subscript
ID[X][X] - Multiple Subscripts
39

ID.ID

Expressions

- Structure or union reference

ID->ID - Structure or union reference

Operators

Addition Operator

Addition assignment operator, X+=y, is the same as x=x+y

Array subscrip operator

Bitwise and assignment operator, X&=y, is the same as x=x&y

Address operator

Bitwise and operator

Bitwise exclusive or assignment operator, x"=y, is the same as x=x"y

Bitwise exclusive or operator

Bitwise inclusive or assignment operator, xl=y, is the same as x=xly

Bitwise inclusive or operator

Conditional Expression operator

Decrement

Division assignment operator, x/=y, is the same as x=x/y

Division operator

Equality

Greater than operator

Greater than or equal to operator

Increment

Indirection operator

Inequality

Left shift assignment operator, x<<=y, is the same as x=x<<y

Less than operator

Left Shift operator

Less than or equal to operator

Logical AND operator

Logical negation operator

Logical OR operator

Member operator for structures and unions

%=

Modules assignment operator x%=y, is the same as x=x%y

Modules operator

Multiplication assignment operator, x*=y, is the same as x=x*y

Multiplication operator

One's complement operator

Right shift assignment, x>>=y, is the same as x=x>>y

40

Expressions

>> Right shift operator

-> Structure Pointer operation

-= Subtraction assignment operator, x-=y, is the same as x=x-y

= Subtraction operator

sizeof

Determines size in bytes of operand

See also: Operator Precedence

Operator Precedence

PIn Descending Precedence

Associativity

(expr) exor++ expr->expr expr.expr Left to Right
++expr expr++ - -expr expr - - Left to Right
lexpr ~expr +expr -expr Right to Left
(type)expr * expr &value sizeof(type) Right to Left
expr*expr expr/expr expryoeexpr Left to Right
expr+expr expr-expr Left to Right
expr<<expr expr>>expr Left to Right
expr<expr expr<=expr expr>expr expr>=expr Left to Right
expr==expr expr!=expr Left to Right
expr&expr Left to Right
expriexpr Left to Right
expr | expr Left to Right
expr&& expr Left to Right
expr || expr Left to Right
expr ? expr: Right to Left
expr

Ivalue = expr Ivalue+= expr Ivalue-=expr Right to Left
Ivalue*= expr Ivalue/=expr Ivalue%= expr Right to Left
Ivalue>>=expr | Ivalue<<=expr | Ivalue&= expr Right to Left
Ivalue”= expr Ivalue|=expr Right to Left
expr, expr Left to Right

(Operators on the same line are equal in precedence)

41

DATA DEFINITIONS

This section describes what the basic data types and specifiers are and how variables
can be declared using those types. In C all the variables should be declared before they
are used. They can be defined inside a function (local) or outside all functions (global).

This will affect the visibility and life of the variables.

Data Definitions

A declaration consists of a type qualifier and a type specifier, and is followed by a list of

one or more variables of that type.

For example:

int a,b,c,d;

mybit e,f;
mybyte g[3][2];
char *h;
colors j;

struct data_record data[10];

static int i;

extern long j;

Variables can also be declared along with the definitions of the special types.
For example:
enum colors{red, green=2,blue}i,jk;

type and i,j,k

SEE ALSO:
Type Specifiers/ Basic Types

Type Qualifiers

Enumerated Types

Structures & Unions

typedef

Named Reqisters

Basic Types

// colors is the enum

[/lare variables of

that ty

pe

Type-
Specifi
er

Size

Unsigned

Signed

Digits

intl

1 bit
number

Otol

N/A

1/2

int8

8 bit

0to 255

-128 to 127

2-3

42

Data Definitions

number
intl6 | 16 bit 0 to 65535 -32768 to 32767 4-5
number
int32 | 32 bit 0to -2147483648 to 9-10
number 4294967295 2147483647
int48 48 bit Oto -140737488355328 14-15
number 28147497671 | to
0655 140737488355327
int64 64 bit N/A - 18-19
number 92233720368547758
08 to
92233720368547758
07
float3 | 32 bit float | -1.5 x 10* to 3.4 x 10> 7-8
2
float4 | 48 bit float | -2.9x 10 to 1.7x10 (pcpj -2.9 x 10 | 11-12
8 (higher ¥ t0 1.7x10%
precision)
floaté | 64 bit float | -5.0x 10 to 1.7 x 10 [pcp] -5.0 x 10 15-16
4 34 t0 1.7 x 10 3%

C Standard Default Type Default Type - PCD
short intl signed int8

char unsigned int8 signed int8

int int8 signed int16

long int16 signed int32

long long int32 signed int64

float float32 float32

double N/A float64

Note: All types, default are unsigned. [rcp) All types, except float char, by default are
signed. However, may be preceded by unsigned or signed (Except int64 may only be
signed) . Short and long may have the keyword INT following them with no effect. Also
see #TYPE to change the default size.

SHORT INT1 is a special type used to generate very efficient code for bit operations and /0.
Arrays of bits (INT1 or SHORT) in RAM are now supported. Pointers to bits are not permitted.
The device header files contain defines for BYTE as an int8 and BOOLEAN as an intl.

Integers are stored in little endian format. The LSB is in the lowest address. Float
formats are described in common questions.

SEE ALSO: Declarations, Type Qualifiers, Enumerated Types, Structures & Unions,
typedef, Named Regqisters

43

Data Definitions

Type Qualifiers

static - Variable is globally active and initialized to 0. Only accessible from this
compilation unit.

auto - Variable exists only while the procedure is active. This is the default and AUTO
need not be used.

double - A reserved word but is not a supported data type.

extern - External variable used with multiple compilation units. No storage is allocated.
Is used to make otherwise out of scope data accessible. there must be a non-
extern definition at the global level in some compilation unit.

register - Is allowed as a qualifier however, has no effect.
ireo] IS possible a CPU register instead of a RAM location.

_ fixed(n) - Creates a fixed point decimal number where n is how many decimal places to
implement.

unsigned - Data is always positive.

signed - Data can be negative or positive.
ipeo] This is the default data type if not specified.

volatile - Tells the compiler optimizer that this variable can be changed at any point
during execution.

const - Datais read-only. Depending on compiler configuration, this qualifier may just
make the data read-only -AND/OR- it may place the data into program memory
to save space. (see #DEVICE const=)

rom - Forces data into program memory. Pointers may be used to this data but they can
not be mixed with RAM pointers.

[pcp] roml - Same as rom except only the even program memory locations are used.

void - Built-in basic type. Type void is used to indicate no specific type in places where a
type is required.

readonly - Writes to this variable should be dis-allowed.
_bif - Used for compiler built in function prototypes on the same line.

__attribute__ - Sets various attributes

SEE ALSO: Declarations, Type Specifiers, Enumerated Types, Structures & Unions,
typedef, Named Registers

44

Data Definitions

Enumerated Types

enum enumeration type: creates a list of integer constants.

enum [id] {[id [=cexpr]] }

One o:l'rl;ore comma separated

The id after enum is created as a type large enough to the largest constant in the list. The ids in
the list are each created as a constant. By default the first id is set to zero and they increment by
one. If a =cexpr follows an id that id will have the value of the constant expression an d the
following list will increment by one.

For example:
enum colors{red, green=2, blue}; [l red will be 0, green will be
2 and
I/ blue will be 3

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions, typedef,
Named Reqisters

Structures and Unions

Struct structure type: creates a collection of one or more variables, possibly of different
types, grouped together as a single unit.

struct[*] [id] | type-qualifier [*]id | [:bits]; }Hid]
{ i} i
One or more, 1-8 Bits Zero
semi-colon 1-16 Bits "°° | or more
separated
For example:
struct data_record {
int al2];
int b:2; /*2 bits */
int c: 3; /*3 bits*/
int d;
} data_var; /ldata_record is a structure type

/ldata_var is a variable

rep) Field Allocation:
1 Fields are allocated in the order they appear.

45

Data Definitions

The low bits of a byte are filled first.
Fields 16 bits and up are aligned to a even byte boundary. Some Bits may by
unused.

1 No Field will span from an odd byte to an even byte unless the field width is a
multiple of 16 bits.

=a =4

Union type: holds objects of different types and sizes, with the compiler keeping track of
size and alignment requirements. They provide a way to manipulate different kinds of
data in a single area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; Hid]
One or more, 1-8 Bits |—|
semi-colon 1-16 Bits 7P Zero
separated or more
For example:
union u_tab {
intival,
long Ival;
float fval;
} /lu _tagis a union type that can hold a float

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Enumerated Types, typedef,
Named Regqisters

typedef

If typedef is used with any of the basic or special types it creates a new type name that
can be used in declarations. The identifier does not allocate space but rather may be
used as a type specifier in other data definitions.

typedef - [type-qualifier] [type-specifier] [declarator];

For example:
typedef int mybyte; /I myby te can be used in
declaration to
/I specify the int type
typedef short mybit; /I mybyte can be used in
declaration to
/I specify the int type
typedef enum {r ed, green=2,blue}colors; //colors can be used to declare
/Ivariable of this enum type

46

Data Definitions

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions,
Enumerated Types, Named Registers

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to
define a memory region that can be RAM, program eeprom, data eeprom or external
memory. Addressmod replaces the older typemod (with a different syntax).

The usage is :

addressmod
(name,read_function,write_function,start_address,end_address,
share);

Where the read_function and write_function should be blank for RAM, or for other
memory should be the following prototype:

/I read pro cedure for reading n bytes from the memory starting at location
addr
1

void read_function(int32 addr,int8 *ram, int nbytes){

}
/Iwrite procedure for writing n bytes to the memory starting at location addr

void write_function(int32 addr,int8 *ram, int nbytes){

}

For RAM the share argument may be true if unused RAM in this area can be used by the
compiler for standard variables.

Example:
void DataEE_Read(int32 addr, int8 * ram, int bytes) {
inti;
for(i=0;i<bytes;i++,ram++,a ddr++)
*ram=read_eeprom(addr);
}

void DataEE_Write(int32 addr, int8 * ram, int bytes) {
inti;
for(i=0;i<bytes;i++,ram++,addr++)
write_eeprom(addr,*ram);

}
addressmod (DataEE,DataEE_read,DataEE_write,5,0xff);
/l would define ar egion called DataEE between

47

Data Definitions

/1 0x5 and 0xff in the chip data EEprom.
void main (void)

int DataEE test;

int x,y;

x=12;

test=x; Il writes x to the Data EEPROM
y=test; /I Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are not required, the
variables assigned in the memory region defined by the addressmod can be treated as a
regular variable in all valid expressions. Any structure or data type can be used with an
addressmod. Pointers can also be made to an addressmod data type. The #type directive
can be used to make this memory region as default for variable allocations.

The syntax is :

#type default=addressmodname /I all the variable declarations that

/I follow will use this memory region
#type default= /I goes back to the default mode
For example:
Type default=emi /lemi is the addressmod name defined
char buffer[8192];

#include <memoryhog.h>
#type defa ult=

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The
different ways are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. If the keyword const is
used before the identifier, the identifier is treated as a constant. Constants should be
initialized and may not be changed at run-time. This is an easy way to create lookup
tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The

address used for ROM data is not a physical address but rather a true byte address. The

& operator can be used on ROM variables however the address is logical not physical.
The syntax is: const type id[cexpr] = {value}

For example:

48

Data Definitions

Placing data into ROM: const int table[16]={0,1,2...15}
Placing a string into ROM: const char cstring[6]={"hello"}

Creating pointers to constants: const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:

The constant ID will be at 1C00.
#ORG 0x1C00, Ox1COF
CONST CHAR ID[10]= {"123456789"};

Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The
constant variable can be accessed in the code. This is a great way of storing constant
data in large programs. Variable length constant strings can be stored into program
memory.

A special method allows the use of pointers to ROM. This method does not contain extra
code at the start of the structure as does constant.
For example:
char rom commands]] = {Aput| get| status| shutdown

ireo] ROML may be used instead of ROM if you only to use even memory locations.

The compiler allows a non-standard C feature to implement a constant array of variable
length strings.

The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.

For example:
const char colors[] [*] = {"Red", "Green", "B lue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.

The syntax is:
#rom address = {dat a, dat a, é dat a}

For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 ={1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}

This method can only be used to initialize the program memory.

49

Data Definitions

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:

Writes data to program memory
write_program_ee prom(address,data);

Writes count bytes of data from dataptr to address in program memory.
write_program_memory(address, dataptr, count);

irep] Every fourth byte of data will not be written, fill with 0x00.

Please refer to the help of these functions to get more details on their usage and
limitations regarding erase procedures. These functions can be used only on chips that
allow writes to program memory. The compiler uses the flash memory erase and write
routines to implement the functionality.

The data placed in program memory using the methods listed above can be read from
width the following functions:

Reads count bytes from program memory at address to RAM at dataptr.
read_program_memory(address, dataptr, count)

rep] Every fourth byte of data is read as 0x00

irco] Reads count bytes from program memory at the logical address to RAM at

dataptr.
read_rom_memory((address, dataptr, count)

These functions can be used only on chips that allow reads from program memory. The
compiler uses the flash memory read routines to implement the functionality.

Named Registers

The CCS C Compiler supports the new syntax for filing a variable at the location of a processor
register. This syntax is being proposed as a C extension for embedded use. The same
functionality is provided with the non-standard #byte, #word, #bit and #locate.

The syntax is:
register _name type id;
Or
register constant type id;

name is a valid SFR name with an underscore before it.
Examples:
register _status int8 status_reg;

register _T1IF int8 timer_interrupt;
register 0x04 int16 file_select_register;

50

Function Definition

FUNCTION DEFINITION

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) { [stmt]}

Optional See Below Zero or more comma Zero or more Semi-
separated. colon separated. See
See Data Types Statements.

The qualifiers for a function are as follows:
1 vOID
9 type-specifier
9 #separate
1 #inline
9 #int_..

When one of the above are used and the function has a prototype (forward declaration of
the function before it is defined) you must include the qualifier on both the prototype and
function definition.

A (non-standard) feature has been added to the compiler to help get around the
problems created by the fact that pointers cannot be created to constant strings. A
function that has one CHAR parameter will accept a constant string where it is

called. The compiler will generate a loop that will call the function once for each character
in the string.

Example:
void Icd_putc(char ¢) {

}

lcd_putc ("Hi There.");

SEE ALSO:
Overloaded Functions, Reference Parameters, Default Parameters, Variable
Parameters

51

Function Definition

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but
they must accept different parameters.

Here is an example of function overloading: Two functions have the same name but differ
in the types of parameters. The compiler determines which data type is being passed as
a parameter and calls the proper function.

This function finds the square root of a long integer variable.
long FindSquareRoot(long n){

This function finds the square root of a float variable.
float FindSquareRoot(float n){

}

FindSquareRoot is now called. If variable is of long type, it will call the first
FindSquareRoot() example. If variable is of float type, it will call the second

FindSquareRoot() example.
result=FindSquareRoot(variable);

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability
of code and the efficiency of some inline procedures. The following two procedures are
the same. The one with reference parameters will be implemented with greater efficiency
when it is inline.

funct_a(int*x,int*y){
[*Trad itional*/
if(*x!=5)
*Y=*X+3;

}
funct_a(&a,&b);

funct_b(int&x,int&y)}{
/*Reference params*/
if(x!=5)
y=X+3;
}

funct_b(a,b);

52

Function Definition

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when
called.
int mygetc(char *c, int n=100){

This function waits n milliseconds for a character over RS232. If a character is received, it

saves it to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.
mygetc(&c); /lgets a char, waits 100ms for timeout

mygetc(&c, 200); /lgets a char, waits 200ms for a timeout

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI
requirements except that it does not require at least one fixed parameter as ANSI does.
The function can be passed any number of variables and any data types. The access
functions are VA_START, VA_ARG, and VA_END. To view the number of arguments
passed, the NARGS function can be used.

/*

stdarg.h holds the macros and va_list data type needed for variable
number of parameters.

*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the
ellipsis (...), which must be the last parameter of the function. The ellipsis represents the
variable argument list. Second, it requires one more variable before the ellipsis (...).
Usually you will use this variable as a method for determining how many variables have
been pushed onto the ellipsis.

Here is a function that calculates and returns the sum of all variables:
int Sum(int count, ...)
{
/la pointer to the argument list
va_list al;
int X, sum=0;
//start the argument list
/lcount is the first variabl e before the ellipsis
va_start(al, count);
while(count -) {
/lget an int from the list
x = var_arg(al, int);
sum +=x;

53

[Istop using the list
va_end(al);
return(sum);

Some examples of using this new function:

x=Sum(5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, c);

54

Function Definition

Functional Overview

FUNCTIONAL OVERVIEW

12C
| 2CE i s a {wiepemmanicationypmtocol developed by Phillips. Many PIC

microcontrollers support hardware-b as ed | 2CE. CCS offers -support

based | 2CE aehWlasedomhawter | 2CE device. (For
hardware-based 12C module, please consult the datasheet for you target device; not all
PI' Cs support | 2CE.)

Relevant Functions:
i2c_start() - Issues a start command when in the 12C master mode

i2c_write(data) - Sends a single byte over the 12C interface

i2c_read() - Reads a byte over the 12C interface

i2c_stop() - Issues a stop command when in the 12C master mode

i2c_poll() - Returns a TRUE if the hardware has received a byte in the buffer

i2c_transfer(address, wData, wCount, rData, rCount) - Performs an I2C transfer to
and from a device, function does start, restart, write, read, and stop 12C
operations; when in I2C master mode.

i2c_transfer_out(Address, wData, wCount) - Performs an 12C transfer to a device,
function does start, write, and stop 12C operations; when in 12C master mode.

Relevant Preprocessor:

me

#USEI2C -Conf i gures the compiler to support | 2CE

Relevant Interrupts:
#INT_SSP - 12C or SPI activity

#INT_BUSCOL - Bus Collision

#INT_I12C - I12C Interrupt (Only on 14000)

#INT_BUSCOL?2 - Bus Collision (Only supported on some PIC18's)
#INT_SSP2 - 12C or SPI activity (Only supported on some PIC18's)
irep] #INT_mi2c - Interrupts on activity from the master 12C module

rep] #INT_si2c - Interrupts on activity form the slave 12C module

55

Functional Overview

Relevant Include Files:
None - All functions built-in

Relevant getenv() Parameters:
I2C_SLAVE - Returns a 1 if the device has 12C slave H/W

[2C_MASTER - Returns a 1 if the device has a 12C master H/W

Example Code:

#define Device_SDA PIN_C3 /I Pin defines
#define Device_SLC PIN_C4

#use i2c(master, sda=Device_SDA, scl=Device_SCL) // Configure Device as
Master

BYTE data; /I Data to be transmitted
i2c_st art(); /I Issues a start command
when in

/l the 12C master mode.
i2c_write(data); /I Sends a single byte over
the 12C interface.
i2c_stop(); /I lssues a stop command when

in the 12C master mode

ADC

These options let the user configure and use the analog to digital converter module. They
are only available on devices with the ADC hardware. The options for the functions and
directives vary depending on the chip and are listed in the device header file. On some
devices there are two independent ADC modules, for these chips the second module is
configured using secondary ADC setup functions (Ex. setup_ADC2).

Relevant Functions:
setup_adc(mode) - Sets up the a/d mode like off, the adc clock etc.

setup_adc_ports(value) - Sets the available adc pins to be analog or digital.
set_adc_channel(channel) - Specifies the channel to be use for the a/d call.

read_adc(mode) - Starts the conversion and reads the value. The mode can also control
the functionality.

adc_done() - Returns 1 if the ADC module has finished its conversion.

[pcp] setup_adc2(mode) - Sets up the ADC2 module, for example the ADC clock and
ADC sample time.

56

Functional Overview
lpcp] setup_adc_ports2(ports, reference) - Sets the available ADC2 pins to be analog or
digital, and sets the voltage reference for ADC2.
rep] set_adc_channel2(channel) - Specifies the channel to use for the ADC2 input.

rep] read_adc2(mode) - Starts the sample and conversion sequence and reads the value
The mode can also control the functionality.

rep) adc_done() - Returns 1 if the ADC module has finished its conversion.
Relevant Preprocessor:
#DEVICE ADC=xx - Configures the read_adc return size. For example, using a PIC with

a 10 bit A/D you can use 8 or 10 for xx- 8 will return the most significant byte, 10 will
return the full A/D reading of 10 bits.

Relevant Interrupts:
INT_AD - Interrupt fires when A/D conversion is complete.

INT_ADOF - Interrupt fires when A/D conversion has timed out.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
ADC_CHANNELS - Number of A/D channels.

ADC_RESOLUTION - Number of bits returned by read_adc

Example Code:
#DEVICE ADC=10

long value;
I
setup_adc (ADC_CLOCK_INTERNAL); /I enables the a/d module and

sets the clock to
1 internal adc clock

setup_adc_ports(ALL_ANALOG); I/ sets all the adc pins to
analog

set_adc_channel(0); /I the next read_adc call will
read channel O

delay_us(10); /I 'a small delay is required

after setting channel

/I and before read
value=read_adc(); /l st arts the conversion and
reads the result and

57

Functional Overview

/I store it in value

read_adc(ADC_START_ONLY); /I only starts the conversion
value=read_adc(ADC_READ_ONLY); Il reads the result of the last
con version

/I and store it in value.
Assuming the device had
/I a10bit ADC module, value
will range between
/I0 -3FF. If #DEVICE ADC= 8 had
been used instead
/I the result will yield O - FF.
If #DEVICE ADC=16
/I had been used instead the
result will yield
/0 -FFCO

Analog Comparator
These functions set up the analog comparator module. Only available in some devices.

Relevant Functions:
setup _comparator() - Enables and sets up the analog comparator module. The options
vary depending on the device; refer to the device's header file for details.

lrco] setup comparator filter() - Enables and sets up the analog compartor's digital
filter. The options vary depending on the device; refer to the device's header file
for details. Not all devices have a digital filter; refer to the device's header file to
determine if available.

pcp] setup comparator_mask() - Enables and sets up the analog comparator's output
blanking function. The options vary depending on the device; refer to the
device's header file for details. Not all devices have an output blanking function;
refer to the device's header file to determine if available.

lpco] sSetup comparator dac() - Enables and sets up the the common settings analog
comparator/DAC modules. The options vary depending on the device. Refer to
the device's header file for details. Not all devices have this function. Refer to
the device's header file to determine if available.

[pcp] Setup comparator_slope() - Sets up the analog comparator/DAC slope
compensation settings. The options vary depending on the device. Refer to the
device's header file for details. Not all devices have this function. Refer to the
device's header file to determine if available.

Relevant Preprocessor:
None

58

Functional Overview

Relevant Interrupts:
INT _COMP - Interrupt fires on a comparator change of state.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
COMP - Returns 1 if the device has a comparator.

Example Code:

setup_comparator(A4_A5_NC_NC);
if(C10OUT)

output_low(PIN_DO);

else

output_high(PIN_D1);

[PCD]
setup_comparator(1l, CXINB_CXINA);
if(C10UT)
output_low(PIN_DO);
else
output_high(PIN_D1);

CAN Bus

These functions allow easy access to the Controller Area Network (CAN) features
included with the MCP2515 CAN interface chip and the PIC18 MCU. These functions will
only work with the MCP2515 CAN interface chip and PIC microcontroller units containing
either a CAN or an ECAN module. Some functions are only available for the ECAN
module and are specified by the work (ECAN) at the end of the description. The listed
interrupts are no available to the MCP2515 interface chip.

rep] These functions allow easy access to the Controller Area Network (CAN) features
included with the MCP2515 CAN interface chip and the PIC24, dsPIC30 and dsPIC33
MCUs. These functions will only work with the MCP2515 CAN interface chip and PIC
microcontroller units containing either a CAN or an ECAN module. Some functions are
only available for the ECAN module and are specified by the word (ECAN) at the end of
the description. The listed interrupts are not available to the MCP2515 interface chip.

Relevant Functions:

can_init(void); - Initializes the CAN module and clears all the filters and masks so that
all messages can be received from any ID.
iecp] Initializes the module to 62.5k baud for ECAN and 125k baud for CAN and
clears all the filters and masks so that all messages can be received from any ID.

59

Functional Overview

can_set_baud(void); - Initializes the baud rate of the CAN bus to125kHz, if using a 20
MHz clock and the default CAN-BRG defines, it is called inside the can_init()
function so there is no need to call it.

can_set_mode(CAN_OP_MODE mode); - Allows the mode of the CAN module to be
changed to configuration mode, listen mode, loop back mode, disabled mode, or
normal mode.

can_set_functional_mode (CAN_FUN_OP_MODE mode); - Allows the functional
mode of ECAN modules to be changed to legacy mode, enhanced legacy mode,
or first in firstout (fifo) mode. (ECAN)

can_set_id(int* addr, int32 id, int1 ext); - Can be used to set the filter and mask ID's to
the value specified by addr. It is also used to set the ID of the message to be
sent.

pco] can_set_id(intl6 *addr, int32 id, intl ext) - Can be used to set the filter and
mask ID's to the value specified by addr. Itis also used to set the ID of the
message to be sent on CAN chips.

ireo] can_set_buffer_id(BUFFER buffer,int32 id,intl ext) - Can be used to set the ID
of the message to be sent for ECAN devices. (ECAN)

ireo] can_get id(BUFFER buffer,intl ext) - Returns the ID of a received message.
can_get_id(int * addr, intl ext); - Returns the ID of a received message.

can_putd (int32id, int * data, int len, int priority, intl ext, intl rtr); - Constructs a
CAN packet using the given arguments and places it in one of the available
transmit buffers.

pcp] can_putd(int32id, int8 *data, int8 &len, struct rx_stat &stat) - Contructs a CAN
packet using the given arguments and places it in one of the available transmit
buffers.

can_getd (int32 & id, int * data, int & len, struct rx_stat & stat); - Retrieves a received
message from one of the CAN buffers and stores the relevant data in the
referenced function parameters.

pep] can_getd(int32 id, int8 *data, int8 &len, struct rx_stat &stat) - Retrieves a
received message from one of the CAN buffers and stores the relevant data in
the referenced function parameters.

can_enable_rtr(PROG_BUFFER b); - Enables the automatic response feature which
automatically sends a user created packet when a specified ID is received.
(ECAN)

can_disable_rtr(PROG_BUFFER b); - Disables the automatic response feature.
(ECAN)

60

[PCD]

Functional Overview

can_kbhit() - Returns a TRUE if valid CAN messages are available to be retrieved
from one of he receive buffers.

can_load_rtr (PROG_BUFFER b, int * data, int len); - Creates and loads the packet

that will automatically transmitted when the triggering ID is received. (ECAN)

can_enable_filter(long filter); - Enables one of the extra filters included in the ECAN

module. (ECAN)

can_disable_filter(long filter); - Disables one of the extra filters included in the ECAN

module. (ECAN)

can_associate_filter_to_buffer(CAN_FILTER_ASSOCIATION_BUFFERS

buffer, CAN_FILTER_ASSOCIATION filter); - Used to associate a filter to a
specific buffer. This allows only specific buffers to be filtered and is available in
the ECAN module. (ECAN)

can_associate_filter_to_mask(CAN_MASK_FILTER_ASSOCIATE

mask,CAN_FILTER_ASSOCIATION filter); - Used to associate a mask to a
specific buffer. This allows only specific buffer to have this mask applied. This
feature is available in the ECAN module.

can_fifo_getd(int32 &id,int * data,int &len,struct rx_stat & stat); - Retrieves the next

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

[PCD]

buffer in the fifo buffer. Only available in the ECON module while operating in fifo
mode. (ECAN)

can_fifo_getd(int32 &id,,int8 * data,int8 &len, rx_stat & stat); - Retrieves the next
buffer in the fifo buffer. Only available in the ECON module while operating in fifo
mode. (ECAN)

can_tbe() - Returns TRUE if a transmit buffer is available to send more data.
can_abort() - Aborts all pending transmissions.

can_enable_b_transfer(BUFFER b) - Sets the specified programmable buffer to be
a transmit buffer. (ECAN)

can_enable_b_receiver(BUFFER b) - Sets the specified programmable buffer to be
a receive buffer. By default, all programmable buffers are set to be receive
buffers. (ECAN)

can_enable_rtr(BUFFER b) - Enables the automatic response feature. (ECAN)
can_disable_rtr(BUFFER b) - Disables the automatic response feature. (ECAN)

can_load_rtr(BUFFER b, int8 *data, int8 len) - Creates and loads the packet that
will automatically be transmitted when the triggering ID is received. (ECAN)

61

Functional Overview

pep] can_set_buffer_size(int8 size) - Set the number of buffers to use. Size can be 4,
6, 8, 12, 16, 24 and 32. By default can_init() sets size to 32. (ECAN)

rep] can_enable filter(CAN_FILTER_CONTROLfilter) - Enables one of the acceptance
filters included in the ECAN module. (ECAN)

rep] can_disable filter(CAN_FILTER_CONTROLfilter) - Disables one of the
acceptance filters included in the ECAN module. (ECAN)

eep] can_trb0_putd(int32 id, int8 *data, int8 len, int8 pri, intl ext, int rtr) - Contructs a
CAN packet using the given arguments and places it in transmit buffer 0. Similar
functions available for all transmit buffers 0-7. Buffer must be made a transmit
buffer with can_enable_b_transfer() function before function can be use. (ECAN)

irco] can_enable_interrupts(INTERRUPT setting) - Enables specified interrupt
conditions that cause the #INT_CANL1 interrupt to be tirggered. Available
options:
TB - Transmit Buffer interrupt (ECAN)
RB - Receive Buffer interrupt (ECAN)
RXQV - Receive Buffer Overflow interrupt (ECAN)
FIFO - FIFO Almost Full interrupt (ECAN)
ERR - Error interrupt (ECAN)
WAK - Wake-Up interrupt (ECAN)
IVR - Invalid Message Received interrupt (ECAN)
RXO0 - Receive Buffer 0 interrupt
RX1 - Receive Buffer 1 interrupt
TXO0 - Transmit Buffer O interrupt
TX1 - Transmit Buffer 1 interrupt
TX2 - Transmit Buffer 2 interrupt

ireo] can_disable_interrupts(INTERRUPT setting) - Disable specified interrupt
conditions so they do not cause the #INT_CANL1 interrupt to be triggered.
Available options are the same as for the can_enable_interrupts() function. By
default, all conditions are disabled.

rep) can_config_ DMA(void) - Configures the DMA buffers to use with the ECAN
module. Itis called inside the can_init() function so there is no need to call it.
(ECAN)

For PIC microcontrollers that have two CAN or ECAN modules, all the above functions
are available for the second module, and they begin with can2 instead of can.
can2_init(); or can2_kbhit();

Relevant Preprocessor:
None

62

Functional Overview

Relevant Interrupts:
#int_canirx - This interrupt is triggered when an invalid packet is received on the CAN.

#int_canwake - This interrupt is triggered when the PIC is woken up by activity on the
CAN.

#int_canerr - This interrupt is triggered when there is an error in the CAN module.
#int_cantxO0 - This interrupt is triggered when transmission from buffer 0 has completed.
#int_cantx1 - This interrupt is triggered when transmission from buffer 1 has completed.
#int_cantx2 - This interrupt is triggered when transmission from buffer 2 has completed.
#int_canrxO0 - This interrupt is triggered when a message is received in buffer 0.
#int_canrx1 - This interrupt is triggered when a message is received in buffer 1.

rep] #int_canl - Interrupt for CAN or ECAN module 1. This interrupt is triggered when
one of the conditions set by can_enable_interrupts() is met.

lpcp] #int_can2 - Interrupt for CAN or ECAN moduel 2. This interrupt is triggered when
one of the conditions set by the can2_enable_interrupts() is met. This interrupt is only
available on devices that have two CAN or ECAN modules.

Relevant Include Files:
can-mcp2510.c - Drivers for the MCP2510 and MCP2515 interface devices.

can-18xxx8.c - Drivers for the built-in CAN module.
can-18F4580.c - Drivers for the built-in ECAN module.
trep] can-dsPIC30.c - Drivers for the built-in CAN module on dsPIC30F devices.

rep] can-PIC24.c - Drivers for the built-in ECAN mdoule on PIC24HF and dsPIC33FJ
devices.

Relevant getenv() Parameters:
None

Example Code:
can_init(); [l initializes the CAN bus
can_putd(0x300,data,8,3, TRUE,FALSE); /l places a message on the CAN
bus with ID=0x300
/l and eight bytes of data pointed
to by "data”,

63

Functional Overview

/I the TRUE create an extended ID,

the FALSE
/I creates
can_getd(ID,data,len,stat); Il retrieves a message from the
CAN bus storing the
/I'|D in the ID variable, the data

in the array

I pointed to by "data”, the number
of data bytes

/l'in len, and statistics about the
data in

/l the stat structure.

CCP

These options lets to configure and use the CCP module. There might be multiple CCP
modules for a device. These functions are only available on devices with CCP hardware.
They operate in 3 modes: capture, compare and PWM. The source in capture/compare
mode can be timerl or timer3 and in PWM can be timer2 or timer4. The options available
are different for different devices and are listed in the device header file. In capture mode
the value of the timer is copied to the CCP_X register when the input pin event occurs. In
compare mode it will trigger an action when timer and CCP_x values are equal and in
PWM mode it will generate a square wave.

Relevant Functions:
setup_ccpl(mode) - Sets the mode to capture, compare or PWM.

set_pwml_duty(value) - The value is written to the pwm1 to set the duty.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_CCP1 - Interrupt fires when capture or compare on CCP1.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
CCP1 - Returns 1 if the device has CCP1

Example Code:
#int_ccpl
void isr()

rise=CCP_1; /l CCP_1 is the time the pulse went hig h

64

Functional Overview

fall=CCP2; /I CCP_2 is the time the pulse went low
pulse_width=fall - rise; /I pulse width
}
setup_ccpl(CCP_CAPTURE_RE); /Il Configure CCP1 to capture rise
setup_ccp2(CCP_CAPTURE_FE); /I Configure CCP2 to capture fall
set up_timer_1(T1_INTERNAL); // Start timer 1

Some devices also have fuses which allows to multiplex the ccp/pwm on different pins.
Be sure to check the fuses to see which pin is set by default, as well as fuses to
enable/disable pwm outputs.

Code Profile

Profile a program while it is running. Unlike in-circuit debugging, this tool grabs information while
the program is running and provides statistics, logging and tracing of it's execution. This is
accomplished by using a simple communication method between the processor and the ICD with
minimal side-effects to the timing and execution of the program. Another benefit of code profile
versus in-circuit debugging is that a program written with profile support enabled will run correctly
even if there is no ICD connected.

In order to use Code Profiling, several functions and pre-processor statements need to be included
in the project being compiled and profiled. Doing this adds the proper code profile run-time support
on the microcontroller.

See the help file in the Code Profile tool for more help and usage examples.

Relevant Functions:

profileout() - Send a user specified message or variable to be displayed or logged by the code
profile tool.

Relevant Preprocessor:
#use profile() - Global configuration of the code profile run-time on the microcontroller.

#profile - Dynamically enable/disable specific elements of the profiler.

Relevant Interrupts:

The profiler can be configured to use a microcontroller's internal timer for more accurate
timing of events over the clock on the PC. This timer is configured using the #profile pre-
processor command.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

65

Functional Overview

Example Code:
#include <18F4520.h>

#use delay(crystal=10MHz, clock=40MHZz)
#profile functions, parameters
void main(void)
{
int adc;
setup_adc(ADC_CLOCK_ INTERNAL);
set_adc_channel(0);

for(;)

{
adc = read_adc();
profileout(adc);
delay_ms(250);

Confiquration Memory

The Configuration Memory is readable and writable on all PIC18, PIC24, dsPIC30 and
dsPIC33 devices. Enhanced 16 devices have the configuration memory that is readable
and the user ID is readable and writable..

ireo] The Configuration Memory contains the configuration bits for items such as the
oscillator mode, watchdog timer enable, etc. These configuration bits are set by the CCS
C Compiler usually through a #fuse. CCS provides an API that allows for these bits to be
changed in run-time.

Relevant Functions:
write_configuration_memory(ramaddress, count) - Writes count bytes, no erase
needed.

write_configuration_memory(offset,ramaddress, count) - Writes count bytes, no
erase needed starting at byte address offset.

write_configuration_memory(ramPtr, n); - Writes n bytes to configuration from ramPtr,
no erase needed.

pcp] Write_configuration_memory(offset, ramPtr, n); - Read n bytes of configuration
memory, save to ramPtr.

read_configuration_memory(ramaddress,count) - Read count bytes of configuration
memory.

66

Functional Overview

rep] read_configuration_memory(ramPtr, n); - Read n bytes of configuration memory
is set through a #FUSE.

read_device_info() - Read count bytes from Device Information Area memory.

read_config_info() - Read count bytes from Device Configuration Information memory.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
#int16 data=0xc32;

write_configuration_memory(data,2); // writes 2 bytes to the config
memory

CRC

The programmable Cyclic Redundancy Check (CRC) is a software configurable CRC
checksum generator in select PIC24F, PIC24H, PIC24EP, and dsPIC33EP devices. The
checksum is a unique number associated with a message or a block of data containing
several bytes. The built-in CRC module has the following features:

Programmable bit length for the CRC generator polynomial. (up to 32 bit length)
Programmable CRC generator polynomial.

Interrupt output.

4-deep, 8-deep, 16-bit, 16-deep or 32-deep, 8-bit FIFO for data input.
Programmed bit lenght for data input. (32-bit CRC Modules Only)

E I

Relevant Functions:
setup_crc(polynomial) - This will setup the CRC polynomial.

crc_init(data) - Sets the initial value used by the CRC module.

crc_calc(data) - Returns the calculated CRC value.

67

Functional Overview

Relevant Preprocessor:
None

Relevant Interrupts:
INT_CRC - On completion of CRC calculation.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:

int16 data[8];

intl6 result;

setup_crc(15, 3, 1); /ICRC Polynomial is X16+X15+X3+X1 +1
/lor polynomial=8005h

crc_init(OXFEEE); //Starts the CRC accumulator outo f OXFEEE

result=crc_calc(&data[0],8): //Calculates the CRC

DAC

These options let the user configure and use the digital to analog converter module. They
are only available on devices with the DAC hardware. The options for the functions and
directives vary depending on the chip and are listed in the device header file.

Relevant Functions:
setup_dac(divisor) - Sets up the DAC e.g. Reference voltages.

dac_write(value) - Writes the 8-bit value to the DAC module.
lrcp] setup_dac(mode, divisor) - Sets up the d/a mode e.g. Right enable, clock divisor.
rep] dac_write(channel, value) - Writes the 16-bit value to the specified channel.

Relevant Preprocessor:
#USE DELAY - Must add an auxiliary clock in the #use delay preprocessor.
For example: #USE DELAY/(clock=20M, Aux: crystal=6M, clock=3M)

Relevant Interrupts:
None

68

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
int8 i=0;
setup_dac (DAC_VSS_VDD);
while (TRUE) {
itt;
dac_write(i);

}

[PCD]
intlé i =0;
setup_dac(DAC_RIGHT_ON, 5); // enables the d/a module with right
channel
I/l enabled and a di vision of the
clock by 5
While(1){
i++;
dac_write(DAC_RIGHT, i); I/ writes i to the right DAC channel
}

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the
user read and write to the data eeprom memory. These functions are only available in
flash chips.

Relevant Functions:
read _eeprom(address) - Reads the data EEPROM memory location

write _eeprom(address, value) - Erases and write value to data EEPROM location
address. Except for PCB devices with EEPROM, such as PIC12F519; it only writes the
value.

erase eeprom(address) - Erases a row of the EEPROM of Flash memory. Only
available on PCB devices with EEPROM, such as PIC12F599.

read eeprom(address, [N]) - Reads N bytes of data EEPROM starting at memory
location address. The maximum return size is int64.

read _eeprom(address, [variable]) - Reads from EEPROM to fill variable starting at
address.

read eeprom(address, pointer, N) - Reads N bytes, starting at address, to pointer.
write _eeprom(address, value) - Writes value to EEPROM address.

69

Functional Overview

write _eeprom(address, pointer, N) - Writes N bytes to address from pointer

Relevant Preprocessor:
#ROM address={list} - Can also be used to put data EEPROM memory data into the hex
file.

write _eeprom = noint - Allows interrupts to occur while the write_eeprom() operations is
polling the done bit to check if the write operations has completed. Can be used as long
as no EEPROM operations are performed during an ISR.

Relevant Interrupts:
INT EEPROM - Interrupt fires when EEPROM write is complete.

Relevant Include Files:
None, all functions built-in.

Relevant getevn() Parameters:
DATA EEPROM - Size of data EEPROM memory.

-Example Code:

For 18F452
#rom 0xf00000={1,2,3,4,5} /linserts this data into the hex file.
/[The data eeprom address differs for
different
/Il family of devices. Please refer to the
/lprogramming specs to find the value for
the device.
write_eeprom(0x0,0x12); /Iwrite 0x12 to data eeprom location 0
value -read_eeprom(0x) // reads data eeprom location 0x0

returns 0x12

#ROM 0x007FFC00={1,2,3,4,5} /lIn serts this data into the hex file.
The data
//[EEPROM address differs between PICs.
/IPlease refer to the device editor for

device

IIspecific values.
write_eepr om(10,0x1337) //Writes 0x1337 to data EEPROM location
10.
value=read_eeprom(10); /IReads data EEPROM location 10 returns
0x1337

70

Functional Overview

DCI

DCl is an interface that is found on several dsPIC devices in the 30F and the 33FJ

families. It is a multiple-protocol interface peripheral that allows the user to connect to

many common audio codecs through common (and highly configurable) pulse code

modul ation transmission protocols. Generic mu|
20 bit modes) are all supported.

Relevant Functions:
setup_dci(configuration, data size, rx config, tx config, sample rate);- Initializes the DCI
module.

setup_adc_ports(value) - Sets the available ADC pins to be analog or digital.
set_adc_channel(channel) - Specifies the channelt o be used for the A/D call.

read_adc(mode) - Starts the conversion and reads the value. The mode can also control
the functionality.

adc_done() - Returns 1 if the ADC module has finished its conversion.

Relevant Preprocessor:

#DEVICE ADC=xx - Configures the read_adc return size. For example, using a PIC with
a 10 bit A/D you can use 8 or 10 for xx- 8 will return the most significant byte, 10 will
return the full A/D reading of 10 bits.

Relevant Interrupts:
INT_DCI - Interrupt fires on a number (user configurable) of data words received.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
signed int16 left_channel, right_channel;

dci_initializes((12S_MODE|DCI_MASTER|DCI_CLOCK_OUT]|
SAMPLE_RISING_EDGE|UNDERFLOW_LAST|MULTI_DEVICE_BUS),DCI_1WORD_FRAME|
DA_16BIT_WORDI|DCI_2WORD_INTERRUPT, RECEIVE_SLOTO|RECEIVE_SLOT1,
TRANSMIT_SLOTO|TRANSMIT_SLOT1, 6000);

dci_start();

while(1)

71

Functional Overview

dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &right_channel);

}

DMA

The Direct Memory Access (DMA) controller facilitates the transfer of data between the
CPU and its peripherals without the CPU's assistance. The transfer takes place between
peripheral data registers and data space RAM. The module has 8 channels and since
each channel is unidirectional, two channels must be allocated to read and write to a
peripheral. Each DMA channel can move a block of up to 1024 data elements after it
generates an interrupt to the CPU to indicate that the lock is available for processing.
Some of the key features of the DMA module are:

Eight DMA Channels.

Byte or word transfers.

CPU interrupt after half or full block transfer complete.

One-Shot or Auto-Repeat block transfer modes.

Ping-Pong Mode (automatic switch between two DSPRAM start addresses after
each block transfer is complete).

=A =4 =4 -8 -9

Relevant Functions:
setup_dma(channel, peripheral,mode) - Configures the DMA module to copy data
from the specified peripheral to RAM allocated for the DMA channel.

dma_start(channel, mode,address) - Starts the DMA transfer for the specified channel
in the specified mode of operation.

dma_status(channel) - This function will return the status of the specified channel in the
DMA module.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_DMAX - Interrupt on channel X after DMA block or half block transfer.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

72

Functional Overview

Example Code:

setup_dma(1,DMA_IN_SIP1,DMA_BYTE); /I Setup channel 1 of the DMA
module to

// read the SPI1 channel in byte
mode.
dma_start(1,DMA_CONTINUOUS|DMA_PING_PONG, 0x2000);

[/l Start the DMA channel with the
DMA

/l RAM address of 0x2000

Data Signal Modulator

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the
Amodul at or s i g nsighabt) prodiica ahmodulatedeoutput. Both the carrier
and the modulator signals are supplied to the DSM module, either internally from the
output of a peripheral, or externally through an input pin. The modulated output signal is
generated by performing a logical AND operation of both the carrier and modulator
signals and then it is provided to the MDOUT pin. Using this method, the DSM can
generate the following types of key modulation schemes:

1 Frequency Shift Keying (FSK)

1 Phase Shift Keying (PSK)

1 On-Off Keying (OOK)

Relevant Functions: (8 bit or 16 bit depending on the device)
setup_dsm(mode,source,carrier) - Configures the DSM module and selects the source
signal and carrier signals.

setup_dsm(TRUE) - Enables the DSM module.
setup_dsm(FALSE) - Disables the DSM module.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

73

Functional Overview

Example Code:
setup_dsm(DSM_ENABLED|DSM_OUTPUT_ENABLED,DSM_SOURCE_UART1,
DSM_CARRER_HIGH_VSS|DSM_CARRIER_LOW_OC1);

/[Enables DSM module with the output enabled and selects UART1
/las the source signal and VSS as the high carrier signal and OC1's
//PWM output as the low carrier signal.

if(input(PIN_BO0)) /IDisable DSM mo dule
setup_dsm(FALSE);

else
setup_dsm(TRUE); //Enable DSM module

Extended RAM

Some PIC24 devices have more than 30K of RAM. For these devices a special method
is required to access the RAM above 30K. This extended RAM is organized into pages
of 32K bytes each, the first page of extended RAM starts on page 1.

Relevant Functions:
write_extended_ram(p,addr,ptr,n); - Writes n bytes from ptr to extended RAM page p
starting at address addr.

read_extended_ram(p,addr,ptr,n); - Reads n bytes from extended RAM page p starting
a address addr to ptr.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
write_extended_ram(1,0x100,WriteData,8); //Writes 8 bytes from

WriteData to

/laddresses 0x100 to 0x107 of

/ lextended RAM page 1.
read_extended_ram(1,0x100,ReadData,8); //IReads 8 bytes from addresses
0x100

/lto 0x107 of extended RAM page
1

/lto ReadData.
74

Functional Overview

External Memory

Some PIC18 devices have the external memory functionality where the external memory
can be mapped to external memory devices like (Flash, EPROM or RAM). These
functions are available only on devices that support external memory bus.

General Purpose I/O

These options let the user configure and use the I/O pins on the device. These functions
will affect the pins that are listed in the device header file.

Relevant Functions:
output_high(pin) - Sets the given pin to high state.

output_low(pin) - Sets the given pin to the ground state.

output_float(pin) - Sets the specified pin to the input mode. This will allow the pin to float
high to represent a high on an open collector type of connection.

output_x(value) - Outputs an entire byte to the port.
output_bit(pin,value) - Outputs the specified value (0,1) to the specified 1/0O pin.
input(pin) - The function returns the state of the indicated pin.

input_state(pin) - This function reads the level of a pin without changing the direction of
the pin as INPUT() does.

set_tris_x(value) - Sets the value of the 1/O port direction register. A '1"is an input and '0'
is for output.

input_change_x() - This function reads the levels of the pins on the port, and compares
them to the last time they were read to see if there was a change, 1 if there was,
0 if there was not.

Set_open_drain_x(value) - This function sets the value of the 1/0 port Open-Drain register. A |
makes the output open-drain and 0 makes the output push-pull.

set_input_level_x(value) - This function sets the value of the 1/O port Input Level Register. A1
sets the input level to ST and O sets the input level to TTL.

[pco] set_open_drain_x() - Sets the value of the I/O port Open-Drain Control register. A 'l' sets it
as an open-drain output, and a 'O’ sets it as a digital output.

75

Functional Overview

Relevant Preprocessor:

#USE STANDARD_10(port) - This compiler will use this directive be default and it will
automatically inserts code for the direction register whenever an I/O function like
output_high() or input() is used.

#USE FAST_IO(port) - This directive will configure the I/O port to use the fast method of
performing I/O. The user will be responsible for setting the port direction register
using the set_tris_x() function.

#USE FIXED_IO (port_outputs=;in,pin?) - This directive set particular pins to be used an
input or output, and the compiler will perform this setup every time this pin is
used.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
PIN:pb ----Returns a 1 if bit b on port p is on this part

Example Code:
#use fast_io(b) \

Int8 Tris_value= OxOF;
intl Pin_value;

set_tris_b(Tris_value); //Sets BO:B3 as input and B4:B7 as output
output_high(PIN_B7); //Set the pin B7 to High
If(input(PIN_BO)){ /IR ead the value on pin B0, set B7 to low if

/Ipin BO is high
output_high(PIN_B7);
}

Input Capture

These functions allow for the configuration of the input capture module. The timer source
for the input capture operation can be set to either Timer 2 or Timer 3. In capture mode
the value of the selected timer is copied to the ICXBUF register when an input event
occurs and interrupts can be configured to fire as needed.

Relevant Functions:
setup_capture(x, mode) - Sets the operation mode of the input capture module x

76

Functional Overview

get_capture(x, wait) - Reads the capture event time from the ICxBUF result register. If
wait is true, program flow waits until a new result is present. Otherwise the oldest
value in the buffer is returned.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_ICx - Interrupt fires on capture event as configured

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup_timer3(TMR_INTERNAL|TMR_DIV_BY_8);
setup_capture(2, CAPTURE_FE|CAPTURE_TIMER3);
while(TRUE)

timerValue=get_capture(2, TRUE);
printf("A module 2 capture event occured: %LU", timerValue);

}

Internal LCD

Some families of PIC microcontrollers can drive a glass segment LCD directly, without
the need of an LCD controller. For example, the PIC16C92X, PIC16F91X, and
PIC16F193X series of chips have an internal LCD driver module.

Relevant Functions:

setup_lcd(mode, prescale, [segments]) - Configures the LCD Driver Module to use the
specified mode, timer prescaler, and segments. For more information on valid
modes and settings, see the setup_lcd() manual page and the *.h header file for
the PIC micro-controller being used.

lcd_symbol(symbol, segment_b7 ... segment_b0) - The specified symbol is placed on
the desired segments, where segment_b7 to segment_b0 represent SEGXX pins
on the PIC micro-controller. For example, if bit 0 of symbol is set, then
segment_bO is set, and if segment_b0 is 15, then SEG15 would be set.

Icd_load(ptr, offset, length) - Writes length bytes of data from pointer directly to the
LCD segment memory, starting with offset.

77

Functional Overview

Icd_contrast (contrast) - Passing a value of 01 7 will change the contrast of the LCD
segments, 0 being the minimum, 7 being the maximum.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_LCD - LCD frame is complete, all pixels displayed

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
LCD - Returns TRUE if the device has an Internal LCD Driver Module.

Example Code:
/l How each segment of
the LCD is set
//(on or off) for the
ASCI! digits to 9.
byte CONST DIGIT_MAP[10]={0xFC, 0x60, 0XxDA, OxF2, Ox6 6, 0xB6, OxBE,
OxEOQ, OXFE, OXE6};

/I Define the segment
information for the
[ffirst digit of the LCD
#define DIGIT1 COM1+20, COM1+18, COM2+18, COM3+20, COM2+28, COM1+28,
COM2+20, COM3+18
// Displays the digits 0
to 9 on the first
/ldigit of the LCD.

for(i=0;i<=9;i++) {
Icd_symbol(DIGIT_MAPIi], DIGIT1);
delay_m s(1000);

Internal Oscillator

Many chips have internal oscillator. There are different ways to configure the internal
oscillator. Some chips have a constant 4 Mhz factory calibrated internal oscillator. The
value is stored in some location (mostly the highest program memory) and the compiler
moves it to the osccal register on startup. The programmers save and restore this value
but if this is lost they need to be programmed before the oscillator is functioning properly.
Some chips have factory calibrated internal oscillator that offers software selectable
frequency range(from 31Kz to 8 Mhz) and they have a default value and can be switched

78

Functional Overview

to a higher/lower value in software. They are also software tunable. Some chips also
provide the PLL option for the internal oscillator.

rep] Two internal oscillators are present in PCD compatible devices, a fast RC and slow
RC oscillator circuit. In many cases (consult the target datasheet or family datasheet for
target specifics). The fast RC oscillator may be connected to a PLL system, allowing a
broad range of frequencies to be selected. The Watchdog timer is derived from the slow
internal oscillator.

Relevant Functions:

setup_oscillator(mode, finetune) - Sets the value of the internal oscillator and also
tunes it. The options vary depending on the chip and are listed in the device
header files.

setup_oscillator() - Explicitly configures the oscillator.

Relevant Preprocessor:
irep] H#FUSES - Specifies the values loaded in the device configuration memory. May be
used to setup the oscillator configuration.

Relevant Interrupts:
INT_OSC_FAIL or INT_OSCEF - Interrupt fires when the system oscillator fails and the
processor switches to the internal oscillator.

irep] #INT_OSCFAIL - Interrups on oscillator failure

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
irecp] CLOCK - Returns the clock speed specified by #use delay()

irco] FUSE_SETxxx - Returns 1 if the fuse xxxx is set.

Example Code:

For PIC18F8722
setup_oscillator(OSC_32MH2Z); //sets the internal oscillator to 32Mhz
(PLL enabled)

If the internal oscillator fuse option are specified in the #fuses and a valid clock is
specified in the #use delay(clock=xxx) directive the compiler automatically sets up the
oscillator. The #use delay statements should be used to tell the compiler about the
oscillator speed.

79

Functional Overview

Interrupts

The following functions allow for the control of the interrupt subsystem of the
microcontroller. With these functions, interrupts can be enabled, disabled, and cleared.
With the preprocessor directives, a default function can be called for any interrupt that
does not have an associated ISR, and a global function can replace the compiler
generated interrupt dispatcher.

Relevant Functions:
disable_interrupts() - Disables the specified interrupt.
enable_interrupts() - Enables the specified interrupt.

ext_int_edge() - Enables the edge on which the edge interrupt should trigger. This can
be either rising or falling edge.

clear_interrupt() - This function will clear the specified interrupt flag. This can be used if
a global isr is used, or to prevent an interrupt from being serviced.

interrupt_active() - This function checks the interrupt flag of specified interrupt and
returns true if flag is set.

interrupt enabled() - This function checks the interrupt enable flag of the specified
interrupt and returns TRUE if set.

Relevant Preprocessor:
#DEVICE HIGH_INTS= - This directive tells the compiler to generate code for high
priority interrupts.

#INT_XXX fast - This directive tells the compiler that the specified interrupt should be
treated as a high priority interrupt.

reo] #INT_XXX level=x - x is an int 0-7, that selects the interrupt priority level for that
interrupt.

pep] #INT XXX fast - This directive makes use of shadow registers for fast register save.
This directive can only be used in one ISR

Relevant Interrupts:

#int_default - This directive specifies that the following function should be called if an
interrupt is triggered but no routine is associated with that interrupt.

#int_global - This directive specifies that the following function should be called whenever
an interrupt is triggered. This function will replace the compiler generated
interrupt dispatcher.

#int_xxx - This directive specifies that the following function should be called whenever
the xxx interrupt is triggered. If the compiler generated interrupt dispatcher is
used, the compiler will take care of clearing the interrupt flag bits.

80

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
#int_timerO
void timerQinterrupt() [/[#int_timer associates the following
function with
/lthe interrupt service routine that should

be called.

enable_interrupts(TIMERO); /lenables the timerO interrupt
disable_interrupts(TIMERO); //disables the timer0 interrupt
clear_interrupt(TIMERO); /lclears the timerOQ interrupt flag.

Low Voltage Detect

These functions configure the high/low voltage detect module. Functions available on the
chips that have the low voltage detect hardware.

Relevant Functions:

setup_low_volt_detect(mode) - Sets the voltage trigger levels and also the mode
(below or above in case of the high/low voltage detect module). The options vary
depending on the chip and are listed in the device header files.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_LOWVOLT - Interrup fires on low voltage detect

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
For PIC18F8722
setup_low_volt_detect(LVD_36|LVD_TRIGGER_ABOVE);
/I sets the trigger level as 3.6
volts and
// trigger direction as above. The
interrupt

81

Functional Overview

/'if enabled is fired when the
voltage is
/I above 3.6 volts.

Output Compare/PWM Overview

The following functions are used to configure the output compare module. The output
compare has three modes of functioning. Single compare, dual compare, and PWM. In
single compare the output compare module simply compares the value of the OCxR
register to the value of the timer and triggers a corresponding output event on match. In
dual compare mode, the pin is set high on OCxR match and then placed low on an
OCxRS match. This can be set to either occur once or repeatedly. In PWM mode the
selected timer sets the period and the OCxRS register sets the duty cycle. Once the OC
module is placed in PWM mode the OCXR register becomes read only so the value
needs to be set before placing the output compare module in PWM mode. For all three
modes of operation, the selected timer can either be Timer 2 or Timer 3.

Relevant Functions:
setup_comparex (x, mode) - Sets the mode of the output compare / PWM module x

set_comparex_time (x, ocr, [ocrs]) - Sets the OCR and optionally OCRS register
values of module x.

set_pwm_duty (X, value) - Sets the PWM duty cycle of module x to the specified value
Relevant Preprocessor:
None

Relevant Interrupts:
INT_OCx - Interrup fires after a compare event has occurred.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
/[Outputs a 1 second pulse on the

OC2 pin
//using dual compare mode on a PIC
with
//an instruction clock of (20Mhz/4)
int1l6 OCR_2=0x1000; /[Start pulse when timer is at
0x1000

82

Functional Overview

intl5 OCRS_2=0x5C4B; //IEnd pulse after 0x04C4B timer
counts
//(0x1000+0x04C4B
//(1sec)/[(4/20000000%256]=0x04C4B
/1256 - timer prescaler value (set in
code)
set_compare_time(2, OCR_2,0CRS_2);
setup_compare(2, COMPARE_SINGLE_PULSE|COMPARE_T IMER3);
setup_timer3(TMR_INTERNAL|TMR_DIV_BY_256);

Motor Control PWM

These options lets the user configure the Motor Control Pulse Width Modulator
(MCPWM) module. The MCPWM is used to generate a periodic pulse waveform which is
useful is motor control and power control applications. The options for these functions
vary depending on the chip and are listed in the device header file.

Relevant Functions:
setup_motor_pwm(pwm,options, timebase); - Configures the motor control PWM
module.

set_motor_pwm_duty(pwm,unit,time) - Configures the motor control PWM unit duty.

set_motor_pwm_event(pwm,time) - Configures the PWM event on the motor control
unit.

set_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime); -
Configures the motor control PWM unit.

get_motor_pwm_event(pwm); - Returns the PWM event on the motor control unit.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PWM1 - PWM Timebase Interrupt

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
//Sets up the motor PWM module
setup_motor_pwm(1,MPWM_FREE_RUN|MPWM_SYNC_OVERRIDES, timebase);

83

Functional Overview

/ISets the PWM1, Group 1 duty cylce value to
0x55
set_motor _pwm_duty(1,1,0x55);

/ISets the motor PWM event
set_motor_pwm_event(pwm,time);

/[Enable pwm pair
set_motor_unit(1,1,mpwm_ENABLE,0,0);

/[Enables pwm1, Group 1 in complementary
nmode,

/Ino deadtime.

PMP/EPMP

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-
bit/16-bit I/O module specifically designed to communicate with a wide variety of parallel
devices. Key features of the PMP module are:

8 or 16 Data lines

Up to 16 or 32 Programmable Address Lines

Up to 2 Chip Select Lines

Programmable Strobe option

Address Auto-Increment/Auto-Decrement

Programmable Address/Data Multiplexing

Programmable Polarity on Control Signals

Legacy Parallel Slave(PSP) Support

Enhanced Parallel Slave Port Support

Programmable Wait States

=8 =8 =8 -8 -8 _8_4_4_9_9

Relevant Functions:
setup_psp (options,address_mask) - This will setup the PSP module for various mode
and specifies which address lines to be used.

setup_pmp_csx(options,[offset]) - Sets up the Chip Select X Configuration, Mode and
Base Address registers.

[pcp] setup_pmp (options,address_mask) - This will setup the PMP/EPMP module for
various mode and specifies which address lines to be used.

setup_psp_cs(options) - Sets up the Chip Select X Configuration and Mode registers.
psp_output_full() - This will return the status of the output buffers.
irep] pmp_address(address) - Configures the address register of the PMP module with

the destination address during Master mode operation.

84

Functional Overview

ieep] pmp_input_full () - This will return the status of the input buffers.

rep] psp_input_full() - This will return the status of the input buffers.

ieep] pmp_output_full() - This will return the status of the output buffers.

ieep] pmp_overflow () - This will return the status of the output buffer underflow bit.
irep] pmp_read() - Reads a byte of data.

pcp] psp_read(address)/ psp_read() - psp_read() will read a byte of data from the next
buffer location and psp_read (address) will read the buffer location address.

rep] pmp_write (data) - Write the data byte to the next buffer location.

pco] psp_write(address,data)/ psp_write(data) - This will write a byte of data to the next
buffer location or will write a byte to the specified buffer location.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PMP - Interrupt on read or write strobe

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup_pmp(PAR_ENABLE | /I Sets up Master mode with
[/l address lines PMAOQO:PMA7
PAR_MASTER_MODE_1]|
PAR_STOP_IN_IDLE,0xOFF);

if (pmp_output_full())
{

pmp_write(next_byte);
}

Power PWM

These options lets the user configure the Pulse Width Modulation (PWM) pins. They are
only available on devices equipped with PWM. The options for these functions vary
depending on the chip and are listed in the device header file.

85

Functional Overview

Relevant Functions:
setup_power_pwm(config) - Sets up the PWM clock, period, dead time etc.

setup_power_pwm_pins(module x) - Configure the pins of the PWM to be in
Complementary, ON or OFF mod.

set_power_pwmx_duty(duty) - Stores the value of the duty cycle in the PDCXL/H
register. This duty cycle value is the time for which the PWM is in active state.

set_power_pwm_override(pwm,override,value) - This function determines whether the
OVDCONS or the PDC registers determine the PWM output .

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PWMTB - PWM Timebase Interrupt (Only available on PIC18XX31)

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
iaﬁg duty cycle, period,;

I/l Configures PWM pins to be
ON,OFF
/I or in Complimentary mode.

setup_power_pwm_pins(PWM_COMPLEMENTARY ,PWM_OFF, PWM_OFF,
PWM_OFF _;
/I Sets up PWM clock , postscale
and
/I period. Here period is used
to set the
/I PWM Frequency as follows:
/I Frequency=Fosc/(4* (period+1)
Il *postscale)

setup_power_pwm(PWM_CLOCK_DIV_4|PWM_FREE_RUN,1,0,period,0,1,0);
set_power_pwmO_duty(duty cycle)); /I Sets the duty cycle of
the PWM 0,1 in

/I Complementary mode

86

Functional Overview

Program EEPROM

The Flash program memory is readable and writable in some chips and is just readable in some.
These options allows the user to read and write to the Flash program memory. These functions are
only available in Flash chips.

Relevant Functions:

read_program_eeprom(address) - Reads the program memory location (16-bit or 32-bit
depending on the device).

write_program_eeprom(address, value) - Writes value to program memory location address.
erase_program_eeprom(address) - Erases FLASH_ERASE_SIZE bytes in program memory.

write_program_memory(address,dataptr,count) - Writes count bytes to program memory from
dataptr to address. When address is a mutiple of FLASH_ERASE_SIZE an erase is also
performed.
rcp] When address is a mutiple of FLASH_ERASE_SIZE an erase is also performed.

read_program_memory(address,dataptr,count) - Read count bytes from program memory at
address to dataptr.

read_calibration_memory(cal_word) - Read one of the calibration words from calibration memory
on MCP191xx devices.

[ecp] read_rom_memory(address,dataptr,count) - Reads count bytes from program memory
from address.

Relevant Preprocessor:
#ROM address={list} - Can be used to put program memory data into the hex file.

#DEVICE(WRITE_EEPROM=ASYNC) - Can be used with #DEVICE to prevent the write function
from hanging. When this is used make sure the eeprom is not written both inside and outside the
ISR.

Relevant Interrupts:
INT_EEPROM - Interrupts fire when EEPROM write is complete.

Relevant Include Files:
None, all functions built-in

Relevant getenv() Parameters:
PROGRAM_MEMORY - Size of program memory.

READ_PROGRAM - Returns 1 if program memory can be read.
FLASH_WRITE_SIZE - Smallest number of bytes written in Flash.
FLASH_ERASE_SIZE - Smallest number of bytes erased in Flash.

87

Functional Overview

rco) MIN_FLASH_WRITE - Smallest number of bytes that can be written to Flash with
write_program_memory() function.

Example Code:
For 18F452 where the write size is 8 bytes and erase size is 64 bytes

#rom 0xa00={1,2,3,4,5} /linserts this data into the hex

file.

erase_program_eeprom(0x1000); /lerases 64 bytes starting at
0x1000

write_program_eeprom(0x1000,0x1234); [hwrites 0x1234 to 0x1000
value=read_program_eeprom(0x1000); /lreads 0x1000 returns 0x1234
write_program_memory(0x1000,data,8); /lof 64 and writes 8 bytes from
data to 0x1000

read_program_memory(0x1000,value,8); /lreads 8 bytes to value from
0x1000

erase_program_eeprom(0x1000); /lerases 64 bytes starting at
0x1000

write_program_memory(0x1010,data,8); /lwrites 8 bytes from data to
0x1000

read_program_memory(0x1000,value,8); /Ireads 8 bytes to value from
0x1000

For chips where getenv("FLASH_ERASE_SIZE") > getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes,does not erase (use
ERASE_PROGRAM_EEPROM)

WRITE_PROGRAM_MEMORY - Writes any number of bytes,will erase a block whenever the
first (lowest) byte in a block is written to. If the first address is not the start of a block that block is
not erased.

ERASE_PROGRAM_EEPROM - Will erase a block. The lowest address bits are not used.

For chips where getenv("FLASH_ERASE_SIZE") = getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes, no erase is needed.

WRITE_PROGRAM_MEMORY - Writes any number of bytes, bytes outside the range of the
write block are not changed. No erase is needed.

ERASE_PROGRAM_EEPROM - Not available.

[PCD]

#rom0x1000=(1,2,3,4) /lInserts this data into t he hex
file

erase_program_memory(0x1000); /[Erases flash page containing

address

//0x1000, erase size depends on

/IFLASH_ERASE_SIZE
write_program_memory(0x1000,data,12); //Wr ite 12 bytes from data
program memory

[/starting at address 0x1000, if
address

88

Functional Overview

/I0x1000 is the start of a flash erase
/Iblock, then erase will be done first.
read_pro gram_memory(0x1000,value,12); //Reads 12 bytes to value from
program
//Imemory starting at address 0x1000.
WRITE_PROGRAM_MEMORY /IWrites any number of bytes that is a
/Imultiple of MIN_FLASH_WRITE. Will
/lerase a block whenever the first
(lowest) //byte in a block is written to. If the
[[first address is not the start of a block
/Ithat block is not erased .
ERASE_PROGRAM_MEMORY /[Erases a block of size FLASH_ERASE_SIZE.
/IThe lowest address bit are not used.
/li.e. any address passed to function will
cause block itis c ontained in to be eras ed.

PSP

These options let to configure and use the Parallel Slave Port on the supported devices.

Relevant Functions:
setup_psp(mode) - Enables/disables the psp port on the chip.

psp_output_full() - Returns 1 if the output buffer is full(waiting to be read by the external
bus).

psp_input_full() - Returns 1 if the input buffer is full(waiting to read by the cpu).

psp_overflow() - Returns 1 if a write occurred before the previously written byte was
read.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_PSP - Interrupt fires when PSP data is in

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
PSP - Returns 1 if the device has PSP

Example Code:

while(psp_output_full()); [lwaits till the output buffer is
cleared
psp_data=command; [Iwrites to the port

89

Functional Overview

while(linput_buffer_full()); [Iwaits till input buffer is
cleared
if (psp_overflow())

error=true [fif there is an overflow set the
error flag
else

data=psp_data; [lif there is no overflow then read
the port

QEl

The Quadrature Encoder Interface (QEI) module provides the interface to incremental
encoders for obtaining mechanical positional data.

Relevant Functions:
setup_gei(options, filter,maxcount) - Configures the QEI module.

gei_status() - Returns the status of the QEI module
gei_set_count(value) - Writes a 16-bit value to the position counter.

gei_get_count() - Reads the current 16-bit value of the position counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_QEI - Interrupt on rollover or underflow of the position counter

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
int16 value;
setup_gei(QEl_MODE_X2| /[Setup the QEI module
QEI_TIMER_INTERNAL,
QEI_FILTER_DIV_2,QEl_FORWARD);

Value=gei_get_count(); //Read the count

90

Functional Overview

RS232 1/0
These functions and directives can be used for setting up and using RS232 I/O
functionality.

Relevant Functions:
getc() or getch() / getchar() or fgetc() - Gets a character on the receive pin (from the specified
stream in case of fgetc, stdin by default). Use KBHIT to check if the character is available.

gets() or fgets() - Gets a string on the receive pin (from the specified stream in case of fgets,
STDIN by default). Use getc to receive each character until return is encountered.

putc() or putchar() or / fputc() - Puts a character over the transmit pin (on the specified stream in
the case of fputc, stdout by default).

puts() or fputs() - Puts a string over the transmit pin (on the specified stream in the case of fputc,
stdout by default). Uses putc to send each character.

printf() or fprintf() - Prints the formatted string (on the specified stream in the case of fprintf, stdout
by default). Refer to the printf help for details on format string.

kbhit() - Return true when a character is received in the buffer in case of hardware RS232 or when
the first bit is sent on the RCV pin in case of software RS232. Useful for polling without
waiting in getc.

setup_uart(baud,[stream]) or setup_uart_speed(baud,[stream]) - Used to change the baud rate
of the hardware UART at run-time. Specifying stream is optional. Refer to the help for
more advanced options.

assert(condition) - Checks the condition and if false prints the file name and line to STDERR. Will
not generate code if #DEFINE NODEBUG is used.

perror(message) - Prints the message and the last system error to STDERR.

putc_send() or fputc_send() - When using transmit buffer, used to transmit data from buffer. See
function description for more detail on when needed.

rcv_buffer_bytes() - When using receive buffer, returns the number of bytes in buffer that still
need to be retrieved.

tx_buffer_bytes() - When using transmit buffer, returns the number of bytes in buffer that still need
to be sent.

tx_buffer_full() - When using transmit buffer, returns TRUE if transmit buffer is full.
receive_buffer_full() - When using receive buffer, returns TRUE if receive buffer is full.

tx_buffer_available() - When using transmit buffer, returns number of characters that can be put
into transmit buffer before it overflows.

#useRS232 - Configures the compiler to support RS232 to specifications.

91

Functional Overview

Relevant Preprocessor:
None

Relevant Interrupts:
INT_RDA - Interrupt fires when the receive data available.

INT_TBE - Interrup fires when the transmit data empty.

*Some devices have more than one hardware UART, hence more interrupts.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
UART - Returns the number UARTS on this device.

AUART - Returns TRUE if this UART is an advanced UART.

UART_RX - Returns the receive pin for the first UART on this device (see PIN_XX)
UART_TX - Returns the transmit pin for the first UART on this device.

UART2_RX - Returns the receive pin for the second UART on this device.
UART2-TX - Returns the transmit pin for the second UART on this device.

Example Code:
[*configure and enable uart, use first hardware UART on PIC*/

#use r s232(uartl, baud=9600)

[* print a string*/
printf("enter a character");

[* get a character*/

if (kbhit()) /[check if a character has
been received
c=getc(); /lread character from UART
RTCC

The Real Time Clock and Calendar (RTCC) module is intended for applications where
accurate time must be maintained for extended periods of time with minimum or no
intervention from the CPU. The key features of the module are:

1 Time: Hour, Minute and Seconds.

1 24-hour format (Military Time)

1 Calendar: Weekday, Date, Month and Year.

92

Functional Overview

1 Alarm Configurable.
1 Requirements: External 32.768 kHz Clock Crystal.

Relevant Functions:
setup_rtc (options, calibration); - This will setup the RTCC module for operation and
also allows for calibration setup.

rtc_write(rtc_time_t datetime) - Writes the date and time to the RTCC module.

rtc_read(rtctime_t datetime) - Reads the current value of Time and Date from the
RTCC module.

setup_rtc_alarm(options, mask, repeat); - Configures the alarm of the RTCC module.

rtc_alarm_write(rtctime_t datetime); - Writes the date and time to the alarm in the
RTCC module.

rtc_alarm_read(rtctime_t datetime); - Reads the date and time to the alarm in the
RTCC module.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_RTC - Interrupt on Alarm Event on half alarm frequency.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
setup_rtc(RTC_ENABLE|RTC_OUTPUT_SECO NDS,0x00); /Enable RTCC module
with seconds
/lclock and no
calibration.
rtc_write(datetime); //\Write the value of Date and
Time
/to the RTC module
rtc_read(datetime); /IReads the value to a
structure time_t.

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS).
This operating system is cooperatively multitasking and allows for tasks to be scheduled

93

Functional Overview

to run at specified time intervals. Because the RTOS does not use interrupts, the user
must be careful to make use of the rtos_yield() function in every task so that no one task
is allowed to run forever.

Relevant Functions:
rtos_run() - Begins the operation of the RTOS. All task management tasks are
implemented by this function.

rtos_terminate() - This function terminates the operation of the RTOS and returns
operation to the original program. Works as a return from the rtos_run()function.

rtos_enable(task) - Enables one of the RTOS tasks. Once a task is enabled, the
rtos_run() function will call the task when its time occurs. The parameter to this
function is the name of task to be enabled.

rtos_disable(task) - Disables one of the RTOS tasks. Once a task is disabled, the
rtos_run() function will not call this task until it is enabled using rtos_enable().
The parameter to this function is the name of the task to be disabled.

rtos_msg_poll() - Returns true if there is data in the task's message queue.
rtos_msg_read() - Returns the next byte of data contained in the task's message queue.

rtos_msg_send(task,byte) - Sends a byte of data to the specified task. The data is
placed in the receiving task's message queue.

rtos_yield() - Called with in one of the RTOS tasks and returns control of the program to
the rtos_run() function. All tasks should call this function when finished.

rtos_signal(sem) - Increments a semaphore which is used to broadcast the availability
of a limited resource.

rtos_wait(sem) - Waits for the resource associated with the semaphore to become
available and then decrements to semaphore to claim the resource.

rtos_await(expre) - Will wait for the given expression to evaluate to true before allowing
the task to continue.

rtos_overrun(task) - Will return true if the given task over ran its allotted time.

rtos_stats(task,stat) - Returns the specified statistic about the specified task. The
statistics include the minimum and maximum times for the task to run and the
total time the task has spent running.

Relevant Preprocessor:

#USE RTOS(options) - This directive is used to specify several different RTOS attributes
including the timer to use, the minor cycle time and whether or not statistics
should be enabled.

#TASK(options) - This directive tells the compiler that the following function is to be an
RTOS task.

94

Functional Overview

#TASK - Specifies the rate at which the task should be called, the maximum time the
task shall be allowed to run, and how large its queue should be.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in.

Relevant getenv() Parameters:
None

Example Code:

#USE RTOS(timer=0,minor_cycle=20ms) /I RTOS will use timer zero,
minor cycle

/' will be 20ms
int sem;
#TASK(rate=1s,max=20ms,queue=5) /I Task will run at a rate of
once per second
voidtas k_name(); /l with a maximum running time
of 20ms and

/l a 5 byte queue
rtos_run(); // begins the RTOS
rtos_terminate(); /l ends the RTOS
rto s_enable(task_name); /I enables the previously
declared task.
rtos_disable(task_name); /Il disables the previously
declared task
rtos_msg_send(task_name,5); /l places the value 5 in
task_names queue.
rtos_yield(); /I yields control to the RTOS
rtos_signal(sem); /I signals that the resource

represented by
/l sem is available.

For more information on the CCS RTOS please

SPI

SPIE is a fluid
Most PI C device
for taking adva
software support, see #USE SPI.

standard for 3 or 4 wire,
support most common SPIE

s
ntage of both hardware and

95

Functional Overview

Relevant Functions:

setup_spi(mode), setup_spi2(mode) - Configure the hardware SPI to the specified
mode. The mode configures setup_spi2(mode) thing such as master or slave
mode, clock speed and clock/data trigger configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided
to configure the second interface.

spi_data_is_in(), spi_data_is_in2() - Returns TRUE if the SPI receive buffer has a byte
of data.

spi_write(value), spi_write2(value) - Transmits the value over the SPI interface. This
will cause the data to be clocked out on the SDO pin.

spi_read(value), spi_read2(value) - Performs an SPI transaction, where the value is
clocked out on the SDO pin and data clocked in on the SDI pin is returned. If you
just want to clock in data then you can use spi_read() without a parameter.

spi_set_txcnt(value) - Sets the number of SPI transfers to drive SS1 pin to active level.
Only available on PIC18 devices with a dedicated SPI peripheral.

Relevant Preprocessor:
None

Relevant Interrupts:
#int_ssp, #int_ssp2 - Transaction (read or write) has completed on the indicated
peripheral.

pep] #int_spil - Interrupts on the activity from the first SPI module.
[pep] #int_spi2 - Interrupts on the activity from the second SPI module.

Relevant Include Files:
None, all functions built-in to the compiler.

Relevant getenv() Parameters:
SPI - Returns TRUE if the device has an SPI peripheral.

Example Code:
/[configure the device to be a

master,

//data transmitted on H - to - L clock
transition
setup_spi(SPI_MASTER|SPI_H_TO_L|SPI _CLK_DIV_16);
spi_write(0x80); /Iwrite 0x80 to SPI device
value=spi_read(); /Iread a value from the
SPI device

96

Functional Overview

value=spi_read(0x80); /Iwrite 0x80 to SPI device
the same

/ltime reading a value.
spi_set_txcnt(3); /ldrives SS1 pin to active
level

[Ifor 3 SPI transfers

Timers

The 16-bit DSC and MCU families implement 16 bit timers. Many of these timers may be
concatenated into a hybrid 32 bit timer. Also, one timer may be configured to use a low
power 32.768 kHz oscillator which may be used as a real time clock source.

Timerl is a 16-bit timer. It is the only timer that may not be concatenated into a hybrid 32-
bit timer. However, it alone may use a synchronous external clock. This feature may be
used with a low power 32.768 kHz oscillator to create a real-time clock source.

Timers 2 through 9 are 16-bit timers. They may use external clock sources only
asynchronously and they may not act as low power real time clock sources. They may
however be concatenated into 32-bit timers. This is done by configuring an even
numbered timer (timer 2, 4, 6 or 8) as the least significant word, and the corresponding
odd numbered timer (timer 3, 5, 7 or 9, respectively) as the most significant word of the
new 32-bit timer.

Timer interrupts will occur when the timer overflows. Overflow will happen when the timer
surpasses its period, which by default is OxFFFF. The period value may be changed
when using setup_timer_X.

Relevant Functions:
setup_timer_X() - Configures the timer peripheral. X may be any valid timer for the
target device. Consult the target datasheet or use getenv to find the valid timers.

get_timerX() - Retrieves the current 16-bit value of the timer.

get_timerXY() - Gets the 32-bit value of the concatenated timers X and Y (where XY may
only be 23, 45, 67, 89).

set_timerX() - Sets the value of timerX.

set_timerXY() - Sets the 32-bit value of the concatenated timers X and Y (where XY may
only be 23, 45, 67, 89).

Relevant Preprocessor:
None

97

Functional Overview

Relevant Interrupts:

#int_timerX - Interrupts on timer overflow (period match). X is any valid timer number.
*When using a 32-bit timer, the odd numbered timer-interrupt of the hybrid timer must be
used (i.e. when using 32-bit Timer 23, #int_timer3).

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERX - Returns 1 if the device has the timer peripheral X. X may be 1-9.

Example Code:
[*Setup timerl as an external real time clock that increments every 16
clock cycles*/
setup_timer1(T1_EXTERNAL_RTC|T2_DIV_BY_16);

[*Setup timer2 as a timer that increments on every instruction cycle

and has

a period of 0x0100*/

setup_timer2(TMR_INTERNAL,0x0100);

byte value=0x00

value=get_t imer2(); /Iretrieve the current value of timer2

Timer0

These options lets the user configure and use timer0. It is available on all devices and is
always enabled. The clock/counter is 8-bit on PIC16and 8 or 16 bit on PIC18s. It counts
up and also provides interrupt on overflow. The options available differ and are listed in
the device header file.

Relevant Functions:
setup_timer_0O(mode) - Sets the source, prescale etc for timer0

set_timerO(value) or set_rtcc(value) - Initializes the timer0 clock/counter. Value may be
a 8-bit or 16-bit depending on the device.

value=get_timer0 - Returns the value of the timer0 clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERO or INT_RTCC - Interrupt fires when timer0 overflows.

98

Functional Overview

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERO - Returns 1 if the device has timerQ

Example Code:
For PIC18F452:
setup_timer_O(RTCC_INTERNAL|RTCC_DIV_@|RTCC_8_BIT);
/Isets the internal clock as source

/land prescale 2. At 20Mhz timer0
/Iwill increment every 0.4 us in this
/Isetup and overflows every 102.4us
set_timer0(0); /lthis sets timerO register to 0
time - get_timer0(); this will read the timerO0 register
value
Timerl

These options lets the user configure and use timerl. The clock/counter is 16-bit on
PIC16s and PIC18s. It counts up and also provides interrupt on overflow. The options
available differ and are listed in the device header file.

Relevant Functions:
setup_timer_1(mode) - Disables or sets the source and prescale for timer1.

set_timerl(value) - Initializes the timerl clock/counter.

value=get_timer1 - Returns the value of the timerl clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERL1 - Interrupt fires when timerl overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMER1 - Returns 1 if the device has timerl

Example Code:
For PIC18452:

99

Functional Overview

setup_ti mer_1(T1_DISABLED); /[disables timerl
setup_timer_1(T1_INTERNAL|T1_DIV_BY_8); //sets the internal clock as
source

/land prescale as 8. At 20Mhz
timerl

Iwill increme nt every 1.6us in
this

//setup and overflows every
104.896ms
set_timer1(0); /lthis sets timer1 register to
0
time=get_timer1(); [lthis will read the timerl

register value

Timer2

These options lets the user configure and use timer2. The clock/counter is 8-bit on
PIC16s and PIC18s. It counts up and also provides interrupt on overflow. The options
available differ and are listed in the device header file.

Relevant Functions:
setup_timer_2(mode,period,postscale)) - Disables or sets the prescale, period and a
postscale for timer2.

set_timer2(value) - Initializes the timer2 clock/counter.

value=get_timer2 - Returns the value of the timer2 clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMER?2 - Interrupt fires when timer2 overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERZ2 - Returns 1 if the device has timer2

Example Code:
For PIC18452:
setup_timer_2(T2_DISABLED); //disables timer2
setup_timer_2(T2_INTERNAL|T2_DIV_BY_4,0xc0,2); //sets the prescale as
4, period
/las 0xc0 and postscales

100

Functional Overview

as 2.

/At 20Mhz timer2 will
increment

Il very .8us in this
setup

/I and overflows every
154.4us

/land interrupt every

308.2us
set_timer2(0); /lthis sets timer2
register to 0
time=get_timer2(); [lthis will re ad timer2

register value

Timer3

Timer3 is very similar to timerl. So please refer to the Timerl section for more details.

Timer4

Timer4 is very similar to Timer2. So please refer to the Timer2 section for more details.

Timer5

These options lets the user configure and use timer5. The clock/counter is 16-bit and is
available only on 18Fxx31 devices. It counts up and also provides interrupt on overflow.
The options available differ and are listed in the device header file.

Relevant Functions:
setup_timer_5(mode) - Disables or sets the source and prescale for timer5.

set_timer5(value) - Initializes the timer5 clock/counter.
value=get_timer5 - Returns the value of the timer5 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERS - Interrupt fires when timer5 overflows.

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERS - Returns 1 if the device has timer5.

101

Functional Overview

Example Code:
For PIC18F4431

setup_timer_5(T5_DISABLED); //disables timer5
setup_timer_5(T5_INTERNAL|T5_DIV_BY_1); //sets the internal clock as
source and

llprescale as 1. At 20Mhz
timer5 will

/lincrement every .2us in this
setup

/land overflows every 13.1072ms
set_timer5(0); /lthis sets timer5 register to
0
time=get_timer5(); [Ithis will read the timer5

register value

TimerA

These options lets the user configure and use timerA. It is available on devices with
Timer A hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on
overflow. The options available are listed in the device's header file.

Relevant Functions:
setup_timer_A(mode) - Disable or sets the source and prescale for timerA.

set_timerA(value) - Initializes the timerA clock/counter.

value=get_timerA() - Returns the value of the timerA clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERA - Interrupt fires timerA overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERA - Returns 1 if the device has timerA

Example Code:

setup_timer_ A(TA_OFF); //disable timerA
setup_timer_A(TA_INTERNAL|TA_DIV_8); //sets the internal clock as
source

/land prescale as 8. At 20Mhz
timerA

102

Functional Overview

/Iwill increment every 1.6us in

this

/Isetup and overflows every 409.6us
set_timerA(0): /lthis sets timerA register to 0
time=get_timerA(); [Ithis will read the timerA

register value

TimerB

These options lets the user configure and use timerB. It is available on devices with TimerB
hardware. The clock/counter is 8-bit. It counts up and also provides interrupt on overflow. The
options available are listed in the device's header file.

Relevant Functions:
setup_timer_B(mode) - Disable or set the source and prescale for timerB.

set_timerB(value) - Initializes the timerB clock/counter.

value=get_timerB() - Returns the value of the timerB clock/counter.

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERB - Interrupt fires when timerB overflows

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
TIMERB - Returns 1 if the device has timerB

Example Code:

setup_timer_B(TB_OFF); //disable timer
setup_timer_B(TB_INTERNAL|TB_DIV_8); //sets the internal clock as
source

/land prescale as 8. At 20Mhz
timerB

[/lwill increment every 1.6us in
this

/Isetup and overflows every 409.6us
set_timerB(0): /lthis sets timerB register to 0
time=get_timerB(); /ith is will read the timerB

register value

103

Functional Overview

USB

Universal Serial Bus, or USB, is used as a method for peripheral devices to connect to
and talk to a personal computer. CCS provides libraries for interfacing a PIC to PC using
USB by using a device with an internal USB peripheral (like the PIC16C765 or the
PIC18F4550 family) or by using any device with an external USB peripheral (the National
USBN9603 family).

Relevant Functions:

usb_init() - Initializes the USB hardware. Will then wait in an infinite loop for the USB
peripheral to be connected to bus (but that doesn't mean it has been enumerated
by the PC). Will enable and use the USB interrupt.

usb_init_cs() - The same as usb_init(), but does not wait for the device to be connected
to the bus. This is useful if your device is not bus powered and can operate
without a USB connection.

usb_task() - If you use connection sense, and the usb_init_cs() for initialization, then you
must periodically call this function to keep an eye on the connection sense pin.
When the PIC is connected to the BUS, this function will then perpare the USB
peripheral. When the PIC is disconnected from the BUS, it will reset the USB
stack and peripheral. Will enable and use the USB interrupt.

Note: In your application you must define USB_CON_SENSE_PIN to the connection
sense pin.

usb_detach() - Removes the PIC from the bus. Will be called automatically by
usb_task() if connection is lost, but can be called manually by the user.

usb_attach() - Attaches the PIC to the bus. Will be called automatically by usb_task() if
connection is made, but can be called manually by the user.

usb_attached() - If using connection sense pin (USB_CON_SENSE_PIN), returns
TRUE if that pin is high. Else will always return TRUE.

usb_enumerated() - Returns TRUE if the device has been enumerated by the PC. If the
device has been enumerated by the PC, that means it is in normal operation
mode and you can send/receive packets.

usb_put_packet(endpoint, data, len, tgl) - Places the packet of data into the specified
endpoint buffer. Returns TRUE if success, FALSE if the buffer is still full with the
last packet.

usb_puts(endpoint, data, len,timeout) - Sends the following data to the specified
endpoint. usb_puts() differs from usb_put_packet() in that it will send multi
packet messages if the data will not fit into one packet.

104

Functional Overview

usb_kbhit(endpoint) - Returns TRUE if the specified endpoint has data in it's receive
buffer

usb_get_packet(endpoint, ptr, max) - Reads up to max bytes from the specified
endpoint buffer and saves it to the pointer ptr. Returns the number of bytes saved
to ptr.

usb_gets(endpoint, ptr,max, timeout) - Reads a message from the specified endpoint.
The difference usb_get packet() and usb_gets() is that usb_gets() will wait until a
full message has received, which a message may contain more than one packet.
Returns the number of bytes received.

Relevant CDC Functions:
A CDC USB device will emulate an RS-232 device, and will appear on your PC as a
COM port. The follow functions provide you this virtual RS-232/serial interface.

Note: When using the CDC library, you can use the same functions above, but do not use
the packet related function such as: usb_kbhit(), usb_get_packet(), etc.

usb_cdc_kbhit() - The same as kbhit(), returns TRUE if there is 1 or more character in
the receive buffer.

usb_cdc_getc() - The same as getc(), reads and returns a character from the receive
buffer. If there is no data in the receive buffer it will wait indefinitely until there a
character has been received.

usb_cdc_putc(c) - The same as putc(), sends a character. It actually puts a character
into the transmit buffer, and if the transmit buffer is full will wait indefinitely until
there is space for the character.

usb_cdc_putc_fast(c) - The same as usb_cdc_putc(), but will not wait indefinitely until
there is space for the character in the transmit buffer. In that situation the
character is lost.

usb_cdc_puts(*str) - Sends a character string (null terminated) to the USB CDC port.
Will return FALSE if the buffer is busy, TRUE if buffer is string was put into buffer
for sending. Entire string must fit into endpoint, if string is longer than endpoint
buffer then excess characters will be ignored.

usb_cdc_putready() - Returns TRUE if there is space in the transmit buffer for another
character.

Relevant Preprocessor:
None

105

Functional Overview

Relevant Interrupts:
#int_usb - A USB event has happened, and requires application intervention. The USB
library that CCS provides handles this interrupt automatically.

Relevant Include Files:
pic_usb.h - Hardware layer driver for the PIC16C765 family PICmicro controllers with an

internal USB peripheral.

pic18 usb.h - Hardware layer driver for the PIC18F4550 family PICmicro controllers with
an internal USB peripheral.

usbn960x.h - Hardware layer driver for the National USBN9603/USBN9604 external
USB peripheral. You can use this external peripheral to add USB to any
microcontroller.

usb.h - Common definitions and prototypes used by the USB driver.

ush.c - The USB stack, which handles the USB interrupt and USB Setup Requests on
Endpoint 0.

usb_cdc.h - A driver that takes the previous include files to make a CDC USB device,
which emulates an RS232 legacy device and shows up as a COM port in the MS
Windows device manager.

Relevant getenv() Parameters:
USB - Returns TRUE if the device has an integrated internal USB peripheral.

Example Code:
Due to the complexity of USB example code will not fit here. But you can find the
following examples installed with your CCS C Compiler:
ex_usb_hid.c - A simple HID device
ex_usb_mouse.c - A HID Mouse, when connected to the PC, the mouse cursor will
go in circles.
ex_usb_kbmouse.c - An example of how to create a USB device with multiple
interfaces by creating a keyboard and mouse in one device.
ex_usb_kbmouse2.c - An example of how to use multiple HID report IDs to transmit
more than one type of HID packet, as demonstrated by a keyboard and mouse
on one device.
ex_ushb_scope.c - A vendor-specific class using bulk transfers is demonstrated.
ex_usb_serial.c - The CDC virtual RS232 library is demonstrated with this RS232 <
- > USB example.
ex_usb_serial2.c - Another CDC virtual RS232 library example, this time a port of
the ex_intee.c example to use USB instead of RS232.

106

Functional Overview

Voltage Reference

These functions configure the votlage reference module. These are available only in the
supported chips.

Relevant Functions:
setup_vref(mode | value) - Enables and sets up the internal voltage reference value. Constants
are defined in the device's .h file.

Relevant Preprocessor:
None

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
VREF - Returns 1 if the device has VREF

Example Code:
#INT_COMP //comparator interrupt handler

void isr() {

safe_conditions = FALSE;

print f("WARNING!!!! Voltage level is above 3.6V. \r\in");
}

setup_comparator(A1_VR_OUT_ON_A2)//sets 2 comparators(Al and VR and A2
as output)

{
setup_vref(VREF_HIGH | 15);//sets 3.6(vdd * value/32 + vdd/4) if

vdd is 5.0V
enable_interrupts(INT_COMP); // enable the comparator interrupt
enable_interrupts(GLOBAL); //enable global interrupts

}

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:
setup_wdt() - Enables/disables the wdt or sets the prescalar.

restart_wdt() - Restarts the wdt, if wdt is enables this must be periodically called to
prevent a timeout reset.

107

Functional Overview

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on PCH
device it is done using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on PCH
using fuses like WDT16, WDT256 etc.

RESTART_WDT when specified in #USE DELAY, #USE 12C and #USE RS232
statements like this #USE DELAY(clock=20000000, restart_wdt) will cause the wdt to
restart if it times out during the delay or 1I2C_READ or GETC.

Relevant Preprocessor:
#FUSES WDT/NOWDT - Enables/Disables WDT in PCB/PCM devices.

#FUSES WDT16 - Sets up the timeout/timein in PCH devices.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions are built-in

Relevant getenv() Parameters:
None

Example Code:
For PIC16F877
#fuses wdt setup_wdt(WDT_2304MS);
while(true){
restart_wdt();
perform_activity();

{

For PIC18F452
#fuse WDT1
setup_wdt(WDT_ON);
while(tr ue){
restart_wdt();
perform_activity():

}

Some of the PCB chips are share the WDT prescalar bits with timer0O so the WDT
prescalar constants can be used with setup_counters or setup_timer0 or setup_wdt
functions.

108

Functional Overview

Stream /O

Syntax:
#include <ios.h> is required to use any of the ios identifiers.

Ouptut:
output:
stream << variable_or_constant_or_manipulator ;

one or more repeats

stream may be the name specified in the #use RS232 stream= option or for the default
stream use cout.

stream may also be the name of a char array. In this case the data is written to the array
with a 0 terminator.

stream may also be the name of a function that accepts a single char parameter. In this
case the function is called for each character to be output.

variables/constants: May be any integer, char, float or fixed type. Char arrays are
output as strings and all other types are output as an address of the variable.

Manipulators:
hex -Hex format numbers

dec- Decimal format numbers (default)

setprecision(x) -Set number of places after the decimal point
setw(x) -Set total number of characters output for numbers
boolalpha- Output intl as true and false

noboolalpha -Output intl as 1 and 0 (default)

fixed Floats- in decimal format (default)

scientific Floats- use E notation

iosdefault- All manipulators to default settings

endl -Output CR/LF

ends- Outputs a null (\000")

Examples:
cout << "Value is " << hex << data << e ndl;

109

Functional Overview

cout << "Price is $" << setw(4) << setprecision(2) << cost << endl;

lcdputc << \ f' << setw(3) << count << " "<<min<<" " << max;
stringl << setprecision(1l) << sum / count;

string2 << x <<',' <<y;

Input:
stream >> variable_or_constant_or_manipulator ;

one or more repeats

stream may be the name specified in the #use RS232 stream= option or for the default
stream use cin.

stream may also be the name of a char array. In this case the data is read from the
array up to the 0 terminator.

stream may also be the name of a function that returns a single char and has no
parameters. In this case the function is called for each character to be input.
Make sure the function returns a \r to terminate the input statement.

variables/constants: May be any integer, char, float or fixed type. Char arrays are input
as strings. Floats may use the E format. Reading of each item terminates with
any character not valid for the type. Usually items are separated by spaces. The
termination character is discarded. At the end of any stream input statement
characters are read until a return (\r) is read. No termination character is read
for a single char input.

Manipulators:
hex -Hex format numbers

dec- Decimal format numbers (default)

noecho- Suppress echoing

strspace- Allow spaces to be input into strings
nostrspace- Spaces terminate string entry (default)

iosdefault -All manipulators to default settings

Examples:
cout << "Enter number: ";
cin>> value;
cout << "Enter title: ;
cin >> strspace >> title;
cin >> datali].recordid >> data[i].xpos >> data[i].ypos >>
data[i].sample ;

110

Functional Overview

stringl >> data;

lcdputc << " \ fEnter count";

Icdputc << keypadgetc >> count; /I read from keypad, echo to Icd
/I This syntax only works with
/I user defined functions.

111

PreProcessor

PREPROCESSOR

address

Syntax:
A predefined symbol _ _address_ _ may be used to indicate a type that must hold a program
memory address.

Examples:
__address__ testa = 0x1000 /Iwill allocate 16 bits for test a
and
[finitialize to 0x1000

attribute x

Syntax:
__attribute_ x

Elements:
X is the attribute you want to apply. Valid values for x are as follows: ((packed))

By default each element in a struct or union are padded to be evenly spaced by the size
of 'int'. This is to prevent an address fault when accessing an element of struct. See the
following example:
struct
{
int8 a;
intl6 b;
} test;

On architectures where 'int' is 16bit (such as dsPIC or PIC24 microcontrollers), 'test’
would take 4 bytes even though it is comprised of3 bytes. By applying the ‘packed'
attribute to this struct then it would take 3 bytes as originally intended:
struct __ attribute__ ((packed))
{
int8 a;
intl6 b;
} test;

Care should be taken by the user when accessing individual elements of a packed struct
T creating a pointer to 'b' in 'test' and attempting to dereference that pointer would cause
an address fault. Any attempts to read/write 'b' should be done in context of 'test' so the
compiler knows it is packed:

test.b = 5;

112

PreProcessor

((aligned(y)) - By default the compiler will allocate a variable in the first free memory

location. The aligned attribute will force the compiler to allocate a location for the

specified variable at a location that is modulus of the y parameter. For example:
int8 array[256] __attribute__ ((aligned(0x1000)));

This will tell the compiler to try to place 'array' at either 0x0, 0x1000, 0x2000, 0x3000,

0x4000, etc.

Description:

To alter some specifics as to how the compiler operates.

Examples:

struct __attribute__ ((packed))

{
i nt8 a;
int8 b;
} test;

int8 array[256] __attribute__((aligned(0x1000)));

#asm, #endasm, #asm asis

Syntax:

#ASM or #ASM ASIS code #ENDASM

Elements:

Code is a list of assembly language instructions.

Description:
12 Bit and 14 Bit

ADDWEF f,d ANDWEF f,d
CLRF f CLRW
COMF f,d DECF f,d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWEF f,d
MOVF f,d MOVPHW
MOVPLW MOVWE f
NOP RLF f,d
RRF f,d SUBWEF f,d
SWAPF f,d XORWEF f,d
BCF f,b BSF f,b
BTFSC f,b BTFSSf,b

113

ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN
f may be a constant (file number) or a simple variable

may be a constant (0 or 1) or W or F

f.b may be a file (as above) and a constant (0-7) or it may be
just a bit variable reference.

k may be a constant expression

*Note that all expressions and comments are in C like syntax.

PreProcessor

PIC 18

ADDWF f,d ADDWFC f.d ANDWF f,d
CLRF f COMF f,d CPFSEQ f
CPFSGT f CPFSLT f DECF f,d
DECFSZ f,d DCFSNz f,d INCF f,d
INFSNZ f,d IORWF f.d MOVF f,d
MOVFF fs,d MOVWF f MULWF f
NEGF f RLCF f.d RLNCF f,d
RRCF f,d RRNCF f,d SETF f
SUBFWB f,d SUBWF f.d SUBWFB f,d
SWAPF f,d TSTFSZ f XORWF f,d
BCF f,b BSF f,b BTFSC f,b
BTFSS f,b BTG f.d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT - DAW - GOTO n
NOP - NOP - POP -
PUSH - RCALL n RESET -
RETFIE S RETLW k RETURN S

114

PreProcessor

SLEEP - ADDLW ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k
SUBLW k XORLW k TBLRD *
TBLRD *+ TBLRD *. TBLRD +*
TBLWT * TBLWT e TBLWT =
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the compiler inserts an & before
it. And if it is an expression it must be a valid C expression that evaluates to a constant
(no & here). In C an un-subscripted array name is a pointer and a constant (no need for

&).

[PCD]

PIC24 and dsPIC

ADD Wa,Wb,Wd Wd = Wa+Whb

ADD f,W WO = f+wd

ADD lita0,wWd wd = lit10+Wd

ADD Wa,lit5,Wd Wd = lit5+Wa

ADD f,F f = f+Wd

ADD acc Acc = AccA+AccB

ADD wd {lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,wd Wd = lit10+Wd (byte)
ADD Wd,{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,wd Wd = lit10+Wd (byte)
ADD.B f,F f = f+Wd (byte)

ADD.B Wa,Wb,wd Wd = Wa+Whb (byte)
ADD.B Wa,lit5,Wd Wd = lit5+Wa (byte)
ADD.B f,W WO = f+Wd (byte)
ADDC f,W Wd = f+Wa+C

ADDC lit10,wd wd = lit10+Wd+C
ADDC Wa,lit5,Wd Wd = lit5+Wa+C

ADDC f,F Wd = f+Wa+C

ADDC Wa,Whb,Wd Wd = Wa+Wb+C
ADDC.B lit10,wd Wd = litl0+Wd+C (byte)
ADDC.B Wa,Whb,wd Wd = Wa+Wb+C (byte)
ADDC.B Wa,lit5,Wd Wd = lit5+Wa+C (byte)
ADDC.B f,W Wd = f+Wa+C (byte)
ADDC.B f,F Wd = f+Wa+C (byte)
AND Wa,Whb,wWd Wd =Wa.&Whb

115

PreProcessor

AND litl0,wd Wwd =1it10.&.Wd

AND f,W WO =f.&Wa

AND f,F f=f.&Wa

AND Wa,lit5,Wd Wd = lit5.& Wa

AND.B f,W WO = f.& Wa (byte)

AND.B Wa,Wb,wWd Wd = Wa.& Wb (byte)

AND.B liti0,wWd wWd = 1it10.&.Wd (byte)

AND.B f,F f = f.& Wa (byte)

AND.B Wa,lit5,Wd Wd = lit5.& Wa (byte)

ASR W WO =f>>1 arithmetic

ASR f,F f=f>>1 arithmetic

ASR Wa,Wd Wd =Wa >>1 arithmetic

ASR Wa,lit4,Wd Wd =Wa >> lit4 arithmetic

ASR Wa,Wb,Wd Wd = Wa >> Wb arithmetic
ASR.B f,F f=f>>1 arithmetic (byte)
ASR.B fW WO =f>>1 arithmetic (byte)
ASR.B Wa,wd Wd =Wa>>1 arithmetic (byte)
BCLR f,.B f.bit=0

BCLR wd,B Wa.bit=0

BCLR.B wd,B Wa.bit = 0 (byte)

BRA a Branch unconditionally

BRA Wd Branch PC+Wa

BRA BZ a Branch if Zero

BRA C a Branch if Carry (no borrow)

BRA GE a Branch if greater than or equal
BRAGEU | a Branch if unsigned greater than or equal
BRA GT a Branch if greater than

BRAGTU |a Branch if unsigned greater than
BRA LE a Branch if less than or equal

BRA LEU a Branch if unsigned less than or equal
BRALT a Branch if less than

BRALTU a Branch if unsigned less than
BRA N a Branch if negative

BRA NC a Branch if not carry (Borrow)

BRA NN a Branch if not negative

BRANOV | a Branch if not Overflow

BRA NZ a Branch if not Zero

BRA OA a Branch if Accumulator A overflow
BRA OB a Branch if Accumulator B overflow
BRA OV a Branch if Overflow

BRA SA a Branch if Accumulator A Saturate

116

PreProcessor

BRA SB a Branch if Accumulator B Saturate
BRA Z a Branch if Zero
BREAK ICD Break

BSET Wd,B Wa.bit =1

BSET f,B f.oit=1

BSET.B Wd,B Wa.hit = 1 (byte)
BSW.C Wa,Wd WaWb=C

BSW.Z Wa,Wd WaWb =2

BTG Wd,B Wa.bit = ~Wa.bit
BTG f.B f.bit = ~f.bit

BTG.B Wd,B Wa.bit = ~Wa.bit (byte)
BTSC f.B Skip if f.bit=0

BTSC Wd,B Skip if Wa.bit4 = 0
BTSS f.B Skip if f.bit=1

BTSS Wd,B Skip if Wa.bit = 1
BTST f,.B Z = f.bit

BTST.C Wa,wd C =Wa.Wh

BTST.C Wd,B C = Wa.hit

BTST.Z Wd,B Z = Wa.bit

BTST.Z Wa,Wd Z=Wa.Wb

BTSTS f,B Z =f.bit; f.hit =1
BTSTS.C wWd,B C =Wa.hit; Wa.bit =1
BTSTS.Z Wd,B Z = Wa.bit; Wa.bit = 1
CALL a Call subroutine

CALL wd Call [Wa]

CLR f,F f=0

CLR acc,da,dc,pi Acc = 0; prefetch=0
CLR f.wW W0=0

CLR wd Wd=0

CLR.B fW WO = 0 (byte)

CLR.B wd Wd = 0 (byte)

CLR.B f,F f =0 (byte)

CLRWDT Clear WDT

COM f,F f=~f

COM fW WO = ~f

COM Wa,Wd Wd = ~Wa

COM.B fW WO = ~f (byte)
COM.B Wa,wd Wd = ~Wa (byte)
COM.B f,F f =~f (byte)

CP W f Status set for f - WO
CP Wa,Wd Status set for Wb ©uUf

117

PreProcessa

CP Wd,lit5 Status set for Wa ©0Af
CP.B W, f Status set for f - WO (byte)

CP.B Wa,Wd Status set for Wb ©UAf
CP.B Wd,lit5 Status set for Wa ©Gf
CPO wd Status set for Wa ©UAf
CPO W, f Status sedt for f ©GNR
CP0.B wd Status set for Wa ©UAf
CP0.B W, f Status set for f ©OA O
CPB Wd,lit5 Status set for Wa ©0Ahf
CPB Wa,wd Status set for Wb ©0Anf
CPB W, f Status set -€or f ©O0A W
CPB.B Wa,Wd Status set for Wh ©UR
CPB.B Wd,lit5 Status set for Wa ©U0Af
CPB.B W, f Status set -€C@yte) f ©0A W
CPSEQ Wa,Wd Skip if Wa = Wb

CPSEQ.B | Wa,Wd Skip if Wa = Wb (byte)

CPSGT Wa,Wd Skip if Wa > Wb

CPSGT.B Wa,Wd Skip if Wa > Wb (byte)

CPSLT Wa,Wwd Skip if Wa < Wb

CPSLT.B Wa,Wd Skip if Wa < Wb (byte)

CPSNE Wa,wd Skip if Wa != Wb

CPSNE.B Wa,wd Skip if Wa = Wb (byte)

DAW.B wd Wa = decimal adjust Wa

DEC Wa,wd Wd = Wa ©u0f 1

DEC f,W Wo = f ©ufn 1

DEC f,F f = f ©0n 1

DEC.B f,F f = f ©uid 1 (byte)
DEC.B f,W WO = f ©ufi 1 (byte)
DEC.B Wa,wd Wd = Wa ©uin 1 (byte)
DEC2 Wa,Wd Wd = Wa ©ufi 2

DEC2 fW Wo = f ©an 2

DEC2 f,F f = f ©0Af 2

DEC2.B Wa,wd Wd = Wa ©u0d 2 (byte)
DEC2.B f,W WO = f ©ufi 2 (byte)
DEC2.B f,F f = f ©ui 2 (byte)

DISI lit14 Disable Interrupts lit14 cycles

DIV.S Wa,Wd Signed 16/16-bit integer divide

DIV.SD Wa,wd Signed 16/16-bit integer divide (dword)

DIV.U Wa,wd UnSigned 16/16-bit integer divide

DIV.UD Wa,wd UnSigned 16/16-bit integer divide (dword)
DIVF Wa,wd Signed 16/16-bit fractional divide

118

PreProcessor

DO lit14,a Do block lit14 times
DO Wd,a Do block Wa times
ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)
EDAC Wd*Wd,acc,da,db Euclidean Distance
EXCH Wa,wd Swap Wa and Wb
FBCL Wa,wd Find bit change from left (Msb) side
FEX ICD Execute

FF1L Wa,wd Find first one from left (Msb) side
FF1R Wa,wd Find first one from right (Lsb) side
GOTO a GoTo

GOTO wd GoTo [Wa]

INC fW WOo=f+1

INC Wa,wd Wd=Wa + 1

INC f,F f=f+1

INC.B Wa,Wd Wd =Wa + 1 (byte)
INC.B f,F f=1+1 (byte)

INC.B f,W WO =f + 1 (byte)
INC2 f,W WOo=f+2

INC2 Wa,Wd Wd =Wa + 2

INC2 f,F f=f+2

INC2.B f,W WO =f + 2 (byte)
INC2.B f,F f=f+ 2 (byte)
INC2.B Wa,wd Wd =Wa + 2 (byte)
IOR lit10,Wd wd = 1it10 | wd

IOR f,F f=f|Wa

IOR f,W W0 =f|Wa

IOR Wa,lit5,Wd Wd = Wa.|.lit5

IOR Wa,Wb,wd wd = Wa.|.Wb

IOR.B Wa,Wb,wd Wd = Wa.|.Wb (byte)
IOR.B fW WO =f | Wa (byte)
IOR.B litao,wd Wd = 1it10 | Wd (byte)
IOR.B Wa,lit5,Wd Wd =Wa.l.lit5 (byte)
IOR.B f,F f=f|Wa (byte)

LAC wd,{lit4},acc Acc = Wa shifted slit4
LNK lit14 Allocate Stack Frame
LSR f,W Wo=f>>1

LSR Wa,lit4, Wd Wd = Wa >> lit4

LSR Wa,Wd Wwd=Wa>>1

LSR f,F f=f>>1

LSR Wa,Wb,Wd Wd =Wb >>Wa
LSR.B f,W WO =f>> 1 (byte)

119

PreProcessor

LSR.B f,F f=f>>1 (byte)

LSR.B Wa,Wd Wd =Wa >> 1 (byte)

MAC Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa; {prefetch}
MAC Wd*Wc,acc,da,dc,pi | Acc = Acc + Wa * Wb; {[W13] = Acc}; {prefetch}
MOV W f f=Wa

MOV f,W WO = f

MOV f,F f=f

MOV wd,? F=Wa

MOV Wa+lit, Wd Wd = [Wa +SIit10]

MOV ?,wd Wd =f

MOV liti6,Wd Wd = 1it16

MOV Wa,Wd Wd =Wa

MOV Wa,Wd+lit [wd + Slitl0] = Wa

MOV.B lit8,Wd Wd = 1it8 (byte)

MOV.B W, f f = Wa (byte)

MOV.B f,W WO = f (byte)

MOV.B f,F f = f (byte)

MOV.B Wa+lit, wd Wd = [Wa +S]it10] (byte)

MOV.B Wa,Wd-+lit [wd + SIit10] = Wa (byte)

MOV.B Wa,Wd Wd = Wa (byte)

MOV.D Wa,Wd Wd:Wd+1 = Wa:Wa+1

MOV.D Wa,Wd Wd:Wd+1 = Wa:Wa+1

MOVSAC acc,da,dc,pi Move ?to ? and ? To ?

MPY Wd*Wc,acc,da,dc Acc = Wa*Wb

MPY Wd*Wd,acc,da,dc Square to Acc

MPY.N Wd*Wc,acc,da,dc Acc = -(Wa*Whb)

MSC Wd*Wc,acc,da,dc,pi| Acc = Acc ©uid Wa* Wb
MUL W, f W3:W2 =f*Wa

MUL.B W, f W3:W2 =f*Wa (byte)

MUL.SS Wa,Wd {Wd+1,Wd}= sign(Wa) * sign(Wh)
MUL.SU Wa,wd {Wd+1,Wd} = sign(Wa) * unsign(Wh)
MUL.SU Wa,lit5,Wd {Wd+1,Wd}= sign(Wa) * unsign(lit5)
MUL.US Wa,wd {wd+1,Wd} = unsign(Wa) * sign(Wb)
MUL.UU Wa,wd {Wd+1,Wd} = unsign(Wa) * unsign(Wb)
MUL.UU Wa,lit5,Wd {Wd+1,Wd} = unsign(Wa) * unsign(lit5)
NEG f,F f=-f

PUSH wd Push Wa to TOS

PUSH.D wd PUSH double Wa:Wa + 1 to TOS
PUSH.S PUSH shadow registers

PWRSAV litl Enter Power-saving mode litl
RCALL a Call (relative)

120

PreProcessor

RCALL wd Call Wa

REPEAT lit14 Repeat next instruction (lit14 + 1) times
REPEAT wd Repeat next instruction (Wa + 1) times
RESET Reset

RETFIE Return from interrupt enable

RETLW lit10,Wd Return; Wa = [it10

RETLW.B lit10,Wd Return; Wa = [it10 (byte)

RETURN Return

RLC Wa,wd W(d = rotate left through Carry Wa
RLC f,F f = rotate left through Carry f

RLC f,W WO = rotate left through Carry f

RLC.B f,F f = rotate left through Carry f (byte)
RLC.B f,W WO = rotate left through Carry f (byte)
RLC.B Wa,wd W(d = rotate left through Carry Wa (byte)
RLNC Wa,wWd Wd = rotate left (no Carry) Wa

RLNC f,F f = rotate left (no Carry) f

RLNC fW WO = rotate left (no Carry) f

RLNC.B f,W WO = rotate left (no Carry) f (byte)
RLNC.B Wa,wd Wd = rotate left (no Carry) Wa (byte)
RLNC.B f,F f = rotate left (no Carry) f (byte)

RRC f,F f = rotate right through Carry f

RRC Wa,wd Wd = rotate right through Carry Wa
RRC f,W WO = rotate right through Carry f
RRC.B f,W WO = rotate right through Carry f (byte)
RRC.B f,F f = rotate right through Carry f (byte)
RRC.B Wa,wd Wd = rotate right through Carry Wa (byte)
RRNC f,F f = rotate right (no Carry) f

RRNC f,W WO = rotate right (no Carry) f

RRNC Wa,wd Wd = rotate right (no Carry) Wa
RRNC.B f,F f = rotate right (no Carry) f (byte)
RRNC.B Wa,Wd Wd = rotate right (no Carry) Wa (byte)
RRNC.B f,W WO = rotate right (no Carry) f (byte)
SAC acc,{lit4},wd Wd = Acc slit 4

SAC.R acc,{lit4},wd Wd = Acc slit 4 with rounding

SE Wa,wd Wd = sign-extended Wa

SETM wd Wd = OXFFFF

SETM f,F WO = OxFFFF

SETM.B wd Wd = OXFFFF (byte)

SETM.B f,W WO = OxFFFF (byte)

SETM.B f,F WO = OXFFFF (byte)

SFTAC acc,wd Arithmetic shift Acc by (Wa)

121

PreProcessor

SFTAC acc,lits Arithmetic shift Acc by Slit6

SL f,W WOo=f<<1

SL Wa,Wb,wd Wd = Wa <<Whb

SL Wa,lit4,Wd Wd = Wa << lit4

SL Wa,Wd Wd=Wa<<1

SL f,F f=f<<1

SL.B f,W WO = f << 1 (byte)

SL.B Wa,wd Wd = Wa << 1 (byte)

SL.B f,F f=f<<1 (byte)

SSTEP ICD Single Step

SUB f,F f = f ©uid WO

SUB f,W Wo = f ©u0fd WO

SUB Wa,Wb,Wd Wd = Wa ©uAiA Wb

SUB Wa,lit5,Wd Wd = Wa ©udAd |ith

SUB acc Acc = AccA ©uid AccB
SUB liti0,wWd Wd = Wd ©uA 1itil10

SUB.B Wa,lit5,Wd Wd = Wa ©ud |it5 (byte
SUB.B liti0,wd Wd = Wd ©ufi 1itl1l0 (byt
SUB.B f,W WO = f ©ufi WO (byte)
SUB.B Wa,Wb,Wd Wd = Wa ©ufA Wb (byte)
SUB.B f,F f = f ©uid WO (byte)
SUBB f,W WwWo = f ©ufAn WO ©ufni C
SUBB Wa,Wb,Wd Wd = Wa ©uiA Wb ©un C
SUBB f,F f = f ©uAd WO ©oun C

SUBB Wa,lit5,Wd Wd = Wa -@uidid |ith

SUBB lit10,Wd Wd = Wd ©ud |itil1l0 ©Gi
SUBB.B litio,wd Wd = Wd ©ouain |itl0 ©uUuAf
SUBB.B Wa,Wb,Wd Wd = Wa ©uA Wb ©un C
SUBB.B f,F f = f ©0fA WO ©uiAn C (by
SUBB.B Wa,lit5,Wd Wd = Wa -&ubyte) i t 5

SUBB.B fW wo = f ©ufiAn WO ©ufA C (b
SUBBR Wa,lit5,Wd Wd = |it-; ©ufA Wa

SUBBR fW wo=wW0 ©un f ©und C

SUBBR f,F f = WO ©un f ©ufn C
SUBBR Wa,Wb,Wd Wd = Wa @i Wb

SUBBR.B | f,F f = WO ©un f ©ufA C (b
SUBBR.B | fW WO = WO ©oun f ©un C (
SUBBR.B | Wa,Wb,Wd Wd = Wa @ @ytelVb

SUBBR.B | Wa,lit5,Wd Wd = | i t-& (eytei Wa

SUBR Wa,lit5,Wd Wd = |ith ©ufi Wb

SUBR f,F f = WO ©oun f

122

PreProcessor

SUBR Wa,Wb,Wd Wd = Wa ©ufA Wb

SUBR f,W WO = WO ©udf f

SUBR.B Wa,Wb,wWd Wd = Wa ©uin Wb (byte)
SUBR.B f,F f = WO ©un f (byte)
SUBR.B Wa,lit5,Wd Wd = |ith5 ©ufA Wb (byt
SUBR.B f,W WO = WO (bgté)i

SWAP wd Wa = byte or nibble swap Wa

SWAP.B wd Wa = byte or nibble swap Wa (byte)

TBLRDH Wa,wd Wd = ROM[Wa] for odd ROM

TBLRDH.B | Wa,wd

Wd = ROM[Wa] for odd ROM (byte)

TBLRDL Wa,Wd

Wd = ROM[Wa] for even ROM

TBLRDL.B | Wa,wd

Wd = ROM[Wa] for even ROM (byte)

TBLWTH Wa,Wd

ROM[Wa] = Wd for odd ROM

TBLWTH.B | Wa,wd

ROM[Wa] = Wd for odd ROM (byte)

TBLWTL Wa,Wwd

ROM[Wa] = Wd for even ROM

TBLWTL.B | Wa,wd

ROM[Wa] = Wd for even ROM (byte)

ULNK

Deallocate Stack Frame

URUN ICD Run
XOR Wa,Wb,Wd Wd = Wa Wb

XOR f,F f=fAW0

XOR f,W WO =f A WO

XOR Wa,lit5,Wd wd = Wa * lit5

XOR lit10,Wd wd = Wd ~ lit10
XOR.B lit10,Wd wd = Wd ~ lit10 (byte)
XOR.B f,W WO = f A WO (byte)
XOR.B Wa,lit5,Wd Wd = Wa * lit5 (byte)
XOR.B Wa,Wb,Wd Wd = Wa ~ Wb (byte)
XOR.B f,F f=fAWO (byte)

ZE Wa,Wd Wd = Wa & FF

Example Files:
FFT.c

Examples:
int find_parity(int data){

int count;

#asm

MOV #0x08, WO
MOV WO, count
CLR WO

123

PreProcessor

loop:

XOR.B data,W0

RRC data,Wo0

DEC count,F

BRA NZ, loop

MOV #0x01,WO0

ADD count,F

MOV count, WO

MOV WO0. RETURN
#endasm

#bank dma

Syntax:
#bank_dma

Elements:
None

Description:

Informs the compiler to assign the data for the next variable, array or structure into DMA
bank.

Examples:
#bank_dma
struct {
intr_w;
intc_w;
long unused :2;
long data: 4;

Ya_port; /lthe data for a_port will be forced into memory
bank DMA

#bankx

Syntax:
#bankx

None
Description:

Informs the compiler to assign the data for the next variable, array or structure into
BankX.

124

Examples:
#bankx
struct {
intr_w;
int c_d;
long unused : 2;
long data : 4;
} a_port;

PreProcessor

/I The data for a_port will be forced into memory bank

X

#banky

Syntax:
#banky

None

Description:

Informs the compiler to assign the data for the next variable, array or structure into

Banky.

Examples:
#banky
struct {
intr_w;
intc_d;
long unused : 2;
long data : 4;
} a_port;
/I The data for a_port will b
y

#bit

Syntax:
#BIT id =x.y

Elements:

id is a valid C identifier,

X is a constant or a C variable,

y is a constant 0-7 (for 8-bit PICs)
[pcp] Y is a constant 0-15

125

e forced into memory bank

PreProcessor

Description:

A new C variable (one bit) is created and is placed in memory at byte x and bity. This is useful to
gain access in C directly to a bit in the processors special function register map. It may also be
used to easily access a bit of a standard C variable.

Example Files:
ex_dglint.c

Examples:
#bit TOIF = 0x b.2

;I.'.lIF = 0; // Clear Timer O interrupt flag

int result;
#bit result_odd = result.0

if (result_odd)

[PCD]
#bit T1IF = 0x84.3

'1."1IF =0;//Clear T imer O interrupt flag

int result;
#bit result_odd = result.0

if (result_odd)

See Also:
#BYTE, #RESERVE, #LOCATE, #WORD

buildcount

Description:
Only defined if Options>Project Options>Global Defines has global defines enabled.

This id resolves to a number representing the number of successful builds of the project.

#build

Syntax:

#BUILD(segment = address)

#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)

#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)

irep] #BUILD(segment = size) : For STACK use only

126

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

tpeo] #BUILD(ALT_INTERRUPT)
ieeo) #BUILD(AUX_MEMORY)

Elements:
segment - is one of the following memory segments which may be assigned a location:
MEMORY, RESET, or INTERRUPT.

pcp] segment - is one of the following memory segments which may be assigned a
location: RESET, INTERRUPT, or STACK.

address - is a ROM location memory address. Start and end are used to specify a
range in memory to be used.

start - is the first ROM location and end is the last ROM location to be used.

prep] address - is a ROM location memory address. Start and end are used to specify a
range in memory to be used. Start is the first ROM location and end is the last ROM
location to be used.

ireo] RESET - will move the compiler's reset vector to the specified location. INTERRUPT
will move the compiler's interrupt service routine to the specified location. This just
changes the location the compiler puts it's reset and ISR, it doesn't change the actual
vector of the PIC. If you specify a range that is larger than actually needed, the extra
space will not be used and prevented from use by the compiler.

ireo] STACK - configures the range (start and end locations) used for the stack, if not
specified the compiler uses the last 256 bytes. The STACK can be specified by only
using the size parameters. In this case, the compiler uses the last RAM locations on the
chip and builds the stack below it.

ireo] ALT_INTERRUPT - will move the compiler's interrupt service routine to the alternate
location, and configure the PIC to use the alternate location.

nosleep - is used to prevent the compiler from inserting a sleep at the end of main()
Bootload - produces a bootloader-friendly hex file (in order, full block size).
NOSLEEP_LOCK - is used instead of A sleep at the end of a main A infinite loop.

ireco) AUX_MEMORY - Only available on devices with an auxiliary memory segment.
Causes compiler to build code for the auxiliary memory segment, including the auxiliary
reset and interrupt vectors. Also enables the keyword INT_AUX which is used to create
the auxiliary interrupt service routine.

Description:

PIC18XXX devices with external ROM or PIC18XXX devices with no internal ROM can
direct the compiler to utilize the ROM. When linking multiple compilation units, this
directive must appear exactly the same in each compilation unit.

127

PreProcessor

rep] These directives are commonly used in bootloaders, where the reset and interrupt
needs to be moved to make space for the bootloading application.

Example Files:
ex_glint.c

Examples:
#build(memory=0x20000:0x2FFFF) //Assigns memory
space
#build(reset=0x200,interrupt=0x208) //Assigns start
location
/lof reset and
interru pt
IIvectors
#build(reset=0x200:0x207, interrupt=0x208:0x2ff)
/IAssign limited
space
[ffor r eset and
interrupt
IIvectors.
#build(memory=0x20000:0x2FFFF) IIAssigns memory space

[PCD]
/* assign the location where the compiler will place the reset
and interrupt vectors */
#build (reset=0x200,interrupt=0x208)

[* assign the location and fix the size of the segments
used by the compiler for the reset and interrupt vectors */
#build(reset=0x200:0x207, interrupt=0x208:0x2ff)

[* assign stack space of 512 bytes */
#build(stack=0x1E00 :0x1FFF)

#build(stack= 0x300) /I When Start and End
locations are

/Inot specified, the
compiler uses

/lthe last RAM locations
available

/lon the chip.

See Also:
#LOCATE, #RESERVE, #ROM, #ORG

128

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#byte

Syntax:
#byte id = x

Elements:
id is a valid C identifier,
X is a C variable or a constant

Description:

If the id is already known as a C variable then this will locate the variable at address

X. In this case the variable type does not change from the original definition. If the id is
not known a new C variable is created and placed at address x with the type int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other variables
may be located at the same location. In fact when x is a variable, then id and x share the
same memory location.

Example Files:
ex_glint.c

Examples:
#byte status =3
#byte b_port=6

struct {
shortintr_w;
shortint ¢ _d;
int unused : 2;
int data :4; }a _port;
#byte a_port =5

a_port.c_ d=1;

[PCD]
#byte status _register = 0x42
#byte b_port = 0x02C8

struct {
shortintr_w;
shortint c_d;
int data 16} E_port;
#byte a_port = Ox2DA

a_port.c_d=1;

129

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

See Also:
#bit, #locate, #reserve, #word, Named Registers, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

#case

Syntax:
#case

Elements:
None

Description:

Will cause the compiler to be case sensitive. By default the compiler is case insensitive.
When linking multiple compilation units, this directive must appear exactly the same in
each compilation unit.

Warning: Not all the CCS example programs, headers and drivers have been tested with
case sensitivity turned on.

Example Files:
ex_cust.c

Examples:
#case

int STATUS;

void func() {
int status;

gTATUS = status; // Copy local status to
//global
}

date

Syntax:
__date

Elements:
None

130

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:
This pre-processor identifier is replaced at compile time with the date of the compile in the
form: "31-jan-03".

Example Files:
ex_glint.c

Examples:
printf("Software was compiled on ");

printf(__DATE_)

#define

Syntax:
#define id text
or
#define id(x,y...) text

Elements:
id is a preprocessor identifier, text is any text, X,y is a list of local preprocessor identifiers,
and in this form there may be one or more identifiers separated by commas.

Description:
Used to provide a simple string replacement of the ID with the given text from this point of
the program and on.

In the second form (a C macro) the local identifiers are matched up with similar identifiers
in the text and they are replaced with text passed to the macro where it is used.

If the text contains a string of the form #idx then the result upon evaluation will be the
parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is concatenated with
parameter idy forming a new identifier.

Within the define text two special operators are supported:
#x is the stringize operator resulting in "x"
X##y is the concatination operator resulting in xy

The varadic macro syntax is supported where the last parameter is specified as ... and

the local identifier used is __va_args__. In this case, all remaining arguments are
combined with the commas.

131

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Example Files:
ex_stwt.c, ex_macro.c

Examples:
#define BITS 8
a=a+BITS; /lsame as a=a+8;
#define hi(x) (x<<4)
a=hi(a); /Isame as a=(a<<4);
#define isequal(a,b) (primary_##a[b]==backup_##a[b])
/[usage iseaqual(names,5) is the
same as
I
(primary_names[5]==backup_names[5])
#define str(s) #s
#define part(device) #include str(device##.h)
/l usage part(16F887) is the same as
Il #include "16F887.h"
#define DBG(...) fprintf(debug,_ VA_ARGS_)
See Also:

#UNDEF, #IFDEF, #IENDEF

#definedinc

Syntax:
value = definedinc(variable);

Parameters:
variable - is the name of the variable, function, or type to be checked.

Returns:

A C status for the type of id entered as follows:
01 not known

17 typedef or enum

21 struct or union type

31 typemod qualifier

41 defined function

51 function prototype

61 compiler built-in function
771 local variable

81 global variable

132

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Function:

PreProcessor

This function checks the type of the variable or function being passed in and returns a specific C

status based on the type.

Availability:
All Device

Examples:
intx,y=0;
y = definedinc(x);

#device

Syntax:
#DEVICE chip options

Il'y will return 7 i xis alocal variable

#DEVICE Compilation mode selection

Elements:
Chip Options:

chip is the name of a specific processor (like: PIC16C74 or dsPIC33FJ64GP306), To
get a current list of supported devices: START | RUN | CCSC +Q
Options are gualifiers to the standard operation of the device. Valid options are:

*=5 Use 5 bit pointers (for all parts)

*=8 Use 8 bit pointers (14 and 16 bit parts)

*=16 Use 16 bit pointers (for 14 bit parts)

ADC=x Where x is the number of bits read_adc() should return

pcp) ADC=SIGNED

Result returned from read_adc() is signed.(Default is
unsigned)

rco] ADC=UNSIGNED

Return result from read_adc() is unsigned.(default is
UNSIGNED)

ICD=TRUE Generates code compatible with Microchips ICD debugging
hardware.
ICD=n For chips with multiple ICSP ports specify the port number

being used. The defaultis 1.

WRITE_EEPROM=ASYNC

Prevents WRITE_EEPROM from hanging while writing is
taking place. When used, do not write to EEPROM from
both ISR and outside ISR.

WRITE_EEPROM = NOINT

Allows interrupts to occur while the write_eeprom()
operations is polling the done bit to check if the write
operations has completed. Can be used as long as no
EEPROM operations are performed during an ISR.

HIGH_INTS=TRUE

Use this option for high/low priority interrupts on the PIC®
18.

%f=.

No 0 before a decimal pint on %f numbers less than 1.

OVERLOAD=KEYWORD

Overloading of functions is now supported. Requires the

133

PreProcessor

use of the keyword for overloading.

OVERLOAD=AUTO

Default mode for overloading.

PASS_STRINGS=IN_RAM

A new way to pass constant strings to a function by first
copying the string to RAM and then passing a pointer to
RAM to the function.

CONST=READ_ONLY

Uses the ANSI keyword CONST definition, making CONST
variables read only, rather than located in program memory.

CONST=ROM

Uses the CCS compiler traditional keyword CONST
definition, making CONST variables located in program
memory.

NESTED_INTERRUPTS=TRUE

Enables interrupt nesting for PIC24, dsPIC30, and dsPIC33
devices. Allows higher priority interrupts to interrupt lower
priority interrupts.

NORETFIE

ISR functions (preceded by a #int_xxx) will use a RETURN
opcode instead of the RETFIE opcode. This is not a
commonly used option; used rarely in cases where the user
is writing their own ISR handler.

NO_DIGITAL_INIT

Normally the compiler sets all I/O pins to digital and turns off
the comparator. This option prevents that action.

VECTORL_INTS

For devices with both single and multiple vector interrupts.
This selects multiple vectors.

rco] DUAL_PARTITION

For devices with Dual Partition Flash Modes, this enables
Dual Partition Flash mode by setting the FBOOT
configuration register to the appropriate value. It cuts the
available program memory in half, and moves the
configuration register addresses to the Dual Partition
locations.

[PCD]
DUAL_PARTITION_PROTECTED

For devices with Dual Partition Flash Modes this enabled
Protected Dual Partition Flash mode, Partition 1 is write-
protected when inactive, by setting the FBOOT configuration
register to the appropriate value. It cuts the available
program memory in half and moves the configuration
register addresses to the Dual Partition locations.

pep] PARTITION_SEQUENCE=X

A value from 0 to 4095 to set the FBTSEQ configuration
register. Only used when either DUAL_PARTITION or
DUAL_PARTITION_PROTECTED is used. The value is
used to determine which partition is active on power-up.
The Partition with the lowest value will be the active
partition. If the value is the same for both partitions, then
Partition 1 will be the active partition on power-up.

Both chip and options are optional, so multiple #DEVICE lines may be used to fully define
the device. Be warned that a #DEVICE with a chip identifier, will clear all previous

#DEVICE and #FUSE settings.

Compilation mode selection:

134

PreProcessor

The #DEVICE directive supports compilation mode selection. The valid keywords are
CCS2, CCS3, CCS4 and ANSI. The default mode is CCS4. For the CCS4 and ANSI
mode, the compiler uses the default fuse settings NOLVP, PUT for chips with these
fuses. The NOWDT fuse is default if no call is made to restart_wdt().

CCs4 This is the default compilation mode. The pointer size in this mode for PCM and
PCH is set to *=16 if the part has RAM over OFF.

ANSI Default data type is SIGNED all other modes default is UNSIGNED. Compilation is
case sensitive, all other modes are case insensitive. Pointer size is set to *=16 if the part
has RAM over OFF.

CCs2 varlé = NegConst8 is compiled as: varl6 = NegConst8 & Oxff (no sign extension)
CCSs3 Pointer size is set to *=8 for PCM and PCH and *=5 for PCB . The overload keyword is
required.

CCSs2 The default #DEVICE ADC is set to the resolution of the part, all other modes default to
only 8.
onebit = eightbits is compiled as onebit = (eightbits != 0)
All other modes compile as: onebit = (eightbits & 1)

Description:
To alter some specifics as to how the compiler operates

Example Files:
ex_mxram.c , ex_icd.c, 16c74.h

Examples:
Chip Options:
#device PIC16C74
#device PIC16C67 *=16
#device *=16 ICD=TRUE
#device PIC16F877 *=16 ADC=10
#device %f=.
printf("%f",.5); //will print .5, without the directive it will print 0.5
ipep] #device DSPIC33FJ64GP306
ipep] #device PIC24FJ64GA002 ICD=TRUE
tpco] #device ADC=10
ierep] #device ICD=TRUE ADC=10

treo] Float Options-

tpep] #device %f=.
teep printf("%f",.5); //will print .5, without the directive it will print 0.5

135

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()

PreProcessor

Compilation mode selection:
#device CCS2 // This will set the ADC to the resolution of the part

See Also:

read adc()

device

Syntax:
__device__

Elements:
None

Description:

This preprocessor identifier is defined by the compiler with the base number of the current device
(from a #DEVICE). The base number is usually the number after the C in the part number. For
example, the PIC16C622 has a base number of 622.

Examples:
#if__device_ ==71
SETUP_ADC_PORTS(AIl_DIGITAL);
#endif

See Also:
#DEVICE

#if #else #elif #endif

Syntax:

#if expr
code

#elif expr //Optional, any number may be used
code

#else //Optional
code

#endif

Elements:
expr is an expression with constants, standard operators and/or preprocessor
identifiers. Code is any standard c source code.

136

PreProcessor

Description:
The pre-processor evaluates the constant expression and if it is non-zero will process the
lines up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers created via
#define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if the id is defined
and 0 if it is not.

== and != operators now accept a constant string as both operands. This allows for
compile time comparisons and can be used with GETENV() when it returns a string
result.

Example Files:
ex_extee.c

Examples:

#if MAX_VALUE > 255
long value;

#else
int value;

#endif

#if getenv(ADEVICE®)==0PI C16F8775
//do something special for the PIC16F877

#endif

See Also:
#IFDEF, #IFNDEF, getenv()

#error

Syntax:

#ERROR text

#ERROR / warning text
#ERROR / information text

Elements:
text - is optional and may be any text

Description:

Forces the compiler to generate an error at the location this directive appears in the file. The text
may include macros that will be expanded for the display. This may be used to see the macro
expansion. The command may also be used to alert the user to an invalid compile time situation.

Example Files:
ex_psp.

137

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
#if BUFFER_SIZE>16
#error Buffer size is too large
#endif
#error Macro test: min(x,y)

See Also:
#WARNING

#export (options)

Syntax:
#export(options)

Elements:

FILE=filename - The filename which will be generated upon compile. If not given, the
filname will be the name of the file you are compiling, with a .0 or .hex extension
(depending on output format).

Output Formats:

C - Indicates the file format is C source code. In this case the object is not exported but
rather a definition that allows another C program in the same memory space to call the
exported functions. It may be used by a bootloader that needs the loaded application to
call bootloader functions.

RELOCATABLE - CCS relocatable object file format. Must be imported or linked before
loading into a PIC. This is the default format when the #EXPORT is used.

HEX - Intel HEX file format. Ready to be loaded into a PIC. This is the default format
when no #EXPORT is used.

Exported Symbols:

ONLY=symbol+symbol+.....+symbol - Only the listed symbols will be visible to modules
that import or link this relocatable object file. If neither ONLY or EXCEPT is used, all
symbols are exported.

EXCEPT=symbol+symbol+.....+symbol - All symbols except the listed symbols will be
visible to modules that import or link this relocatable object file. If neither ONLY or
EXCEPT is used, all symbols are exported.

138

PreProcessor

Exported Addresses:
RANGE-=start:stop - Only addresses in this range are included in the hex file.

OFFSET=address - Hex file address starts at this address (0 by default)
ODD - Only odd bytes place in hex file.
EVEN - Only even bytes placed in hex file.

Description:

This directive will tell the compiler to either generate a relocatable object file or a stand-
alone HEX binary. A relocatable object file must be linked into your application, while a
stand-alone HEX binary can be programmed directly into the device. The command line
compiler and the PCW IDE Project Manager can also be used to compile/link/build
modules and/or projects. Multiple #EXPORT directives may be used to generate multiple
hex files. This may be used for 18F8722 like devices with external memory.

Examples:
#EXPORT(RELOCATABLE, ONLY=TimerTask)
void TimerFuncl(void) { /* some code */ }
void TimerFunc2(void) { /* some code */ }
void TimerFunc3(void) { /* some code */ }
void TimerTask(void)

{
TimerFuncl();
TimerFunc2();
TimerFunc3();

}

/*

This sour ce will be compiled into a relocatable object, but the object
this is being linked to can only see TimerTask()
*/

See Also:
#IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation Unit

file

Syntax:
_ file__

Elements:
None

139

PreProcessor

Description:
The pre-processor identifier is replaced at compile time with the file path and the filename
of the file being compiled.

Example Files:
assert.h

Examples:
if(index>MAX_ENTRIES)
printf("Too many entries, source file: "
__FILE__ "atline" _LINE__" \r\n";

See Also:
line

filename

Syntax:
__filename___

Elements:
None

Description:
The pre-processor identifier is replaced at compile time with the file path and the filename
of the file being compiled.

Examples:
ifindex>MAX_ENTRIES)
printf("Too many entries, source file: "
__FILENAME__ "atline” _LINE__ " \r\n);

See Also:
line

#fill rom

Syntax:
#fill_rom value

Elements:
value - is a constant 16-bit value

140

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:

This directive specifies the data to be used to fill unused ROM locations. When linking
multiple compilation units, this directive must appear exactly the same in each
compilation unit.

Example Files:
ex_glint.c

Examples:
#fill _rom Ox36

See Also:
#ROM

#fuses

Syntax:
#fuses options

Elements:

options vary depending on the device. A list of all valid options has been put at the top of
each devices .h file in a comment for reference. The PCW device edit utility can modify a
particular devices fuses. The PCW pull down menu VIEW | Valid fuses will show all fuses
with their descriptions. Some common options are:

LP, XT, HS, RC

WDT, NOWDT

PROTECT, NOPROTECT

PUT, NOPUT (Power Up Timer)

BROWNOUT, NOBROWNOUT

=A =8 =8 -8 -4

Description:

This directive defines what fuses should be set in the part when it is programmed. This
directive does not affect the compilation; however, the information is put in the output
files. If the fuses need to be in Parallax format, add a PAR option. SWAP has the special
function of swapping (from the Microchip standard) the high and low BYTES of non-
program data in the Hex file. This is required for some device programmers.

Some fuses are set by the compiler based on other compiler directives. For example, the

oscillator fuses are set up by the #USE delay directive. The debug, No debug and
ICSPN Fuses are set by the #DEVICE ICD=directive.

141

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Some processors allow different levels for certain fuses. To access these levels, assign a
value to the fuse. For example, on the 18F452, the fuse PROTECT=6 would place the
value 6 into CONFIG5L, protecting code blocks 0 and 3.

When linking multiple compilation units be aware this directive applies to the final object
file. Later files in the import list may reverse settings in previous files.

To eliminate all fuses in the output files use: #FUSES none

To manually set the fuses in the output files use: #FUSES 1 = 0xC200 // sets config
word 1 to 0xC200

Example Files:
ex_sgw.c

Examples:
#fuses HS,NOWDT

#hexcomment

Syntax:
#HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements:
None

Description:
Puts a comment in the hex file.
Some programmers (MPLAB in particular) do not like comments at the top of the hex file.

Examples:
#hexcommentVersion3.1 - requires 20Mhz crystal

#id

Syntax:

#ID number 16

ieep] #ID number 32

#ID number, number, number, number

#ID "filename"
#|D CHECKSUM

142

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:

Number 16 is a 16 bit number, number is a 4 bit number. [pcojNumber 3 2 is a 32 bit
number, number is a 8 bit number. Filename is any valid PC filename and checksum is a
keyword.

Description:
This directive defines the ID word to be programmed into the part. This directive does
not affect the compilation but the information is put in the output file.

The first syntax will take a 16 (jrep; 32)-bit number and put one nibble (jecp; byte) in each
of the four ID words (jrep] bytes) in the traditional manner. The second syntax specifies
the exact value to be used in each of the four ID words (jeco] bytes).

When a filename is specified the ID is read from the file. The format must be simple text
with a CR/LF at the end. The keyword CHECKSUM indicates the device checksum
should be saved as the ID.

Example Files:
ex_cust.c

Examples:
#id 0x1234
#id "serial.num"
#id CHECKSUM

([PCD]
#id 0x12345678
#id 0x12, 0x34, 0x45, 0x67
#id "serial.num"
#id CHECKSUM

#ifdef #ifndef #else #endif

Syntax:
#ifdef id
code
#elif
code
#else //optiona
code
#endif

#ifndef id
code

#elif
code

143

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#else /loptiona
code
#endif

Elements:
id is a preprocessor identifier, code is valid C source code.

Description:

This directive acts much like the #IF except that the preprocessor simply checks to see if
the specified ID is known to the preprocessor (created with a #DEFINE). #IFDEF checks
to see if defined and #IFNDEF checks to see if it is not defined.

Example Files:
ex_sgw.c

Examples:
#define debug /I Comment line out for no debug

#ifdef ~ DEBUG
printf("debug point a");
#endif

See Also:
#IE

#ignore warnings

Syntax:

#ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements:
warnings is one or more warning numbers separated by commas.

Description:

This function will suppress warning messages from the compiler. ALL indicates no warning will be
generated. NONE indicates all warnings will be generated. If numbers are listed then those
warnings are suppressed

Example Files:
ex_glint.c

144

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
#ignore_warnings 203
while(TRUE) {
#ignore_warnings NONE

See Also:
Warning messages

#import(options)

Syntax:
#import(options)

Elements:
FILE=filname - The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol - Only the listed symbols will imported from the
specified relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
imported.

EXCEPT=symbol+symbol+.....+symbol - The listed symbols will not be imported from
the specified relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
imported.

RELOCATABLE - CCS relocatable object file format. This is the default format when the
#IMPORT is used.

COFF - COFF file format from MPASM, C18 or C30.
HEX - Imported data is straight hex data.
RANGE-=start:stop - Only addresses in this range are read from the hex file.

LOCATION=id - The identifier is made a constant with the start address of the imported
data.

SIZE=id - The identifier is made a constant with the size of the imported data.

Description:

This directive will tell the compiler to include (link) a relocatable object with this unit
during compilation. Normally all global symbols from the specified file will be linked, but
the EXCEPT and ONLY options can prevent certain symbols from being linked.

The command line compiler and the PCW IDE Project Manager can also be used to
compile/link/build modules and/or projects.

145

PreProcessor

Example Files:
ex_glint.c

Examples:
#IMPORT(FILE=timer.o, ONLY=TimerTask)
void main(void)

while(TRUE)
TimerTask();
}
[*timer.o is linked with this compilation, but only TimerTask() is
visible
in scope from this object.*/

See Also:
#EXPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation Unit

#include

Syntax:
#include <filename>
#include <"filename">

Elements:

filename - is a valid PC filename. It may include normal drive and path information. A file
with the extension ".encrypted" is a valid PC file. The standard compiler #include
directive will accept files with this extension and decrypt them as they are read. This
allows include files to be distributed without releasing the source code.

Description:

Text from the specified file is used at this point of the compilation. If a full path is not
specified the compiler will use the list of directories specified for the project to search for
the file. If the filename is in "™ then the directory with the main source file is searched
first. If the filename is in <> then the directory with the main source file is searched last.

Example Files:
ex_sqgw.c

Examples:
#include <16C54.H>

#include <C:\ INCLUDES COMLIB MYRS232.C>

146

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#inline

Syntax:
#inline

Elements:
None

Description:

Tells the compiler that the function immediately following the directive is to be implemented
INLINE. This will cause a duplicate copy of the code to be placed everywhere the function is
called. This is useful to save stack space and to increase speed. Without this directive the compiler
will decide when it is best to make procedures INLINE.

Example Files:
ex_cust.c

Examples:

#inline

swapbyte(int &a, int &b){
intt;
t=a
a=b
b=t;

}

See Also:
#SEPARATE

#Hint XXXX

Syntax:
PCB, PCM, PCH

#INT_AD Analog to digital conversion complete

#INT_ADOF Analog to digital conversion timeout

#INT_BUSCOL Bus collision

#INT_BUSCOL2 | Bus collision 2 detected

#INT_BUTTON Pushbutton

#INT_CANERR An error has occurred in the CAN module

#INT_CANIRX An invalid message has occurred on the CAN bus

#INT_CANRXO CAN Receive buffer 0 has received a new message

147

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

#INT_CANRX1 CAN Receive buffer 1 has received a new message
#INT_CANTXO CAN Transmit buffer 0 has completed transmission
#INT_CANTX1 CAN Transmit buffer 0 has completed transmission
#INT_CANTX2 CAN Transmit buffer 0 has completed transmission

#INT_CANWAKE

Bus Activity wake-up has occurred on the CAN bus

#INT_CCP1 Capture or Compare on unit 1
#INT_CCP2 Capture or Compare on unit 2
#INT_CCP3 Capture or Compare on unit 3
#INT_CCP4 Capture or Compare on unit 4
#INT_CCP5 Capture or Compare on unit 5
#INT_COMP Comparator detect
#INT_COMPO Comparator 0 detect
#INT_COMP1 Comparator 1 detect
#INT_COMP2 Comparator 2 detect
#INT_CR Cryptographic activity complete
#INT_EEPROM Write complete

#INT_ETH Ethernet module interrupt
#INT_EXT External interrupt

#INT_EXT1 External interrupt #1
#INT_EXT2 External interrupt #2
#INT_EXT3 External interrupt #3
#INT_I2C 12C interrupt (only on 14000)
#INT_IC1 Input Capture #1
#INT_IC2QEI Input Capture 2 / QEI Interrupt
#IC3DR Input Capture 3 / Direction Change Interrupt
#INT_LCD LCD activity

#INT_LOWVOLT

Low voltage detected

#INT_LVD Low voltage detected
#INT_OSC_FAIL | System oscillator failed
#INT_OSCF System oscillator failed

148

PreProcessor

#INT_PMP Parallel Master Port interrupt
#INT_PSP Parallel Slave Port data in
#INT_PWMTB PWM Time Base

#INT_RA Port A any change on A0O_A5

#INT_RB Port B any change on B4-B7

#INT_RC Port C any change on C4-C7
#INT_RDA RS232 receive data available
#INT_RDAO RS232 receive data available in buffer 0
#INT_RDA1 RS232 receive data available in buffer 1
#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTCC Timer 0 (RTCC) overflow

#INT_SPP Streaming Parallel Port Read/Write
#INT_SSP SPI or 12C activity

#INT_SSP2 SPI or 12C activity for Port 2

#INT_TBE RS232 transmit buffer empty
#INT_TBEO RS232 transmit buffer 0 empty
#INT_TBEL1 RS232 transmit buffer 1 empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMERO Timer 0 (RTCC) overflow
#INT_TIMER1 Timer 1 overflow

#INT_TIMER2 Timer 2 overflow

#INT_TIMERS Timer 3 overflow

#INT_TIMERA4 Timer 4 overflow

#INT_TIMERS Timer 5 overflow

#INT_ULPWU Ultra-low power wake up interrupt
#INT_USB Universal Serial Bus activity

Note many more #INT_ options are available on specific devices.

Check the devices .h file for a full list for a given device.

irep] PCD (PIC24/dsPIC devices)

#INT_AC1

Analog comparator 1 output change

#INT_AC2

Analog comparator 2 output change

149

PreProcessor

#INT_AC3 Analog comparator 3 output change
#INT_AC4 Analog comparator 4 output change
#INT_ADC1 ADC1 conversion complete
#INT_ADC2 Analog to digital conversion complete
#INT_ADCPO ADC pair 0 conversion complete
#INT_ADCP1 ADC pair 1 conversion complete
#INT_ADCP2 ADC pair 2 conversion complete
#INT_ADCP3 ADC pair 3 conversion complete
#INT_ADCP4 ADC pair 4 conversion complete
#INT_ADCP5 ADC pair 5 conversion complete
#INT_ADDRERR | Address error trap

#INT_C1RX ECAN1 Receive Data Ready
#INT_C1TX ECAN1 Transmit Data Request
#INT_C2RX ECAN2 Receive Data Ready
#INT_C2TX ECAN2 Transmit Data Request
#INT_CAN1 CAN 1 Combined Interrupt Request
#INT_CAN2 CAN 2 Combined Interrupt Request
#INT_CNI Input change natification interrupt
#INT_COMP Comparator event

#INT_CRC Cyclic redundancy check generator
#INT_DCI DCI transfer done

#INT_DCIE DCE error

#INT_DMAO DMA channel 0 transfer complete
#INT_DMA1 DMA channel 1 transfer complete
#INT_DMA2 DMA channel 2 transfer complete
#INT_DMA3 DMA channel 3 transfer complete
#INT_DMA4 DMA channel 4 transfer complete
#INT_DMAS DMA channel 5 transfer complete
#INT_DMAG DMA channel 6 transfer complete
#INT_DMAY DMA channel 7 transfer complete
#INT_DMAERR DMAC error trap

#INT_EEPROM Write complete

#INT_EX1 External Interrupt 1

#INT_EX4 External Interrupt 4

#INT_EXTO External Interrupt O

#INT_EXT1 External interrupt #1

#INT_EXT2 External interrupt #2

150

PreProcessor

#INT_EXT3 External interrupt #3
#INT_EXT4 External interrupt #4
#INT_FAULTA PWM Fault A
#INT_FAULTA2 PWM Fault A 2
#INT_FAULTB PWM Fault B
#INT_IC1 Input Capture #1
#INT_IC2 Input Capture #2
#INT_IC3 Input Capture #3
#INT_IC4 Input Capture #4
#INT_ICS Input Capture #5
#INT_IC6 Input Capture #6
#INT_IC7 Input Capture #7
#INT_IC8 Input Capture #8

#INT_LOWVOLT

Low voltage detected

#INT_LVD

Low voltage detected

#INT_MATHERR

Arithmetic error trap

#INT_MI2C Master 12C activity

#INT_MI2C2 Master2 12C activity
#INT_OC1 Output Compare #1
#INT_OC2 Output Compare #2
#INT_OC3 Output Compare #3
#INT_OC4 Output Compare #4
#INT_OC5 Output Compare #5
#INT_OC6 Output Compare #6
#INT_OC7 Output Compare #7
#INT_OCS8 Output Compare #8

#INT_OSC_FAIL

System oscillator failed

#INT_PMP Parallel master port

#INT_PMP2 Parallel master port 2

#INT_PWM1 PWM generator 1 time based interrupt
#INT_PWM2 PWM generator 2 time based interrupt
#INT_PWM3 PWM generator 3 time based interrupt
#INT_PWM4 PWM generator 4 time based interrupt

#INT_PWMSEM

PWM special event trigger

#INT_QEI QEI position counter compare
#INT_RDA RS232 receive data available
#INT_RDA2 RS232 receive data available in buffer 2

151

PreProcessor

#INT_RTC Real - Time Clock/Calendar
#INT_SI2C Slave 12C activity
#INT_SI2C2 Slave2 12C activity
#INT_SPI1 SPI1 Transfer Done
#INT_SPI1E SPI1E Transfer Done
#INT_SPI2 SPI2 Transfer Done
#INT_SPI2E SPI2 Error

#INT_SPIE SPI Error
#INT_STACKERR | Stack Error

#INT_TBE RS232 transmit buffer empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMER1 Timer 1 overflow
#INT_TIMER2 Timer 2 overflow
#INT_TIMER3 Timer 3 overflow
#INT_TIMER4 Timer 4 overflow
#INT_TIMERS Timer 5 overflow
#INT_TIMERG Timer 6 overflow
#INT_TIMER7 Timer 7 overflow
#INT_TIMERS8 Timer 8 overflow
#INT_TIMER9 Timer 9 overflow
#INT_UARTI1E UART1 error
#INT_UART2E UART?2 error

#INT_AUX Auxiliary memory ISR
Elements:

irco] NOCLEAR, LEVEL=n, HIGH, FAST, ALT, CLR_FIRST

Description:

These directives specify the following function is an interrupt function. Interrupt functions
may not have any parameters. Not all directives may be used with all parts. See the
devices .h file for all valid interrupts for the part or in PCW use the pull down VIEW | Valid
Ints

The compiler will generate code to jump to the function when the interrupt is detected. It
will generate code to save and restore the machine state, and will clear the interrupt
flag. To prevent the flag from being cleared add NOCLEAR after the #INT_xxxx. The
application program must call ENABLE_INTERRUPTS(INT_xxxXx) to initially activate the
interrupt along with the ENABLE_INTERRUPTS(GLOBAL) to enable interrupts.

152

PreProcessor

The keywords HIGH and FAST may be used with the PCH compiler to mark an interrupt
as high priority. A high-priority interrupt can interrupt another interrupt handler. An
interrupt marked FAST is performed without saving or restoring any registers. This should
be used as little as possible and save any registers that need to be saved manually.
Interrupts marked HIGH can be used normally. See #DEVICE for information on building
with high-priority interrupts.

rreo] An interrupt marked FAST uses the shadow feature to save registers. Only one
interrupt may be marked fast. Any registers used in the FAST interrupt beyond the
shadow registers is the responsibility of the user to save and restore.

Level=n - specifies the level of the interrupt. Higher numbers are a higher priority.

Enable_interrupts - specifies the levels that are enabled. The default is level 0 and level
7 is never disabled. High is the same as level = 7.

A summary of the different kinds of dsPIC/PIC24 interrupts:

#INT_xxxx Normal (low priority) interrupt - Compiler saves/restores key registers.
This interrupt will not interrupt any interrupt in progress.

#INT_xxxx FAST - Compiler does a FAST save/restore of key registers. Only one is
allowed in a program.

#INT_xxxxLevel=3 - Interrupt is enabled when levels 3 and below are enabled.

#INT_GLOBAL - Compiler generates no interrupt code. User function is located at
address 8 for user interrupt handling.

#INT_xxxx ALT - Interrupt is placed in Alternate Interrupt Vector instead of Default
Interrupt Vector.

A summary of the different kinds of PIC18 interrupts:

#INT_xxxx - Normal (low priority) interrupt. Compiler saves/restores key registers. This
interrupt will not interrupt any interrupt in progress.

#INT_xxxx FAST - High priority interrupt. Compiler DOES NOT save/restore key
registers. This interrupt will interrupt any normal interrupt in progress. Only one
is allowed in a program.

#INT_xxxx HIGH - High priority interrupt. Compiler saves/restores key registers. This
interrupt will interrupt any normal interrupt in progress.

#INT_xxxx NOCLEAR - The compiler will not clear the interrupt.

#INT_xxx CLEAR_FIRST - The compiler will clear the interrupt at the beginning of the
ISR instead of the end. The user code in the function should call clear_interrput(
) to clear the interrupt in this case.

153

PreProcessor
#INT_GLOBAL - Compiler generates no interrupt code. User function is located at
address 8 for user interrupt handling.

Some interrupts shown in the devices header file are only for the enable/disable
interrupts. For example, INT_RB3 may be used in enable/interrupts to enable pin B3.
However, the interrupt handler is #INT_RB.

Similarly INT_EXT_L2H sets the interrupt edge to falling and the handler is #INT_EXT.

Example Files:
ex_sisr.c and ex_stwt.c

Examples:
#int_ad
adc_handler(){
adc_active=FALSE;

}

#int_rtcc noclear

isr({

[PCD]

#int_ad

adc_handler(){
adc_active=FALSE;

}

#int_timerl noclear

isr({

See Also:
enable interrupts(), disable interrupts(), #INT DEFAULT, #INT GLOBAL, #PRIORITY

#int default

Syntax:
#int_default

Elements:
None

154

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

Description:

The following function will be called if the device triggers an interrupt and none of the
interrupt flags are set. If an interrupt is flagged, but is not the one triggered, the
#INT_DEFAULT function will get called.

reo] A #INT_xxx handler has not been defined for the interrupt.

Examples:
#int_default
default_isr(){
printf("unexplained interrupt \r\in");

}

See Also:
#INT xxxX, #INT global

#int global

Syntax:
#int_global

Elements:
None

Description:

This directive causes the following function to replace the compiler interrupt

dispatcher. The function is normally not required and should be used with great

caution. When used, the compiler does not generate start-up code or clean-up code, and
does not save the registers.

Example Files:
ex_glint.c

Examples:
#int_global
isr(){ /IWill be located at location 4 for PIC16 devices
#asm
bsfisr_flag
retfie
#endasm

}

See Also:
#HINT XXXX

155

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

line

Syntax:
__line__

Elements:
None

Description:
The pre-processor identifier is replaced at compile time with the line number of the file
being compiled.

Example Files:
assert.h

Examples:
ifindex>MAX_ENTRIES)
printf("Too many entries, source file:"__FILE__ "at line"
__LINE__"\r\n");

See Also:
file

#list

Syntax:
#list

Elements:
None

Description:
#list begins inserting or resumes inserting source lines into the .Ist file after a #NOLIST.

Example Files:
16c74.h

Examples:
#NOLIST //Do not clutter up the list file
#include<cdriver.h>
#LIST

See Also:
#NOLIST

156

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

#line

Syntax:
#line number file name

Elements:
Number - is non-negative decimal integer. File name is optional.

Description:
The C pre-processor informs the C Compiler of the location in your source code. This
code is simply used to change the value of _ LINE__and __ FILE__ variable.

Examples:
void main(){
#line 10 lIspecifies the line number that should be reported
[[for the following line of input

#line 7"hello.c" //line number in the source file hello.c and it sets
/Ithe line 7 as current li ne and hello.c as current
file

#locate

Syntax:
#locate id=x

Elements:
id - is a C variable
X - is a constant memory address

Description:

#LOCATE allocates a C variable to a specified address. If the C variable was not
previously defined, it will be defined as an INT8.

A special form of this directive may be used to locate all A functions local variables
starting at a fixed location.

Use: #LOCATE Auto = address

This directive will place the indirected C variable at the requested address.

Example Files:
ex_glint.c

157

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
/[This will locate the float variable at 50 - 53
/land C will not use this memory for other
/Ivariables automatically located.
float x:

#locate x=0x50
[PCD]
float x:

#locate x=0x800

See Also:
#byte, #bit, #reserve, #word, Named Regqisters, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

#module

Syntax:
#module

Elements:
None

Description:

All global symbols created from the #MODULE to the end of the file will only be visible
within that same block of code (and files #INCLUDE within that block). This may be used
to limit the scope of global variables and functions within include files. This directive also
applies to pre-processor #defines.

Note: The extern and static data qualifiers can also be used to denote scope of variables
and functions as in the standard C methodology. #MODULE does add some benefits in
that pre-processor #DEFINE can be given scope, which cannot normally be done in
standard C methodology.

Examples:

int GetCount(void);

void SetCount(int newCount);

#MODULE

int g_count;

#define G_COUNT_MAX 100

int GetCount(void) {return(g_count);}

void SetCount(int newCount) {
if (newCount>G_COUNT_MAX)

newCount=G_ COUNT_MAX;

g_count=newCount;

}
/*

158

PreProcessor

the functions GetCount() and SetCount() have global scope, but the
variable g_count and the #define G_COUNT_MAX only has scope to this
file.

*/

See Also:
#EXPORT, Invoking the Command Line Compiler, Multiple Compilation Unit

#nolist

Syntax:
#nolist

Elements:
None

Description:
Stops inserting source lines into the .lIst file (until a #LST).

Example Files:
16c74.h

Examples:
#NOLIST //Do not clutter up the list list
#include<cdriver.h>
#LIST

See Also:
#LIST

Elements:
X - is the clock’s speed and can be 1 Hz to 100 Mhz.

Description:
Used instead of the #use delay(clock=x)

Examples:
#include<18F4520.h>
#device ICD=TRUE
#0OCS 20 Mhz

159

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

#use rs232(debugger)
void(}{
i“ ’
See Also:
#USE DELAY

#opt
Syntax:
#opt n

Elements:

PreProcessor

All Devices: n is the optimization level 1-9 or by using the word "compress" for PIC18

and Enhanced PIC16 families.
ireo] All Devices: n is the optimization level 0-9

Description:

The optimization level is set with this directive. This setting applies to the entire program
and may appear anywhere in the file. The default is 9 for normal. When Compress is
specified the optimization is set to an extreme level that causes a very tight ROM image,
the code is optimized for space, not speed. Debugging with this level my be more

difficult.

Examples:
#opts

#org
Syntax:
#ORG start, end
or
#0ORG segment
or
#ORG start, end { }
or
#ORG start, end auto=0
#ORG start,end DEFAULT
or
#ORG DEFAULT

Elements:

start - is the first ROM location (word address) to use.

160

PreProcessor

end - is the last ROM location.

segment - is the start ROM location from a previous #ORG

Description:

This directive will fix the following function, constant or ROM declaration into a specific
ROM area. End may be omitted if a segment was previously defined if you only want to
add another function to the segment.

Follow the ORG with a { } to only reserve the area with nothing inserted by the compiler.

The RAM for a ORG'd function may be reset to low memory so the local variables and
scratch variables are placed in low memory. This should only be used if the ORG'd
function will not return to the caller. The RAM used will overlap the RAM of the main
program. Add a AUTO=0 at the end of the #ORG line.

If the keyword DEFAULT is used then this address range is used for all functions user
and compiler generated from this point in the file until a #ORG DEFAULT is encountered
(no address range). If a compiler function is called from the generated code while
DEFAULT is in effect the compiler generates a new version of the function within the
specified address range.

#0ORG may be used to locate data in ROM. Because CONSTANT are implemented as
functions the #ORG should proceed the CONSTANT and needs a start and end address.
For a ROM declaration only the start address should be specified.

When linking multiple compilation units be aware this directive applies to the final object
file. It is an error if any #ORG overlaps between files unless the #ORG matches exactly.

Example Files:
loader.c

Examples:
#0ORG 0x1E00, OX1FFF
MyFunc() {

}

#ORG 0x1E00
Anotherfunc(){

}

#ORG 0x800, 0x820 {} /INothing will be at 800 - 820

/[This function located at 1E00

/I This will be somewhere 1E00 - 1F00

#ORG 0x1B80
ROM int32 seridl_NO =12345;

#0ORG 0x1C00, Ox1COF /[This 1D will be at 1C00
161

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor

CHAR CONST ID[10}= {"123456789"}; /[Note some extra code will

/lproceed the 123456789

#0ORG 0x1F00, Ox1FFO
Void loader (){

}

See Also:

#ROM

#pin select

Syntax:

#PIN_SELECT function=pin_xx

Elements:
function - is the Microchip defined pin function name, such as:

=A =4 =4 -4 -9

U1RX(UART1 receive)
INT1(external interrupt 1)
T2CK (timer 2 clock)

IC1 (input capture 1)
OC1 (output capture 1)

PCB, PCM, PCH

INT1 External Interrupt 1

INT2 External Interrupt 2

INT3 External Interrupt 3

TOCK Timer0 External Clock

T3CK Timer3 External Clock

CCP1 Input Capture 1

CCP2 Input Capture 2

T1G Timerl Gate Input

T3G Timer3 Gate Input

U2RX EUSART2 Asynchronous Receive/Synchronous Receive (also named: RX2)

U2CK EUSART2 Asynchronous Clock Input

SDI2 SPI2 Data Input

SCK2IN SPI2 Clock Input

SS2IN SPI2 Slave Select Input

FLTO PWM Fault Input

TOCKI Timer0 External Clock Input

T3CKI Timer3 External Clock Input

RX2 EUSART2 Asynchronous Transmit/Asynchronous Clock Output (also named:
TX2)

NULL NULL

162

PreProcessor

ClouT Comparator 1 Output

C20UT Comparator 2 Output

u2TXx EUSART2 Asynchronous Transmit/ Asynchronous Clock Output (also named:
TX2)

uz2DT EUSART2 Synchronous Transmit (also named: DT2)

SDO2 SPI2 Data Output

SCK20UT SPIC2 Clock Output

SS20UT SPI2 Slave Select Output

ULPOUT Ultra Low-Power Wake-Up Event

P1A ECCP1 Compare or PWM Output Channel A

P1B ECCP1 Enhanced PWM Output, Channel B

P1C ECCP1 Enhanced PWM Output, Channel C

P1D ECCP1 Enhanced PWM Output, Channel D

P2A ECCP2 Compare or PWM Output Channel A

P2B ECCP2 Enhanced PWM Output, Channel B

P2C ECCP2 Enhanced PWM Output, Channel C

P2D ECCP1 Enhanced PWM Output, Channel D

TX2 EUSART2 Asynchronous Transmit/Asynchronous Clock Output (also named:
TX2)

DT2 EUSART?2 Synchronous Transmit (also named: U2DT)

SCK2 SPI2 Clock Output

SSDMA SPI DMA Slave Select

pin_xx is the CCS provided pin definition. For example: PIN_C7, PIN_BO, PIN_D3, etc.

PCD (PIC24/dsPIC devices)

NULL NULL

C10UT Comparator 1 Output
C20UT Comparator 2 Output
C30UT Comparator 3 Output
C40UT Comparator 4 Output
UlTX UART1 Transmit

UL1RTS UART1 Request to Send
U2TX UART2 Transmit

U2RTS UART2 Request to Send
U3TX UART3 Transmit

U3RTS UART3 Request to Send
U4TX UART4 Transmit

U4RTS UART4 Request to Send
SDO1 SPI1 Data Output
SCK10UT SPI1 Clock Output
SS10UT SPI1 Slave Select Output
SDO2 SPI2 Data Output
SCK20UT SPI2 Clock Output
SS20UT SPI2 Slave Select Output
SDO3 SPI3 Data Output

163

PreProcessor

SCK30UT SPI3 Clock Output

SS30UT SPI3 Slave Select Output
SDO4 SPI4 Data Output
SCK40UT SPI4 Clock Output

SS40UT SPI4 Slave Select Output
OC1 Output Compare 1

OC2 Output Compare 2

OC3 Output Compare 3

OC4 Output Compare 4

OC5 Output Compare 5

OC6 Output Compare 6

OC7 Output Compare 7

OC8 Output Compare 8

OC9 Output Compare 9

OC10 Output Compare 10

OC11 Output Compare 11

OC12 Output Compare 12

OC13 Output Compare 13

OC14 Output Compare 14

0OC15 Output Compare 15

OC16 Output Compare 16

C1TX CANL1 Transmit

C2TX CAN2 Transmit

CSDO DCI Serial Data Output
CSCKOUT DCI Serial Clock Output
COFSOUT DCI Frame Sync Output
UPDN1 QEI1 Direction Status Output
UPDN2 QEI2 Direction Status Output
CTPLS CTMU Output Pulse
SYNCO1 PWM Synchronization Output Signal
SYNCO2 PWM Secondary Synchronization Output Signal
REFCLKO REFCLK Output Signal
CMP1 Analog Comparator Output 1
CMP2 Analog Comparator Output 2
CMP3 Analog Comparator Output 3
CMP4 Analog Comparator Output 4
PWM4H PWM4 High Output

PWMA4L PWM4 Low Output
QEI1LCCMP QEI1 Counter Comparator Output
QEI2CCMP QEI2 Counter Comparator Output
MDOUT DSM Modulator Output
DCIDO DCI Serial Data Output
DCISCKOUT | DCI Serial Clock Output
DCIFSOUT DCI Frame Sync Output
INT1 External Interrupt 1 Input

164

PreProcessor

INT2 External Interrupt 2 Input
INT3 External Interrupt 3 Input
INT4 External Interrupt 4 Input
T1CK Timer 1 External Clock Input
T2CK Timer 2 External Clock Input
T3CK Timer 3 External Clock Input
TACK Timer 4 External Clock Input
T5CK Timer 5 External Clock Input
T6CK Timer 6 External Clock Input
T7CK Timer 7 External Clock Input
T8CK Timer 8 External Clock Input
TICK Timer 9 External Clock Input
IC1 Input Capture 1

IC2 Input Capture 2

IC3 Input Capture 3

IC4 Input Capture 4

IC5 Input Capture 5

IC6 Input Capture 6

IC7 Input Capture 7

IC8 Input Capture 8

IC9 Input Capture 9

IC10 Input Capture 10

IC11 Input Capture 11

IC12 Input Capture 12

IC13 Input Capture 13

IC14 Input Capture 14

IC15 Input Capture 15

IC16 Input Capture 16

C1RX CAN1 Receive

C2RX CAN2 Receive

OCFA Output Compare Fault A Input
OCFB Output Compare Fault B Input
OCFC Output Compare Fault C Input
U1RX UART1 Receive

U1CTS UART1 Clear to Send

U2RX UART?2 Receive

U2CTS UART2 Clear to Send

U3RX UART3 Receive

U3CTS UART3 Clear to Send

U4RX UART4 Receive

U4CTS UARTA4 Clear to Send

SDI1 SPI1 Data Input

SCK1IN SPI1 Clock Input

SS1IN SPI1 Slave Select Input
SDI2 SPI2 Data Input

165

PreProcessor

SCK2IN SPI2 Clock Input

SS2IN SPI2 Slave Select Input

SDI3 SPI3 Data Input

SCK3IN SPI3 Clock Input

SS3IN SPI3 Slave Select Input

SDl4 SPI4 Data Input

SCKA4IN SPI4 Clock Input

SS4IN SPI4 Slave Select Input

CSDI DCI Serial Data Input

CSCK DCI Serial Clock Input

COFS DCI Frame Sync Input

FLTA1 PWM1 Fault Input

FLTA2 PWM2 Fault Input

QEA1l QEI1 Phase A Input

QEA2 QEI2 Phase A Input

QEB1 QEI1 Phase B Input

QEB2 QEI2 Phase B Input

INDX1 QEI1 Index Input

INDX2 QEI2 Index Input

HOME1 QEI1 Home Input

HOME2 QEI2 Home Input

FLT1 PWM1 Fault Input

FLT2 PWM2 Fault Input

FLT3 PWM3 Fault Input

FLT4 PWM4 Fault Input

FLT5 PWMS5 Fault Input

FLT6 PWM6 Fault Input

FLT7 PWM7 Fault Input

FLT8 PWMS8 Fault Input

SYNCI1 PWM Synchronization Input 1

SYNCI2 PWM Synchronization Input 2

DCIDI DCI Serial Data Input

DCISCKIN DCI Serial Clock Input

DCIFSIN DCI Frame Sync Input

DTCMP1 PWM Dead Time Compensation 1 Input

DTCMP2 PWM Dead Time Compensation 2 Input

DTCMP3 PWM Dead Time Compensation 3 Input

DTCMP4 PWM Dead Time Compensation 4 Input

DTCMP5 PWM Dead Time Compensation 5 Input

DTCMP6 PWM Dead Time Compensation 6 Input

DTCMP7 PWM Dead Time Compensation 7 Input
Description:

When using PPS chips a #PIN_SELECT must be appear before these peripherals can be
used or referenced.

166

PreProcessor

irepjON devices that contain Peripheral Pin Select (PPS), this allows the programmer to
define which pin a peripheral is mapped to.

Examples:
#pin_select ULTX=PIN_C6
#pin_select ULRX=PIN_C7
#pin_select INT1=PIN_BO

See Also:

pin_select()

pcb

Syntax:
__pcb__

Elements:
None

Description:
The PCB compiler defines this pre-processor identifier. It may be used to determine if the
PCB is doing the compilation.

Example Files:
ex_sgw.c

Examples:
#ifdef __pcb__
#device PIC16C54
#endif

See Also:
PCM _, PCH , PCD

pcd

Syntax:
__pcd__

Elements:
None

167

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:
The PCD compiler defines this pre-processor identifier. It may be used to determine if the
PCD is doing the compilation.

Example Files:
ex_sqgw.c

Examples:
#ifdef __pcd__
#device dsPIC33FJ256MC710
#endif

See Also:
PCB _, PCM_, PCH

pcm

Syntax:
__pcm__

Elements:
None

Description:
The PCM compiler defines this pre-processor identifier. It may be used to determine if the
PCM is doing the compilation.

Example Files:
eX_Sgw.c

Examples:
#ifdef __pcm__
#device PIC16C71
#endif

See Also:
PCB , PCH , PCD

pch

Syntax:
__pch__

168

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:
None

Description:
The PCH compiler defines this pre-processor identifier. It may be used to determine if the
PCH is doing the compilation.

Example Files:
ex_sqgw.c

Examples:
#ifdef __pch__
#device PIC 18F452
#endif

See Also:
PCM , PCM_, PCD

#pragma

Syntax:
#pragma cmd

Elements:
cmd - is any valid pre-processor directive.

Description:

This directive is used to maintain compatibility between C compilers. This compiler will
accept this directive before any other pre-processor command. In no case does this
compiler require this directive.

Example Files:
ex_cust.c

Examples:
#pragma device PIC16C54

See Also:

#priority
Syntax:
#priority ints

169

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:
ints - is a list of one or more interrupts separated by commas.

exports - makes the functions generated from this directive available to other
compilation units within the link.

Description:

The priority directive may be used to set the interrupt priority. The highest priority items
are first in the list. If an interrupt is active it is never interrupted. If two interrupts occur at
around the same time then the higher one in this list will be serviced first. When linking
multiple compilation units be aware only the one in the last compilation unit is used.

Examples:
#priority rtc_c.rb

See Also:
#HINT XXXX

#profile

Syntax:
#profile options

Elements:
options - may be one of the following:
functions - Profiles the start/end of functions and all profileout() messages.

functions, parameters - Profiles the start/end of functions, parameters sent to
functions, and all profileout() messages.

profileout - Only profile profileout() messages.
paths - Profiles every branch code.
off - Disable all code profiling.

on - Re-enables the code profiling that was previously disabled with a #profile off
command. This will use the last options before disabled with the off
command.

Description:

Large programs on the microcontroller may generate lots of profile data, which may make
it difficult to debug or follow. By using #profile the user can dynamically control which
points of the program are being profiled, and limit data to what is relevant to the user.

Example Files:

ex_profile.c
170

Examples:
#profile off
void BigFunction(void)

{

/IBigFunction code goes here since #profile off was called above.
/INo profiling will happen even for the functions called by

BigFunction().

#profile on

See Also:

#use profile(), profileout(), Code Profile overview

#recursive

Syntax:
#recursive

Elements:
None

Description:

PreProcessor

Directs the compiler that the procedure immediately following the directive will be

recursive.

Examples:
#recursive
int factorial(int num){
if(num <=1)
return 1;
return num * factorial(num -1);

}

#reserve

Syntax:

#reserve address

#reserve address, address, address
#reserve start:end

Elements:
address - is a RAM address.

171

PreProcessor

start - is the first address.

end - is the last address.

Description:

This directive allows RAM locations to be reserved from use by the compiler. #/RESERVE
must appear after the #DEVICE otherwise it will have no effect. When linking multiple
compilation units be aware this directive applies to the final object file.

Example Files:
ex_cust.c

Examples:
#device PIC16C74
#reserve 0x60:0X6f

[PCD]
#device dsPIC30F2010
#reserve 0x800:0x80B3

See Also:
#ORG

#rom

Syntax:
#rom address = {list}

Elements:
address - is the same address used in the device datasheet (Byte for PIC18 and Word
for all others)

list - is a list of words separated by commas.
Description:

Allows the insertion of data into the .HEX file. For example, this may be used to program
the '84 data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the directive creates
a segment for the data, resulting in an error if a #ORG is over the same area. The #ROM
data will also be counted as used program memory space.

The type option indicates the type of each item, the default is 16 bits. Using char as the
type treats each item as 7 bits packing 2 chars into every PCM 14-bit word.

172

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

When linking multiple compilation units be aware this directive applies to the final object
file.

Some special forms of this directive may be used for verifying program memory:
#ROM address = checksum - This will put a value at address such that the entire
program memory will sum to 0x1248.

#ROM address = crc16 - This will put a value at address that is a crc16 of all the
program memory except the specified address.

#ROM address = crcl16(start, end) - This will put a value at address that is a crc16
of all the program memory from start to end.

#ROM address = crc8 - This will put a value at address that is a crc16 of all the
program memory except the specified address.

Example Files:
ex_glint.c

Examples:
#rom getenv("EEPROM_ADDRESS")={1,2,3,4,5,6,7,8}
#rom int8 0x1000={"(c)CCS,2010"}

See Also:
#ORG

#separate

Syntax:
#separate
[Pco] #Separate options

Elements:
[pcp] Options - options include:
STDCALL - Use the standard Microchip calling method, as used in C30. W0-W7
is used for function parameters, rest of the working registers are not
touched, remaining function parameters are pushed onto the stack.

ARG=Wx:Wy - Use the working registers Wx to Wy to hold function parameters.
Any remaining function parameters are pushed onto the stack.

DND=Wx:WYy - Function will not change Wx to Wy working registers.

AVOID=Wx:Wy 1 Function will not use Wx to Wy working registers for function
parameters.

NO RETURN - Prevents the compiler generated return at the end of a function.

173

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Use STDCALL with the ARG, DND or AVOID parameters.

If one of these options is not specified, the compiler will determine the best configuration,
and will usually not use the stack for function parameters (usually scratch space is
allocated for parameters).

Description:

Directs the compiler that the procedure immediately following the directive is to be
implemented separately. This is useful to prevent the compiler from automatically
making a procedure inline. This will save ROM space, but it does use more stack space.
The compiler will make all procedures marked separate, separated as requested, even if
there is not enough stack space to execute.

Example Files:
ex_cust.c

Examples:
#separate
swapbyte (int*a, int*b){
intt;
t=*a
*a:*b;
*b=t;
[PCD]
#separ ate ARG=WO:W7 AVOID=W8:W15 DND=W8:W15
swapbyte (int*a, int*b){
intt;
t=*a
*a:*b;
*b=t;
}

See Also:
#INLINE

#serialize

Syntax:
#SERIALIZE(id=xxx, next="x" | file="filename.txt" " | listfile="filename.txt",
"prompt="text", log="filename.txt") -

#SERIALIZE(dataee=x, binary=x, next="x" | file="filename.txt" |
listfile="filename.txt",
prompt="text", log="filename.txt")

174

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Elements:
id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or char array.

Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to address specified.
string=x - The integer x is the number of bytes to be written to address specified.
unicode=n - If nis a 0, the string format is normal unicode. For n>0 n indicates the
string
number in a USB descriptor.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial number from, and this file
is updated by the ICD programmer. It is assumed this is a one line file with the
serial number. The programmer will increment the serial number.

listfile="filename.txt" - The file x is used to read the initial serial number from, and this
file is updated by the ICD programmer. It is assumed this is a file one serial
number per line. The programmer will read the first line then delete that line from
the file.

next="x" - The serial number X is used for the first load, then the hex file is updated to
increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a serial number on each load.
If used with one of the above three options then the default value the user may
use is picked according to the above rules.

log=xxx - A file may optionally be specified to keep a log of the date, time, hex file name
and serial number each time the part is programmed. If no id=xxx is specified
then this may be used as a simple log of all loads of the hex file.

Description:
Assists in making serial numbers easier to implement when working with CCS ICD units.
Comments are inserted into the hex file that the ICD software interprets.

Examples:
/IPrompt user for serial number to be placed
//at address of serialNumA
/IDefault serial number = 200int8int8 const serialNumA=100;
[I#serialize(id=serialNumA,next="200",prompt="Enter the serial number")

/ /Adds serial number log in seriallog.txt
[H#serialize(id=serialNumA,next="200",prompt="Enter the serial number",

175

PreProcessor

/Nlog="seriallog.txt")

/IRetrieves serial number from serials.txt
Il#serialize(id=serialNumaA listfile="serials.txt")

/IPlace serial numb er at EEPROM address 0, reserving 1 byte
[[#serialize(dataee=0,binary=1,next="45",prompt="Put in Serial number")

/IPlace string serial number at EEPROM address 0, reserving 2 bytes
l#serialize(dataee=0, string=2,next="AB",prompt="Put in Serial
number")

#task
(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The
#TASK directive is needed just before each RTOS task to enable the compiler to tell
which functions are RTOS tasks. An RTOS task cannot be called directly like a regular
function can.

Syntax:
#task (options)

Elements:
options are separated by comma and may be:
rate=time - Where time is a number followed by s, ms, us, or ns. This specifies how
often the task will execute.

max=time - Where time is a number followed by s, ms, us, or ns. This specifies the
budgeted time for this task.

gueue=bytes - Specifies how many bytes to allocate for this task's incoming
messages. The default value is 0.

enabled=value - Specifies whether a task is enabled or disabled by rtos_run(). True
for enabled, false for disabled. The default value is enabled.

Description:
This directive tells the compiler that the following function is an RTOS task.

The rate option is used to specify how often the task should execute. This must be a
multiple of the minor_cycle option if one is specified in the #USE RTOS directive.

The max option is used to specify how much processor time a task will use in one
execution of the task. The time specified in max must be equal to or less than the time

176

PreProcessor

specified in the minor_cycle option of the #USE RTOS directive before the project will
compile successfully. The compiler does not have a way to enforce this limit on processor
time, so a programmer must be careful with how much processor time a task uses for
execution. This option does not need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The default queue value is
0.

Examples:
#task(rate=1s, max=20ms, queue=5)

See Also:
#USE RTOS

time
Syntax:
__time__

Elements:
None

Description:
This pre-processor identifier is replaced at compile time with the time of the compile in
the form: "hh:mm:ss"

Examples:
printf("Software was compiled on");

printf(__TIME_);

#todo
Syntax:
#todo text

Elements:
text is free text

Description:
This directive documents in the source code items that the developer needs to work on.

Example Files:
None

177

PreProcessor

Examples:
#todo Verify the math works in convert_adc_values

See Also:
PCW Overview

#type
Syntax:
#TYPE standard-type=size

#TYPE default=area
#TYPE unsigned

#TYPE signed

rep] #TYPE char=signed
ireo] #TYPE char=unsigned
ipeo] #TYPE ARG=Wx:Wy
irco] #TYPE DND=Wx:Wy
ipeo] #TYPE AVOID=Wx:Wy
ireo] #TYPE RECURSIVE
ipco] #TYPE CLASSIC

Elements:

standard-type - is one of the C keywords short, int, long, or default

rcp) Standard-type - is one of the C keywords short, int, long, float, or double
size -is 1,8,16, or 32

[pcp] Size - is 1,8,16, 48, or 64

area - is a memory region defined before the #TYPE using the addressmod directive
rep] WX: WY - is a range of working registers (example: W0, W1, W15, etc)

Description:

By default the compiler treats SHORT as one bit / [pcp) 8 bits , INT as 8 / [eepj 16 bits, and
LONG as 16 / [rep) 32 bits. The traditional C convention is to have INT defined as the
most efficient size for the target processor. This is why it is 8-bit on PIC devices or [pcp]
16-bits on dsPIC/PIC24 ® . In order to help with code compatibility a #TYPE directive
may be used to allow these types to be changed. #TYPE can redefine these keywords.

178

PreProcessor

Note that the commas are optional. Since #TYPE may render some sizes inaccessible
(like a one bit int in the above) four keywords representing the four ints may always be
used: INT1, INT8, INT16, and INT32.

Note: CCS example programs and include files may not work correctly when using
#TYPE in the program.

irep] Classic will set the type sizes to be compatible with CCS PIC programs.

This directive may also be used to change the default RAM area used for variable
storage. This is done by specifying default=area where area is a addressmod address
space.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the default
data type.

irep] The ARG parameter tells the compiler that all functions can use those working
registers to receive parameters. The DND parameters tells the compiler that all functions
should not change those working registers (not use them for scratch space). The AVOID
parameter tells the compiler to not use those working registers for passing variables to
functions. If you are using recursive functions, then it will use the stack for passing
variables when there is not enough working registers to hold variables; if you are not
using recursive functions, the compiler will allocate scratch space for holding variables if
there is not enough working registers. #SEPARATE can be used to set these parameters
on an individual basis.

ircp] The RECURSIVE option tells the compiler that ALL functions can be recursive.
#RECURSIVE can also be used to assign this status on an individual basis.

Example Files:
ex_cust.c

Examples:
#TYPE SHORT=8, INT= 16, LONG= 32

#TYPE default=area

addressmod (user_ram_block, 0x100, Ox1FF);

#type default= user_ram_block /[all variable declarations
/l'in this area will be in

/I 0x100 - Ox1FF

#type default= Il restores memory allocation
179

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

/I back to normal
#TYPE SIGNED
void main()
int variablel; /l variable1 can only take values from -128to

127

[PCD]
#TYPE SHORT=1, INT=8, LONG=16, FLOAT=48

#TYPE default=area

addressmod (user_ram_block, 0x100, Ox1FF);

#type default=user_ram_ block // all variable declarations
/l'in this area will be in

/I 0x100 - Ox1FF

#type default= /l restores memory allocation
/I back to normal

#TYPE SI GNED
#TYPE RECURSIVE
#TYPE ARG=WO:W7

#TYPE AVOID=W8:W15
#TYPE DND=W8:W15

void main()

int variablel; /l variable1 can only take values from -128 to
127

#undef

Syntax:
#undef id

Elements:
id - is a pre-processor id defined via #DEFINE

180

PreProcessor

Description:
The specified pre-processor ID will no longer have meaning to the pre-processor.

Examples:
#if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif

See Also:
#DEFINE

unicode

Syntax:
__unicode(constant-string)

Elements:
Unicode format string

Description:
This macro will convert a standard ASCII string to a Unicode format string by inserting a
\000 after each character and removing the normal C string terminator. For example:
_unicode("ABCD")
will return: ~ "A\ 00B\ 000C\ 000D" (8 bytes total with the terminator)

Since the normal C terminator is not used for these strings you need to do one of the following for
variable length strings:
string = _unicode(KEYWORD) "\ 000\ 000"
OR
string = _unicode(KEYWORD);
string_size = sizeof(_unicode(KEYWORD));

Example Files:
usb_desc hid.h

Examples:
#define USB_DESC_STRING_TYPE 3

#define USB_STRING(X) (sizeof(_unicode(x))+2), USB_DESC_STRING_TYPE,

__unicode(x)

#define USB_ENGLISH_S TRING 4,USB_DESC_STRING_TYPE,0x09,0x04
/IMicrosoft defined for US

English

char const USB_STRING_DESCI]=[

181

PreProcessor

USB_ENGLISH_STRING;

USB_STRING("CCS");

USB_STRING("CCS HID DEMO")
k

#use capture

Syntax:
#use capture (options)

Elements:
ICx/CCPx - Which CCP/Input Capture module to us.

INPUT = PIN_xx - Specifies which pin to use. Useful for device with remappable pins,
this will cause compiler to automatically assign pin to peripheral.

TIMER=x - Specifies the timer to use with capture unit. If not specified default to timer 1
for PCM and PCH compilers and timer 3 for PCD compiler.

TICK=x - The tick time to setup the timer to. If not specified it will be set to fastest as
possible or if same timer was already setup by a previous stream it will be set to
that tick time. If using same timer as previous stream and different tick time an
error will be generated.

FASTEST - Use instead of TICK=x to set tick time to fastest as possible.
SLOWEST - Use instead of TICK=x to set tick time to slowest as possible.

CAPTURE_RISING - Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_FALLING - Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_BOTH - PCD only. Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

PRE=x - Specifies number of rising edges before capture event occurs. Valid options are
1, 4 and 16, default to 1 if not specified. Options 4 and 16 are only valid when
using CAPTURE_RISING, will generate an error is used with
CAPTURE_FALLING or CAPTURE_BOTH.

rep] ISR=x - Specifies the number of capture events to occur before generating capture
interrupt. Valid options are 1, 2, 3 and 4, defaults to 1 is not specified. Option 1
is only valid option when using CAPTURE_BOTH, will generate an error if trying
to use 2, 3 or 4 with it.

182

PreProcessor

STREAM=id - Associates a stream identifier with the capture module. The identifier may
be used in functions like get_capture_time().

DEFINE=id - Creates a define named id which specifies the number of capture per
second. Default define name if not specified is CAPTURES_PER_SECOND.
Define name must start with an ASCII letter 'A' to 'Z', an ASCI! letter 'a' to 'z’ or
an ASCII underscore ('_").

Description:

This directive tells the compiler to setup an input capture on the specified pin using the
specified settings. The #USE DELAY directive must appear before this directive can be
used. This directive enables use of built-in functions such as get_capture_time() and
get_capture_event().

Examples:
#USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)

See Also:
get _capture time(), get capture event()

#use delay

Syntax:
#use_delay (options)

Elements:
Options - may be any of the following separated by commas:
clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).

This number can contains commas. This number also supports the following
denominations: M, MHZ, K, KHZ. This specifies the clock the CPU runs at.
Depending on the PIC this is 2 or 4 times the instruction rate. This directive is
not needed if the following type=speed is used and there is no frequency
multiplication or division.

type=speed type defines what kind of clock you are using, and the following values are
valid: oscillator, osc (same as oscillator), crystal, xtal (same as crystal), internal,
int (same as internal) or rc. The compiler will automatically set the oscillator
configuration bits based upon your defined type. If you specified internal, the
compiler will also automatically set the internal oscillator to the defined speed.
Configuration fuses are modified when this option is used. Speed is the input
frequency.

restart_wdt will restart the watchdog timer on every delay _us() and delay_ms() use.

183

PreProcessor

clock_out when used with the internal or oscillator types this enables the clockout pin to
output the clock.

fast_start some chips allow the chip to begin execution using an internal clock until the
primary clock is stable.

lock some chips can prevent the oscillator type from being changed at run time by the
software.

USB or USB_FULL for devices with a built-in USB peripheral. When used with the
type=speed option the compiler will set the correct configuration bits for the USB
peripheral to operate at Full-Speed.

USB_LOW for devices with a built-in USB peripheral. When used with the type=speed
option the compiler will set the correct configuration bits for the USB peripheral to
operate at Low-Speed.

PLL_WAIT for devices with a PLL and a PLL Ready Status flag to test. When a PLL
clock is specified it will cause the compiler to poll the ready PLL Ready Flag and
only continue program execution when flag indicates that the PLL is ready.

ACT or ACT=type for device with Active Clock Tuning, type can be either USB or SOSC.
If only using ACT type will default to USB. ACT=USB causes the compiler to
enable the active clock tuning and to tune the internal oscillator to the USB clock.
ACT=SOSC causes the compiler to enable the active clock tuning and to tune
the internal oscillator to the secondary clock at 32.768 kHz. ACT can only be
used when the system clock is set to run from the internal oscillator.

rep] AUX: type=speed Some chips have a second oscillator used by specific periphrials
and when this is the case this option sets up that oscillator.

ireo] PLL_WAIT when used with a PLL clock, it causes the compiler to poll PLL ready flag
and to only continue program execution when flag indicates that the PLL is
ready.

Description:

Tells the compiler the speed of the processor and enables the use of the built-in
functions: delay_ms() and delay_us(). Will also set the proper configuration bits, and if
needed configure the internal oscillator. Speed is in cycles per second. An optional
restart_wdt may be used to cause the compiler to restart the WDT while delaying. When
linking multiple compilation units, this directive must appear in any unit that needs timing
configured (delay_ms(), delay_us(), UART, SPI).

In multiple clock speed applications, this directive may be used more than once. Any
timing routines (delay_ms(), delay_us(), UART, SPI) that need timing information will use
the last defined #USE DELAY (For initialization purposes, the compiler will initialize the
configuration bits and internal oscillator based upon the first #USE DELAY.

184

PreProcessor

Example Files:
ex_sqgw.c

Examples:
/I set timing config to 32KHz, User sets the fuses
// on delay_us() and delay_ms()
#use delay (clock=32000, RESTART_WDT)

/lthe following 4 examples all configure the timing
library

/Ito use a 20Mhz clock, where the source is a
crystal.
#use delay (crystal=20000000)
#use delay (xtal=20,000,000)
#use delay(crystal=20Mhz)
#use delay(clock=20M, crystal)

/lapplication is using a 10Mhz oscillat or, but using
the 4x PLL

/Ito upscale it to 40Mhz. Compiler will set config
bits.
#use delay(oscillator=10Mhz, clock=40Mhz)

/lapplication will use the internal oscillator at

8MHz.
/lcompiler will s et config bits, and set the internal
/loscillator to 8MHz.

#use delay(internal=8Mhz)

See Also:
delay ms(), delay us()

#use dynamic memory

Syntax:
#use dynamic_memory

Elements:
None

Description:
This pre-processor directive instructs the compiler to create the _DYNAMIC_HEAD
object. _DYNAMIC_HEA is the loation where the first free space is allocated.

Example Files:
ex_malloc.c

185

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Examples:
#USE DYNAMIC_MEMORY
void main(){

#use fast_io

Syntax:

#use fast_io (port)

Elements:
port-isA,B,C,D,E, F,G,H,JorALL

Description:

Affects how the compiler will generate code for input and output instructions that

follow. This directive takes effect until another #use xxxx_10O directive is

encountered. The fast method of doing 1/0 will cause the compiler to perform 1/O without
programming of the direction register. The compiler's default operation is the opposite of
this command, the direction 1/0 will be set/cleared on each I/O operation. The user must
ensure the direction register is set correctly via set_tris_X(). When linking multiple
compilation units be aware this directive only applies to the current compilation unit.

Example Files:
ex_cust.c

Examples:
#use fast_io(A)

See Also:
#USE FIXED 10, #USE STANDARD 10, set _tris_X() , General Purpose 1/O

#use fixed io

Syntax:
#use fixed_io (port_outputs=pin, pin?)

Elements:
value - is a constant 16-bit value

Description:

This directive affects how the compiler will generate code for input and output instructions
that follow. This directive takes effect until another #USE XXX 1O directive is
encountered. The fixed method of doing 1/0 will cause the compiler to generate code to
make an I/O pin either input or output every time it is used. The pins are programmed

186

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

according to the information in this directive (not the operations actually performed). This
saves a byte of RAM used in standard 1/0. When linking multiple compilation units be
aware this directive only applies to the current compilation unit.

Examples:

#use fixed_io(a_outputs=PIN_A2, PIN_A3)

See Also:

#USE FAST 10, #USE STANDARD 10, General Purpose /O

#use i2c

Syntax:
#use i2c (options)

Elements:

options - are separated by commas and may include the following:

MASTER

Sets to the master mode

MULTI_MASTER

Set the multi_master mode

SLAVE

Set the slave mode

SCL=pin Specifies the SCL pin (pin is a bit address)
SDA=pin Specifies the SDA pin

ADDRESS=nn Specifies the slave mode address

FAST Use the fast 12C specification.
FAST=nnnnnn Sets the speed to nnnnnn hz

SLOW Use the slow 12C specification

RESTART_WDT

Restart the WDT while waiting in 12C_READ

FORCE_HW

Use hardware [12C functions.

FORCE_SW

Use software 12C functions.

NOFLOAT_HIGH

Does not allow signals to float high, signals are driven from low
to high

SMBUS Bus used is not 12C bus, but very similar

STREAM=id Associates a stream identifier with this 12C port. The identifier
may then be used in functions like i2c_read or i2c_write.

NO_STRETCH Do not allow clock streaching

MASK=nn Set an address mask for parts that support it

187

PreProcessor

12C1 Instead of SCL= and SDA= this sets the pins to the first module

12C2 Instead of SCL= and SDA= this sets the pins to the second
module

NOINIT

No initialization of the 12C peripheral is performed. Use
I12C_INIT() to initialize peripheral at run time.

Only some chips allow the following:

DATA_HOLD

No ACK is sent until I2C_READ is called for data bytes
(slave only)

ADDRESS_HOLD

No ACK is sent until 12C_read is called for the address byte
(slave only)

SDA HOLD

Min of 300ns holdtime on SDA a from SCL goes low

PIC18 devices that have a separate 12C peripheral instead of a combined
SSP peripheral allow the following:

CLOCK_SOURCE=x

TMR2, TIMER4 or TMR4, TIMERG6 or TMR6, or SMTL1. If not

setup to achieve the desired 12C clock rate.

Used to specify the 12C peripheral's clock source. Options
can be FOSC/4, FOSC, HFINTOSC or HFINT, MFINTOSC or
MFINT, REFCLK or REF, TIMERO or TMRO, TIMER2 or

specified, it defaults to FOSC/4. If a peripheral is selected
as the clock, TMR2 for example, that peripheral must be

CLOCK_DIVISOR=x

Used to specify the 12C clock divisor, can be 4 or 5.

ADDRESS_BITS=x

Used to specify the number of address bits, can be set to 7 or
10. Defaultis 7, if not specified.

ADDRESS1=x
ADDRESS2=x
ADDRESS3=x
ADDRESS4=x

Used to specify the slave mode addresses the peripheral will
respond to. Depending on the address bits and number of
address masks, these devices can have 4, 2 or 1 addresses
that they will respond to. These allow setting the individual
addresses, ADDRESS1=x is the same as ADDRESS=xx.

using 1 or more addresses, always start with ADDRESS1, then
ADDRESS?2, etc., because any unspecified addresses will be
assigned to the value of ADDRESS1.

When set for 7 bit address mode, can have 4 or 2 addresses.
4 if no masks are specified. 2 if 1 or 2 masks are specified.
When set for 10 bit address mode, can have 2 or 1 addresses.
2 if no masks are specified and 1 if 1 mask is specified. If

MASK1=x
MASK2=x

Used to specify the slave mode address masks, depending on
the number of address bits it can have, 0, 1 or 2 address
masks. When set for 7 bit address mode, it can have 0 or 2
address masks; simply assigning a value to MASK1 means 12C
peripheral is set for 2 addresses and 2 address masks. When

188

PreProcessor

set for 10 bit address mode, it can have 0 or 1 address masks;
simply assigning a value to MASK1 means the peripheral is set
for 1 address and 1 address mask. If using 1 or more address
mask, always set MASK1 because if 7 bit address mode is used
and only MASK1 is specified, both address masks will be set to
the value of MASK1. When using 7 bit address mode, MASK1
is the mask for ADDRESS1 and MASK2 is the mask for
ADDRESS2.

SDA_HOLD=x Used to set the hold time on SDA after falling edge of SCL, can
be set to 30, 100 or 300ns. If only SDA_HOLD is specified, the
hold time is set to 300ns and if not specified, the hold time is set
to 100ns.

Description:

CCS offers support for the hardware-based [2C™ and a software-based master 12C™
device.(For more information on the hardware-based 12C module, please consult the
datasheet for your target device; not all PICs support [2C™.

The 12C library contains functions to implement an 12C bus. The #USE 12C remains in
effect for the 12C_START, 12C_STOP, 12C_READ, 12C_WRITE and I2C_POLL functions
until another USE 12C is encountered. If hardware pins are specified for SDA and SCL,
then hardware functions are generated unless the force_sw is specified; otherwise
software functions are generated. The SLAVE mode should only be used with the built-in
SSP. The functions created with this directive are exported when using multiple
compilation units. To access the correct function use the stream identifier.

rco] Some devices have an alternate set of 12C pins that may be used with the
hardware 12C peripherals instead of the default pins. If a device has alternative 12C pins,
then they will have the following configuration fuses available for selecting which pair to
use: ALTI2Cx and NOALTI2Cx. x being the 12C peripheral (1-3). Setting the
NOALTI2Cx configuration fuse causes the device to use the ASCLx and ASDAX pins for
the peripheral. Additionally, these configuration fuses determine which pins #use i2c()
determines the hardware 12C pins for each 12C peripheral. By default, the NOALTI2Cx
configuration fuses are set. In order to use the alternative 12C hardware pins, the
ALTI2Cx configuration fuse must be set for that I12C peripheral.

Example Files:
ex_extee.c with 16¢74.h

Examples:
#use i2c(master, sda - PIN_BO, sci=PIN_B1

#use i2c(slave, sda=PIN_C4, sci=PIN_C3
address=0xa0,FORCE_HW

189

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink3.Click()

PreProcessor

#use i2c(master, sci=PIN _BO0, sda=PIN_B1, fast=450000)
/Isets the target speed to 450 KBSP

See Also:
i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read,
12C Overview

#use profile()

Syntax:
#use profile (options)

Elements:
option - may be any of the following separated by a comma:
ICD - (Default) configures code profiler to use the ICD connection.

TIMERL - (optional) if specified, the code profiler run-time on the microcontroller will
use the Timerl peripheral as a timestamp for all profile events. If not
specified, the code profiler tool will use the PC clock, which may be accurate
for fast events.

BAUD=x - (optional) if specified, will use a different baud rate between the
microcontroller and the code profiler tool. This may be required on slow
microcontrollers to attempt to use a slower baud rate.

Description:
This directs the compiler to add the code profiler run-time in the microcontroller and
configure the link and clock.

Example Files:
ex_profile.c

Examples:
#profile(ICD, TIMER1, baud=9600)

See Also:
#profile(), profileout(), Code Profile overview

#use pwm()

Syntax:
#use pwm (options)

Elements:
option - may be any of the following separated by a comma:

190

PreProcessor

PWMx or CCPx - Selects the CCP to use, x being the module to use.

irecp] PWMx or OCx - Selects the Output Compare module, x being the module
number to use.

OUTPUT=PIN_xX - Selects the PWM pin to use, pin must be one of the CCP pins. If device
has remappable pins compiler will assign specified pin to specified CCP module. If
CCP module not specified it will assign remappable pin to first available module.

ireco] OUTPUT=PIN_xx - Selects the PWM pin to use, pin must be one of the OC pins. If
device has remappable pins compiler will assign specified pin to specified OC
module. If OC module not specified it will assign remappable pin to first available
module.

TIMER=x - Selects timer to use the PWM module, default if not specified is Timer2.

FREQUENCY=x - Sets the period of PWM based off specified value, should not be
used if PERIOD is already specified. If frequency can't be achieved exactly
compiler will generate a message specifying the exact frequency and period
of PWM. If neither FREQUENCY or PERIOD is specified, the period defaults
to maximum possible period with maximum resolution and compiler will
generate a message specifying the frequency and period of PWM, or if using
same timer as previous stream instead of setting to maximum possible it will
be set to the same as previous stream. If using same timer as previous
stream and frequency is different compiler will generate an error.

Period=x - Sets the period of PWM, should not be used if FREQUENCY is already
specified. If period can't be achieved exactly compiler will generate a
message specifying the exact period and frequency of PWM. If neither
PERIOD or FREQUENCY is specified, the period defaults to maximum
possible period with maximum resolution and compiler will generate a
message specifying the frequency and period of PWM, or if using same timer
as previous stream instead of setting to maximum possible it will be set to the
same as previous stream. If using same timer as previous stream and period
is different compiler will generate an error.

BITS=x - Sets the resolution of the the duty cycle, if period or frequency is specified
will adjust the period to meet set resolution and will generate an message
specifying the frequency and duty of PWM. If period or frequency not
specified will set period to maximum possible for specified resolution and
compiler will generate a message specifying the frequency and period of
PWM, unless using same timer as previous then it will generate an error if
resolution is different then previous stream. If not specified, then frequency,
period or previous stream using same timer sets the resolution.

DUTY=x - Selects the duty percentage of PWM. Default, if not specified, is 50%.

PWM_ON - Initialize the PWM in the ON state. Default state, if not specified, is
pwm_on or pwm_off.

191

PreProcessor

PWM_OFF - Initialize the PWM in the OFF state.

STEAM-=id - Associates a stream identifier with the PWM signal. The identifier may
be used in functions like pwm_set_duty percent().

Description:

This directive tells the compiler to setup a PWM on the specified pin using the specified
frequency, period, duty cycle and resolution. The #USE DELAY directive must appear
before this directive can be used. This directive enables use of built-in functions such as
pwm_set_duty_percent(), pwm_set_frequency(), pwm_set_duty(), pwm_on() and
pwm_off().

See Also:
pwm_on(), pwm_off(), pwm_set frequency(), pwm_set duty percent(), pwm_set duty()

#use rs232
Syntax:
#use rs232 (options)

Elements:
option - may be any of the following separated by a comma:
STREAM=id - Associates a stream identifier with this RS232 port. The identifier may
then be used in functions like fputc.

BAUD=x - Set baud rate to x.
XMIT=pin - Set transmit pin.
RCV=pin - Set receive pin.

FORCE_SW - Generate software serial I/O routines even when UART pins are
specified.

BRGH10K - Allow bad baud rates on devices that have baud rate problems.

ENABLE=pin - The specified pin will be high during transmit. This may be used to
enable 485 transmit.

DEBUGGER - Indicates this stream is used to send/receive data through a CCS ICD
unit. The default pin used is B3, use XMIT= and RCV= to change the pain
used. Both should be the same pin.

RESTART_WDT - Causes GETC() to clear the WDT as it waits for a character.

INVERT - Invert the polarity of the serial pins (normally not needed when level
converter, such as MAX232). May not be used with internal UART.

PARITY=x - Where x is N, E, or O.
192

PreProcessor

BITS=x - Where x is 5-9 (5-7 may not be used with the SCI).

FLOAT_HIGH - The line is not driven high. This is used for open collector outputs.
Bit 6 in RS232_ERRORS is set if the pin is not high at the end of the bit
time.

ERRORS - Used for the compiler to keep receive errors in the variable
RS232_ERRORS and to reset errors when they occur,
RS232_BUFFER_ERRORS when transmit, and RECEIVE_BUFFER are
used.

SAMPLE_EARLY - A getc() normally samples data in the middle of a bit time. This
option causes the sample to be at the start of a bit time. May not be used
with UART.

RETURN-=pin - The pin used to read signal back for FLOAT_HIGH and
MULTI_MASTER. The default for FLOAT_HIGH is the XMIT pin, and for
MULTI_MASTER the RCV pin.

MULTI_MASTER - Uses the RETURN pin to determine if another master on the bus
is transmitting at the same time. If a collision is detected bit 6 is set in
RS232_ERRORS and all future PUTC's are ignored until bit 6 is cleared.
The signal is checked at the start and end of a bit time. May not be used
with the UART.

LONG_DATA - Makes getc() return an int1l6 and putc() accept an intl6. This is for 9
bit data formats.

DISABLE_INTS - Will cause interrupts to be disabled when the routines get or put a
character. This prevents character distortion for software implemented 1/0O
and prevents interaction between 1/O in interrupt handlers and the main
program when using the UART.

STOP=x - Used to set the number of stop bits (default is 1). This works for both
UART and non-UART ports.

TIMEOUT=x - To set the time getc() waits for a byte in milliseconds. If no character
comes in within this time the RS232_ERRORS is set to 0 as well as the
return value form getc(). This works for both UART and non-UART ports.

SYNC_SLAVE - Makes the RS232 line a synchronous slave, making the receive pin
a clock in, and the data pin the data in/out.

SYNC_MASTER - Makes the RS232 line a synchronous master, making the receive
pin a clock out, and the data pin the data in/out.

SYNC_MASTER_CONT - Makes the RS232 line a synchronous master mode in
continuous receive mode. The receive pin is set as a clock out, and the data
pin is set as the data in/out.

UART1 - Sets the XMIT= and RCV= to the device's first hardware UART.
193

PreProcessor

UART?2 - Sets the XMIT=and RCV= to the chips second hardware UART.
UARTS - Sets the XMIT= and RCV= to the chips third hardware UART.
UART4 - Sets the XMIT= and RCV= to the chips fourth hardware UART.
ireo] UART1A - Uses alternate UART pins.

ireo] UART2A - Uses alternate UART pins.

NOINIT - No initialization of the UART peripheral is performed. Useful for dynamic
control of the UART baud rate or initializing the peripheral manually at a later
point in the program's run time. If this option is used, then setup_uart()
needs to be used to initialize the peripheral. Using a serial routine (such as
getc() or putc()) before the UART is initialized will cause undefined
behavior.

ICD - Indicates this stream uses the ICD in a special pass through mode to
send/receive serial data to/from the PC. The ICSP clock line is the device's
receive pin (usually B6), and the ICSP data line is the transmit pin (usually
B7). The default transmit pin is the device's ICSPDAT/PGD pin and the
default receive pin is the device's ICSPCLK/PGC pin. Use XMIT= and
RCV= to change the pins used.

MAX_ERROR=x - Specifies the max error percentage the compiler can set the
RS232 baud rate from the specified baud before generating an error.
Defaults to 3% if not specified.

serial buffer options:

RECEIVE_BUFFER=x - Size in bytes of UART circular receive buffer, default if not
specified is zero. Uses an interrupt to receive data, supports RDA interrupt
or external interrupts.

TRANSMIT_BUFFER=x - Size in bytes of UART circular transmit buffer, default if not
specified is zero.

TXISR - If TRANSMIT_BUFFER is greater then zero specifies using TBE interrupt for
transmitting data. Default is NOTXISR if TXISR or NOTXISR is not specified.
TXISR option can only be used when using hardware UART.

NOTXISR - If TRANSMIT_BUFFER is greater then zero specifies to not use TBE
interrupt for transmitting data. Default is NOTXISR if TXISR or NOTXISR is
not specified and XMIT_BUFFER is greater then zero.

flow control options:

RTS=PIN_xx - Pin to use for RTS flow control. When using
FLOW_CONTROL_MODE this pin is driven to the active level when it is
ready to receive more data. In SIMPLEX_MODE the pin is driven to the

194

PreProcessor

active level when it has data to transmit. FLOW_CONTROL_MODE can only
be use when using RECEIVE_BUFFER.

RTS_LEVEL=x - Specifies the active level of the RTS pin, HIGH is active high and
LOW is active low. Defaults to LOW if not specified.

CTS=PIN_xx - Pin to use for CTS flow control. In both FLOW_CONTROL_MODE
and SIMPLEX_MODE this pin is sampled to see if it clear to send data. If pin
is at active level and there is data to send it will send next data byte.

CTS_LEVEL=x - Specifies the active level of the CTS pin, HIGH is active high and
LOW is active low. Default to LOW if not specified.

FLOW_CONTROL_MODE - Specifies how the RTS pin is used. For
FLOW_CONTROL_MODE the RTS pin is driven to the active level when
ready to receive data. Defaults to FLOW_CONTROL_MODE when neither
FLOW_CONTROL_MODE or SIMPLEX_MODE is specified. If RTS pin is
not specified then this option is not used.

SIMPLEX_MODE - Specifies how the RTS pin is used. For SIMPLEX_MODE the
RTS pin is driven to the active level when it has data to send. Defaults to
FLOW_CONTROL_MODE when neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pin is not specified then this option is
not used.

Description:

This directive tells the compiler the baud rate and pins used for serial I1/0O. This directive
takes effect until another RS232 directive is encountered. The #USE DELAY directive
must appear before this directive can be used. This directive enables use of built-in
functions such as GETC, PUTC, and PRINTF. The functions created with this directive
are exported when using multiple compilation units. To access the correct function use
the stream identifier.

When using parts with built-in SCI (frep) UART) and the SCI (pep; UART) pins are
specified, the SCI will be used. If a baud rate cannot be achieved within 3% of the
desired value using the current clock rate, an error will be generated. The definition of the
RS232_ERRORS is as follows:

No UART:

91 Bit 7 is 9th bit for 9 bit data mode (get and put).

1 Bit 6 set to one indicates a put failed in float high mode.

With a UART:

1 Used only by get:

1 Copy of RCSTA register except:

1 Bit Ois used to indicate a parity error.

195

PreProcessor

Definition of the RS232 BUFFER ERRORS variable is as follows:
9 Bit 0 UART Receive overrun error occurred.

9 Bit 1 Receive Buffer overflowed.

1 Bit 2 Transmit Buffer overflowed.

Warning: The device UART will shut down on overflow (3 characters received by the
hardware with a GETC() call). The "ERRORS" option prevents the shutdown by detecting
the condition and resetting the UART.

Example Files:
ex_cust.c

Examples:
#use rs232(baud=9600,xmit=PIN_A 2,rcv=PIN_A3)

See Also:

getc(), putc(), printf(), setup _uart(), RS2332 1/0 overview, kbhit(), puts(), putc_send(),
rcv_buffer bytes(), tx_buffer_bytes(), rcv_buffer_full(), tx_buffer_full(),
tx_buffer_available()

use rtos
(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to run
regularly scheduled tasks without the need for interrupts. This is accomplished by a
function (RTOS_RUN()) that acts as a dispatcher. When a task is scheduled to run, the
dispatch function gives control of the processor to that task. When the task is done
executing or does not need the processor anymore, control of the processor is returned
to the dispatch function which then will give control of the processor to the next task that
is scheduled to execute at the appropriate time. This process is called cooperative multi-
tasking.

Syntax:
#use rtos (options)

Elements:
option - may be any of the following separated by a comma:
timer=X - Where x is 0-4 specifying the timer used by the RTOS.

minor_cycle=time - Where time is a number followed by s, ms, us, ns. This is the
longest time any task will run. Each task's execution rate must be a multiple
of this time. The compiler can calculate this if it is not specified.

statistics - Maintain min, max, and total time used by each task.

196

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

Description:

This directive tells the compiler which timer on the PIC to use for monitoring and when to
grant control to a task. Changes to the specified timer's prescaler will effect the rate at
which tasks are executed.

This directive can also be used to specify the longest time that a task will ever take to
execute with the minor_cycle option. This simply forces all task execution rates to be a
multiple of the minor_cycle before the project will compile successfully. If the this option is
not specified the compiler will use a minor_cycle value that is the smallest possible factor
of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the minimum
processor time taken by one execution of each task, the maximum processor time taken
by one execution of each task, and the total processor time used by each task.

When linking multiple compilation units, this directive must appear exactly the same in
each compilation unit.

Examples:
#use rtos(timer=0,minor_cycle=20ms)

See Also:
#TASK

#use spi

Syntax:
#use spi (options)

Elements:
option - may be any of the following separated by a comma:
MASTER - Set the device as the master. (default).

SLAVE - Set the device as the slave.
BAUD-=n - Target bits per second, default is as fast as possible.

CLOCK_HIGH=n - High time of clock in us (not needed if BAUD= is used).
(default=0).

CLOCK_LOW-=n - Low time of clock in us (not needed if BAUD= is used).
(default=0).

DI=pin - Optional pin for incoming data.
DO=pin - Optional pin for outgoing data.
CLK=pin - Clock pin.

197

PreProcessor

MODE=n - The mode to put the SPI bus.

ENABLE=pin - Optional pin to be active during data transfer.

LOAD=pin - Optional pin to be pulsed active after data is transferred.
DIAGNOSTIC=pin - Optional pin to the set high when data is sampled.
SAMPLE_RISE - Sample on rising edge.

SAMPLE_FALL - Sample on falling edge (default).

BITS=n - Max number of bits in a transfer. (default=32)

SAMPLE_COUNT=n - Number of samples to take (uses majority vote). (default=1
LOAD_ACTIVE=n - Active state for LOAD pin (0, 1).

ENABLE_ACTIVE=n - Active state for ENABLE pin (0, 1). (default=0)

IDLE=n - Inactive state for CLK pin (0, 1). (default=0)

ENABLE_DELAY=n - Time in us to delay after ENABLE is activated. (default=0)
DATA_HOLD-=n - Time between data change and clock change.

LSB_FIRST - LSB is sent first.

MSB_FIRST - MSB is sent first. (default)

STREAM=id - Specify a stream name for this protocol.

SPI1 - Use the hardware pins for SPI Port 1.

SPI2 - Use the hardware pins for SPI Port 2.

ireo] SPI3 - Use the hardware pins for SPI Port 3

ireo] SPI4 - Use the hardware pins for SPI Port 4

FORCE_SW - Use a software implementation even when hardware pins are
specified.

FORCE_HW - Use the pic hardware SPI.
NOINIT - Do not initialize the hardware SPI Port.
irep) XFER16 - Use 16-bit transfers instead of two 8-bit transfers.

Description:

The SPI library contains functions to implement an SPI bus. After setting all of the proper
parameters in #USE SPI, the spi_xfer() function can be used to both transfer and receive
data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most
common pins present on hardware SPIl are:

198

DI

PreProcessor

be assigned values through the options; the compiler will automatically assign hardware-

specific values to these pins. Consult your PI C6és data sheet as to
hardware SPI are. If hardware SPI is not used, then software SPI will be used. Software

SPI is much slower than hardware SPI, but software SPI can use any pins to transfer and

receive data other than justthe pins tied to the PICb6s hardwar

The MODE option is more or less a quick way to specify how the stream is going to
sample data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0 and
SAMPLE_FALL. MODE=2 sets IDLE=1 and SAMPLE_FALL. MODE=3 sets IDLE=1 and
SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to send
data and another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are defaulted as
indicated above.

See Also:

spi_xfer()

#use standard i0

Syntax:
#use standard_io (port)

Elements:
port-isA,B,C,D,E, F,G, H,JorALL

Description:

This directive affects how the compiler will generate code for input and output instructions
that follow. This directive takes effect until another #USE XXX 10 directive is
encountered. The standard method of doing 1/0 will cause the compiler to generate code
to make an 1/O pin either input or output every time it is used. On the 5X processors this
requires one byte of RAM for every port set to standard 1/O.

Standard_io is the default I/O method for all ports.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

Example Files:
ex_cust.c

199

file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

PreProcessor
Examples:
#use standard_io(A)

See Also:
#USE FAST 10, #USE FIXED 10, General Purpose I/0O

#use timer

Syntax:
#use timer (options)

Elements:
TIMER=x - Sets the timer to use as the tick timer. x is a valid timer that the PIC has.
Default value is 1 for Timer 1.

TICK=xx - Sets the desired time for 1 tick. xx can be used with ns(hanoseconds), us
(microseconds), ms (milliseconds), or s (seconds). If the desired tick time can't
be achieved it will set the time to closest achievable time and will generate a
warning specifying the exact tick time. The default value is 1us.

BITS=x - Sets the variable size used by the get_ticks() and set_ticks() functions for
returning and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits or 32 for
32bits. The default is 32 for 32 bits.

rco] BITS=x - Sets the variable size used by the get_ticks() and set_ticks() functions for
returning and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits, 32 for
32bits or 64 for 64 bits. The default is 32 for 32 bits.

ISR - Uses the timer's interrupt to increment the upper bits of the tick timer. This mode
requires the the global interrupt be enabled in the main program.

NOISR - The get_ticks() function increments the upper bits of the tick timer. This
requires that the get_ticks() function be called more often then the timer's
overflow rate. NOISR is the default mode of operation.

STREAM=id - Associates a stream identifier with the tick timer. The identifier may be
used in functions like get_ticks().

DEFINE=id - Creates a define named id which specifies the number of ticks that will
occur in one second. Default define name if not specified is
TICKS_PER_SECOND. Define name must start with an ASCII letter ‘A’ to 'Z', an
ASCI| letter 'a’ to 'z or an ASCII underscore ().

COUNTER or COUNTER=x - Sets up specified timer as a counter instead of timer. x
specifies the prescallar to setup counter with, default is1 if x is not specified
specified. The function get_ticks() will return the current count and the function
set_ticks() can be used to set count to a specific starting value or to clear
counter.

200

PreProcessor

Description:

This directive creates a tick timer using one of the PIC's timers. The tick timer is
initialized to zero at program start. This directive also creates the define
TICKS_PER_SECOND as a floating point number, which specifies that number of ticks
that will occur in one second.

Examples:
#USE TIMER(TIMER=1,TICK=1ms,BITS=16,NOISR)
unsigned int16 tick_di fference(unsigned int16 current, unsigned int16
previous) {
return(current - previous);
}

void main(void) {
unsigned int16 current_tick, previous_tick;
current_tick = previous_tick = get_ticks();
while(TRUE) {
current_tick = get_ticks() ;
if(tick_difference(current_tick, previous_tick) > 1000) {
output_toggle(PIN_BO);
previous_tick = current_tick;

}

See Also:
get ticks(), set_ticks()

#use touchpad

Syntax:
#use touchpad (options)

Elements:

RANGE=x - Sets the oscillator charge/discharge current range. If x is L, current is
nominally 0.1 microamps. If x is M, current is nominally 1.2 microamps. If x is H, current
is nominally 18 microamps. Default value is H (18 microamps).

THRESHOLD=x - x is a number between 1-100 and represents the percent reduction in

the nominal frequency that will generate a valid key press in software. Default value is
6%.

201

PreProcessor

SCANTIME=xxXMS - xx is the number of milliseconds used by the microprocessor to scan
for one key press. If utilizing multiple touch pads, each pad will use xx milliseconds to
scan for one key press. Default is 32ms.

PIN=char - | f a
character

alid key press is determined on AP
charo in the function touchpad_get

SOURCETIME=xxus - (CTMU only) xx is the number of microseconds each pin is
sampled for by ADC during each scan time period. Default is 10us.

Description:

This directive will tell the compiler to initialize and activate the Capacitive Sensing Module
(CSM)or Charge Time Measurement Unit (CTMU) on the microcontroller. The compiler
requires use of the TIMERO and TIMER1 modules for CSM and Timerl ADC modules for
CTMU, and global interrupts must still be activated in the main program in order for the
CSM or CTMU to begin normal operation. For most applications, a higher RANGE, lower
THRESHOLD, and higher SCANTIME will result better key press detection. Multiple

PI N''s may be declared in fioptionso, but they |
CTMU. The user may also generate a TIMERO ISR with TIMERO's interrupt occuring
every SCANTIME milliseconds. In this case, the CSM's or CTMU's ISR will be executed
first.

Examples:
#USE TOUCHPAD (THRESHOLD=5, PIN_D5="5', PIN_BO0='C")
void main(void){
char c;
enable_interrupts(GLOBAL);

while(1){
¢ = TOUCHPAD_GETC(); /Mwill wait until a pin is detected
} /fif PIN_BO is pressed, ¢ will have 'C'
} /fif PIN_D5 is pressed, ¢ will have '5'
See Also:

touchpad_state(), touchpad getc(), touchpad hit()

#warning
Syntax:
#warning text

Elements:
text - is optional and may be any text.

202

PreProcessor

Description:

Forces the compiler to generate a warning at the location this directive appears in the
file. The text may include macros that will be expanded for the display. This may be used
to see the macro expansion. The command may also be used to alert the user to an
invalid compile time situation.

To prevent the warning from being counted as a warning, use this syntax:
#warning/information text

Example Files:
ex_psp.c

Examples:
#if BUFFER_SIZE<32
#warning Buffer Overflow may occur
#endif

See Also:
#ERROR

#word

Syntax:
#word id=x

Elements:
id - is a valid C identifier.

X - is a C variable or a constant

Description:

If the id is already known as a C variable then this will locate the variable at address x. In
this case the variable type does not change from the original definition. If the id is not
known a new C variable is created and placed at address x with the type int16

Warning: In both cases memory at x is not exclusive to this variable. Other variables
may be located at the same location. In fact when x is a variable, then id and x share the
same memory location.

Examples:
#word data = 0x0800

struct {
int lowerByte : 8;
int upperByte : 8;

203

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

PreProcessor

} control_word;
#word control_word = 0x85

control_word.upperByte = 0x42;

[PCD]
#word data = 0x0860
struct {

short C;

short Z;

short OV;

short N;

short R A;

short IPLO;

short IPL1;

short IPL2;

int upperByte : 8;
} status_register;
#word status_register = 0x42

short zero = status_register.Z;

See Also:
#bit, #byte, #locate, #reserve, Named Regqisters, Type Specifiers, Type Qualifiers,
Enumerated Types, Structures & Unions, Typedef

#zero local ram

Syntax:
#zero_local_ram

Elements:
None

Description:

This directive causes the compiler to initialize all local variables with no initializer to zero
every time the function is invoked. Local variables with an initializer (= after the
declaration) are not affected.

Example Files:
None

Examples:
#zero_local_ram
void sam ple_adc(void {
int raw_data[1l -1 // both raw_data and

204

PreProcessor

int sum; /l sum zero'ed on each call
}

See Also:
#zero_ram, #fill rom, static

#zero ram

Syntax:
#zero_ram

Elements:
None

Description:
This directive zero's out all of the internal registers that may be used to hold variables
before program execution begins.

Example Files:
ex_cust.c

Examples:
#zero_ram
void main(){

205

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC
microcontroller's peripherals. This makes it very easy for the users to configure and use
the peripherals without going into in depth details of the registers associated with the
functionality. The functions categorized by the peripherals associated with them are listed
on the next page. Click on the function name to get a complete description and
parameter and return value descriptions.

abs()

Syntax:
value = abs(x)

Parameters:
X is a signed 8, 16, or 32 bit int or a float
[pco] X is any integer or float type.

Returns:
Same type as the parameter.

Function:
Computes the absolute value of a number.

Availability:
All devices

Requires:
#INCLUDE <stdlib.h>

Examples:
signed int target,actual;

error = abs(target - actual);

See Also:

labs()

206

Built-in Functions

sin() cos() tan() asin() acos()atan() sinh() cosh() tanh()

atan2()

Syntax:

val = sin (rad)

val = cos (rad)

val = tan (rad)

rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters:

rad is a float representing an angle in Radians -2pi to 2pi.

irep] rad is any float type representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0 to 1.0.

ieco] is any float type with the range -1.0 to 1.0.

Value is a float

erep] Value is any float type

Returns:
rad - is a float representing an angle in Radians -pi/2 to pi/2

val - is a float with the range -1.0 to 1.0.

radl - is a float representing an angle in Radians 0 to pi

rad2 - is a float representing an angle in Radians -pi to pi

Result is a float

ipep] rad is a float with a precision equal to val representing an angle in Radians -pi/2 to
pi/2

rpep] val is a float with a precision equal to rad within the range -1.0 to 1.0.

lecp] radl is a float with a precision equal to val representing an angle in Radians 0 to pi

lpcp] rad? is a float with a precision equal to val representing an angle in Radians -pi to pi

irep] Result is a float with a precision equal to value

207

Built-in Functions

Function:

These functions perform basic Trigonometric functions.
sin - returns the sine value of the parameter (measured in radians)
cos - returns the cosine value of the parameter (measured in radians)
tan - returns the tangent value of the parameter (measured in radians)
asin - returns the arc sine value in the range [-pi/2,+pi/2] radians
acos - returns the arc cosine value in the range [0,pi] radians
atan - returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 - returns the arc tangent value of y/x in the range [-pi,+pi] radians
sinh - returns the hyperbolic sine of x
cosh - returns the hyperbolic cosine of x
tanh - returns the hyperbolic tangent of x

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno variable.
The user can check the errno to see if an error has occurred and print the error using the
perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

Availability:
All devices

Requires:
#INCLUDE <math.h>

Examples:
float phase;
[/l Output one sine wave
for(phase=0; phase<2*3.141596; phase+=0.01)
set_analog_voltage(sin(phase)+1);;

Examples Files:
ex_tank.c

See Also:
lod(), 10910(), exp(), pow(), sart()

208

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

act status()

Syntax:
status = act_status();

Parameters:

Returns:
Returns the status of the ACT module. See the device's header file for defines that can
be and'ed with result.

Function:
Used to get the status of the Active Clock Tuning (ACT) module.

Availability:
Devices with an ACT module. See the device's header file for availability.

Requires:

Examples:

unsigned int8 Status;

intl ClockLocked;

Status = act_status();

if((Status & ACT_CLOCK_LOCKED) == 0)
ClockLoced = FALSE;

else
ClockLocked = TRUE;

See Also:

setup_act()

adc done()adc2 done() adc done2()

Syntax:

value = adc_done();

pep] Value = adc_done2();

irep] Value=adc_done([channel])

Parameters:
adc_done(); - Nothing required

209

Built-in Functions

irep; adc_done?2(); - channel is an optional parameter for specifying the channel to
check if the conversion is done. If not specified will use channel specified in the last call
to set_adc_channel(), read_adc() or adc_done().

Returns:
A short int. TRUE if the A/D converter is done with conversion, FALSE if it is still busy.

Function:
Can be polled to determine if the A/D has valid data.

Availability:
Only available on devices with built in analog to digital converters
reco) Only available for dsPIC33EPxxGSxxx family.

Requires:

Examples:
intl6 value;
setup_adc_ports(sANO|sAN1, VSS_VDD);
setup_adc(ADC_CLOCK_DIV_4|ADC_TAD_MUL_38);
set_adc_channel(0);
read_adc(ADC_START_ONLY);

intl done = adc_do ne();
while(!'done) {
done = adc_done();

}
value = read_adc(ADC_READ_ONLY);

printf (AA/ C valnured,= WeLIXue) ;
}

See Also:
setup _adc(), set adc _channel(), setup adc_ports(), read adc(), ADC Overview

adc read()

Syntax:
result=adc_read(register)

Parameters:

Register - ADC register to read:
1 adc_result
1 adc_accumulator
1 adc filter

210

Built-in Functions

Returns:

int8 or in16 read from the specified register. Return size depends on which register is
being read. For example, ADC_RESULT register is 16 bits and ADC_COUNT register is
8-bits.

Function:

Reads one of the Analog-to-Digital Converter with Computation (ADC2) Module registers.
Availability:

All devices with an ADC2 Module

Requires:
Constants defined in the device's .h file

Examples:
FilteredResult=adc_read(ADC_FILTER);

See Also:
ADC Overview, setup_adc(), setup_adc_ports(), set _adc_channel(), read _adc(),
#DEVICE, adc_write(), adc_status(), set_adc _trigger()

adc status()

Syntax:
status=adc_status()

Parameters:
Nothing required

Returns:
int8 value of the ADSTAT register

Function:
Read the current value of the ADSTAT register of the Analog-to-Digital Converter with
Computation (ADC2) Module.

Availability:
All devices with an ADC2 Module

Requires:

211

Built-in Functions

Examples:
while((adc_status() & ADC_UPDATING)==0);

Average=adc_read(ADC_FILTER);

See Also:
ADC Overview, setup_adc(), setup_adc_ports(), set _adc channel(), read _adc(),
#DEVICE, adc_read(), adc_write(), set _adc_trigger()

adc write()

Syntax:
adc_write(register, value)

Parameters:
register - ADC register to write:
1 ADC_REPEAT
1 ADC_SET_POINT
1 ADC_LOWER_THRESHOLD
1 ADC_UPPER_THRESHOLD

Returns:
Undefined

Function:
Write one of the Analog-to-Digital Converter with Computation (ADC2) Module registers.

Availability:
All devices with an ADC2 Module

Requires:
Constants defined in the device's .h file

Examples:
adc_write(ADC_SET_POINT, 300);

See Also:
ADC Overview, setup_adc(), setup_adc_ports(), set adc_channel(), read adc(),
#DEVICE, adc_read(), adc_status(), set_adc_trigger()

assert()

Syntax:
assert (condition);

212

Built-in Functions

Parameters:
condition is any relational expression

Returns:

Function:

This function tests the condition and if FALSE will generate an error message on
STDERR (by default the first USE RS232 in the program). The error message will include
the file and line of the assert(). No code is generated for the assert() if you #define
NDEBUG. In this way you may include asserts in your code for testing and quickly
eliminate them from the final program.

Availability:
All Devices

Requires:
assert.h and #USE RS232

Examples:
assert(number_of_entries<TABLE_SIZE);

/I'lf number_of _entries is >= TABLE_SIZE then
/I the following is output at the RS232:
/I Assertion failed, file myfile.c, line 56

See Also:
#USE RS232, RS232 I/0 Overview

atoe()

Syntax:
atoe(string);

Parameters:
string is a pointer to a null terminated string of characters.

Returns:
Result is a floating point number

213

Built-in Functions

Function:

Converts the string passed to the function into a floating point representation. If the result
cannot be represented, the behavior is undefined. This function also handles E format
numbers.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
char string [10];
float32 x;

strepy (string, "12E3");
X = atoe(string);
/I x is now 12000.00

See Also:
atoi(), atol(), atoi32(), atof(), printf()

atof() atof48() atof64() strtof48()

Syntax:

result = atof (string)
[PCD] Or

result = atof48(string)
or
result=atof64(string)
or
result-strtof48(string))

Parameters:
string is a pointer to a null terminated string of characters.

Returns:
Result is a floating point number
irep] Result is a floating point number in single, extended or double precision format

Function:

Converts the string passed to the function into a floating point representation. If the result
cannot be represented, the behavior is undefined.

214

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
char string [10];
float x;

strcpy (st ring, "123.456");
X = atof(string);
Il x is now 123.456

Example Files:
ex_tank.c

See Also:
atoi(), atol(), atoi32(), printf()

atoi() atol() atoi32() atol32() atoi48() atoi64()

Syntax:

ivalue = atoi(string)

ivalue = atol(string)

i32value = atoi32(string)
i32value = atol32(string)

(pco] i48value = atoi48(string);
(pco] i64value = atoi64(string);

Parameters:
string - is a pointer to a null terminated string of characters.

Returns:

ivalue is an 8 bit int

ivalue is a 16 bit int
i32value is a 32 bit int

rep) i48value is a 48 bit int
pcp] i64value is a 64 bit int

Function:

Built-in Functions

Converts the string passed to the function into an int representation. Accepts both
decimal and hexadecimal argument. If the result cannot be represented, the behavior is

undefined.
215

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Availability:
All devices

Requires:
#INCLUDE<stdlib.h>

Examples:
char string[10];
int x;

strepy(string,"123");
X = atoi(string);

Example Files:
input.c

See Also:

printf()

at clear interrupts()

Syntax:

at_clear_interrupts(interrupts);

Parameters:

/I X is now 123

Built-in Functions

interrupts - an 8-bit constant specifying which AT interrupts to disable. The constants
are defined in the device's header file as:

AT_PHASE_INTERRUPT

AT_MISSING_PULSE_INTERRUPT

AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns:

Function:

To disable the Angular Timer interrupt flags. More than one interrupt can be cleared at a
time by or'ing multiple constants together in a single call, or calling function multiple times

for each interrupt to clear.

216

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
#INT - AT1
voidl_isr(void){
if(at_interrupt_active(AT_PERIOD_INTERRUPT))

handle_period_interrupt();
at_clear_interrupts(AT_PERIOD_INTERRUPT);

}
if(at_interrupt(active(AT_PHASE_INTERRUPT);

handle_phase _interrupt();
at_clear_interrupts(AT_PHASE_INTERRUPT);

}

See Also:

at_set resolution(), at_get resolution(), at set missing_pulse delay(),

at_get missing pulse delay(), at get period(), at get phase counter(),

at_set set point(), at get set point(), at_get set point_error(),

at_enable interrupts(), at disable interrupts(), at _interrupt active(), at setup cc(),
at_set compare time(), at get capture(), at get status(), setup at()

at disable interrupts()

Syntax:
at_disable_interrupts(interrupts);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to disable. The constants
are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

217

Built-in Functions

Returns:

Function:

To disable the Angular Timer interrupts. More than one interrupt can be disabled at a
time by or'ing multiple constants together in a single call, or calling function multiple times
for eadch interrupt to be disabled.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at_disable_interrupts(AT_PHASE_INTERRUPT);
at_disable_interrupts(AT_PERIOD_INTERRUPT|AT_CC1_IN TERRUPT);
See Also:

at_set resolution(), at_get resolution(), at set missing_pulse delay(),

at_get missing pulse delay(), at get period(), at _get phase counter(),

at_set set point(), at get set point(), at_get set point_error(),

at_enable interrupts(), at clear interrupts(), at_interrupt active(), at setup cc(),
at_set compare time(), at get capture(), at get status(), setup at()

at enable interrupts()

Syntax:
at_enable_interrupts(interrupts);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to enable. The constants
are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns:

218

Built-in Functions

Function:

To enable the Angular Timer interrupts. More than one interrupt can be enabled at a time
by or'ing multiple constants together in a single call, or calling function multiple times for
each interrupt to be enabled.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at_enable_interrupts(AT_PHASE_INTERRUPT);
at_enable_interrupts(AT_PERIOD_INTERRUPT|AT_CC1_INTERRUPT);

See Also:

setup_at(), at_set_resolution(), at_get_resolutio n(),
at_set_missing_pulse_delay(), at_get_missing_pulse_delay(),
at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point(), at_get_set_point_error(),

at_disable_interrupts(), at_clear_interrupts(),

at_interrupt_active(), at_setup_c c(), at_set_compare_time(),
at_get_capture(), at_get_status()

at get capture()

Syntax:
result=at_get_capture(which);;

Parameters:
which - an 8-bit constant specifying which AT Capture/Compare module to get the
capture time from, can be 1, 2 or 3.

Returns:
A 16-bit integer

Function:
To get one of the Angular Timer Capture/Compare modules capture time.

Availability:
All Devices with an AT module

Requires:

219

Built-in Functions

Examples:
resultl=at_get capture(1);
result2=at_get_capture(2);

See Also:

setup_at(), at_set_resolution(), at_get_resolution(),

at_set _missing_pulse_delay(), at_get_missing_pulse_delay(),
at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point(), at_get_set_point_error(),

at_enable_interru pts(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_status()

at get missing pulse delay()

Syntax:
result=at_get_missing_pulse_delay();

Parameters:

Returns:
A 16-bit integer

Function:
To setup the Angular Timer Missing Pulse Delay

Availability:
All Devices with an AT module

Requires:

Examples:
result=at_get_missing_pulse_delay();

See Also:

at_set resolution(), at_get resolution(), at_set missing pulse delay(), at_get period(),
at_get phase counter(), at_set set point(), at get set point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup cc(), at_set compare_time(), at_get capture(), at_get_status(), setup_at()

220

Built-in Functions

at get period()

Syntax:
result=at_get_period();

Parameters:

Returns:

A 16-bit integer. The MSB of the returned value specifies whether the period counter
rolled over one or more times. 1 - counter rolled over at least once, 0 - value returned is
valid.

Function:
To get one of the Angular Timer Measure Period.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at_get_period();

See Also:

at_set resolution(), at get resolution(), at set missing pulse delay(),

at_get missing pulse delay(), at get phase counter(), at set set point(),
at_get _set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable interrupts(), at clear interrupts(), at_interrupt active(), at setup cc(),
at_set compare_time(), at get capture(), at get status(), setup_at()

at get phase counter()

Syntax:
result=at_get_phase_counter();

Parameters:

Returns:
A 16-bit integer.

221

Built-in Functions

Function:
To get one of the Angular Timer Phase Counter.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at_get_phase_counter();

See Also:

at_set resolution(), at get resolution(), at set missing pulse delay(),

at_get missing pulse delay(), at get period(), at set set point(),

at_get _set_point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable interrupts(), at clear interrupts(), at_interrupt active(), at setup cc(),
at_set compare_time(), at get capture(), at get status(), setup at()

at get resolution()

Syntax:
result=at_get_resolution();

Parameters:

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Resolution.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at_get_resolution();

222

Built-in Functions

See Also:

at_set _resolution(), at_set_missing pulse delay(), at_get _missing pulse delay(),
at_get period(), at_get phase counter(), at_set_set point(), at_get_set point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),

at_clear interrupts(), at_interrupt_active(), at_setup cc(), at_set compare time(),
at_get capture(), at_get status(), setup_at()

at get set point()

Syntax:
result=at_get_set_point();

Parameters:

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Set Point.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at_get_set_point();

See Also:

at_set resolution(), at_get resolution(), at_set_missing pulse delay(),

at_get missing pulse delay(), at_get period(), at_get phase counter(),

at_set _set point(), at_get_set _point_error(), at_enable_interrupts(), at_disable interrupts(),
at_clear _interrupts(), at_interrupt_active(), at_setup cc(), at_set _compare_time(),
at_get _capture(), at_get status(), setup_at()

at get set point error()

Syntax:
result=at_get_set_point_error();

Parameters:

223

Built-in Functions

Returns:
A 16-bit integer.

Function:
To get one of the Angular Timer Set Point Error, the error of the measured period value
compared to the threshold setting.

Availability:
All Devices with an AT module

Requires:

Examples:
result=at_get_set_point_error();

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at get phase counter(),

at set set point(), at_get set point(), at_enable interrupts(), at_disable interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup cc(), at_set_compare_time(),
at_get capture(), at_get status(), setup_at()

at get status()

Syntax:
result=at_get_status();

Parameters:

Returns:

An 8-bit integer. The possible results are defined in the device's header file as:
AT_STATUS_PERIOD_AND_PHASE_VALID
AT_STATUS_PERIOD_LESS_THEN_PREVIOUS

Function:
To get one of the Angular Timer module.

Availability:
All Devices with an AT module

224

Built-in Functions

Requires:

Examples:
if((at_get_status()&AT_STATUS_PERIOD_AND_PHA SE_VALID)==
AT_STATUS_PERIOD_AND_PHASE_VALID

{
Period=at_get_period();
Phase=at_get_phase();
}
See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at get phase counter(),

at_set set point(), at_get set point(), at_get_set point_error(), at_enable interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup cc(),
at_set compare time(), at_get capture(), setup_at()

at interrupt active()

Syntax:
result=at_interrupt_active(interrupt);

Parameters:
interrupts - an 8-bit constant specifying which AT interrupts to check if its flag is set.
The constants are defined in the device's header file as:

AT_PHASE_INTERRUPT

AT_MISSING_PULSE_INTERRUPT

AT_PERIOD_INTERRUPT

AT_CC3_INTERRUPT

AT_CC2_INTERRUPT

AT_CC1_INTERRUPT

Returns:
TRUE if the specified AT interrupt's flag is set, interrupt is active, or FALSE if the flag is
clear, interrupt is not active.

Function:
To check if the specified Angular Timer interrupt flag is set.

Availability:
All Devices with an AT module

225

Built-in Functions

Requires:

Examples:
#INT - AT1
voidl_isr(void)
{
if(at_interrupt_active(AT_PERIOD_INTERRUPT))

handle_period_inte rrupt();
at_clear_interrupts(AT_PERIOD_INTERRUPT);

}
if(at_interrupt(active(AT_PHASE_INTERRUPT);

handle_phase_interrupt();
at_clear_interrupts(AT_PHASE_INTERRUPT);

}

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at get period(), at_get phase counter(),

at_set _set point(), at_get _set point(), at_get_set point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_setup cc(), at set compare _time(),
at_get capture(), at_get status(), setup at()

at set compare time()

Syntax:
at_set_compare_time(which, compare_time);

Parameters:
which - an 8-bit constant specifying which AT Capture/Compare module to set the
compare time for, can be 1, 2, or 3.

compare_time - a 16-bit constant or variable specifying the value to trigger an
interrupt/ouput pulse.

Returns:

Function:
To set one of the Angular Timer Capture/Compare module's compare time.

226

Built-in Functions

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at_set_compare_time(1,0x1FF);
at_set_compare_time(3,compare_time);}

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at get phase counter(),

at_set set point(), at_get set point(), at_get_set_point_error(), at_enable interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(), at_setup cc(),
at_get capture(), at_get status(), setup_at()

at set missing pulse delay()

Syntax:
at_set_missing_pulse_delay(pulse_delay);

Parameters:
pulse_delay - a signed 16-bit constant or variable to set the missing pulse delay.

Returns:

Function:
To setup the Angular Timer Missing Pulse Delay

Availability:
All Devices with an AT module

Requires:

Examples:
at_set_missing_pulse_delay(pulse_delay);

227

Built-in Functions

See Also:

at_set_resolution(), at_get_resolution(), at_get_missing_pulse delay(), at_get period(),
at_get phase counter(), at_set_set point(), at_get set point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at _setup cc(), at_set compare_time(), at_get capture(), at_get_status(), setup_at()

at set resolution()

Syntax:
at_set_resolution(resolution);

Parameters:
resolution - a 16-bit constant or variable to set the resolution.

Returns:

Function:
To setup the Angular Timer Resolution

Availability:
All Devices with an AT module

Requires:

Examples:
at_set_resolution(resolution);

See Also:

at_get resolution(), at_set _missing_pulse delay(), at_get missing pulse delay(),
at_get period(), at_get phase counter(), at_set set point(), at get set point(),
at_get_set_point_error(), at_enable interrupts(), at_disable interrupts(),

at_clear _interrupts(), at_interrupt_active(), at_setup cc(), at_set compare_time(),
at_get capture(), at_get status(), setup at()

at set set point()

Syntax:
at_set set point(set_point);

Parameters:
resolution - a 16-bit constant or variable to set the resolution.

228

Built-in Functions

Returns:

Function:
To setup the Angular Timer Set Point

Availability:
All Devices with an AT module

Requires:

Examples:
at_set_set_point(set_point);

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at_get phase counter(),

at_get set point(), at_get_set_point_error(), at_enable interrupts(), at_disable interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup cc(), at_set_compare_time(),
at_get capture(), at_get status(), setup at()

at setup cc()

Syntax:
at_setup_cc(which, settings);

Parameters:
which - an 8-bit constant specifying which AT Capture/Compare to setup, can be 1, 2 or
3.

settings - a 16-bit constant specifying how to setup the specified AT Capture/Compare
module. See the device's header file for all options. Some of the typical options include:
- AT_CC_ENABLED

AT_CC_DISABLED

AT_CC_CAPTURE_MODE

AT_CC_COMPARE_MODE

AT_CAPTURE_FALLING_EDGE

AT_CAPTURE_RISING_EDGE

Returns:

229

Built-in Functions

Function:
To setup one of the Angular Timer Capture/Compare modules to the specified settings.

Availability:
All Devices with an AT module

Requires:
Constants defined in the device's header file

Examples:
at_setup_cc(1,AT_CC_ENABLED|AT_CC_CAPTURE_MODE|
AT _CAPTURE_FALLING_EDGE|AT_CAPTURE_INPUT_ATCAP);

at_setup_cc(2,AT_CC_ENABLED|AT_ CC_CAPTURE_MODE]
AT_CC_ACTIVE_HIGH);

See Also:

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get missing pulse delay(), at_get period(), at_get phase counter(),

at_set_set point(), at_get _set point(), at_get_set point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),

at_set compare time(), at_get capture(), at_get status(), setup_at()

bit clear()

Syntax:
bit_clear(var, bit)

Parameters:
var may be a any bit variable (any Ivalue)
bit is a number 0- 31 63 representing a bit number, 0 is the least significant bit.

Returns:
Undefined

Function:
Simply clears the specified bit (0-7, 0-15 or 0-31) in the given variable. The least
significant bit is 0. This function is the similar to: var &= ~(1<<bit);

Availability:
All Devices

Requires:

230

Examples:
int x;
X=5;
bit_clear(x,2); /I xis now 1

Example Files:
ex_patg.c

See Also:
bit_set(), bit_test()

bit first()

Syntax:
N = bit_first (value, var)

Parameters:
value is a 0 to 1 to be shifted in
var is a 16 bit integer

Returns:
An 8-bit integer

Function:

Built-in Functions

This function sets N to the 0 based position of the first occurrence of value. The search

starts from the right or least significant bit.

Availability:
24-bit Devices (PIC24, 30F/33F)

Requires:

Examples:
in t16 var = 0x0033;
Int8 N =0;
IIN=2
N = bit_first (0, var);

See Also:

shift_right(), shift_left(), rotate right(), rotate left()

231

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

bit _last()

Syntax:
N = bit_last (value, var)
N = bit_last(var)

Parameters:
value is a 0 to 1 to search for
var is a 16 bit integer

Returns:
An 8-bit integer

Function:

The first function will find the first occurrence of value in the var starting with the most
significant bit.

The second function will note the most significant bit of var and then search for the first
different bit.

Both functions return a 0 based result.

Availability:
24-bit Devices (P1C24, 30F/33F)

Requires:

Examples:
//Bit pattern 11101110 11111111
Int16 var = OXEEFF;
Int8 N =0; /IN is assigned 12
N = bit_last (0, var); /IN is assigned 12
N = bit_last(var)

See Also:
shift_right(), shift_left(), rotate right(), rotate left()

bit set()

Syntax:
bit_set(var, bit)

Parameters:
var may be any variable (any Ivalue)

232

Built-in Functions

bit is a number from 0 to the highest bit number in the type, 0 is the least significant bit

Returns:
Undefined

Function:

Sets the specified bit in the given variable. The least significant bit is O.
This function is the similar to: var |= (1<<bit);

For example, for a 16-bit variable, the bit number may be 0-15,

Availability:
All Devices

Requires:

Examples:
int x;
X=5;
bit_set(x,3); /I xisnow 13

Example Files:
ex_patg.c

See Also:
bit_clear(), bit_test()

bit test()

Syntax:
value = bit_test (var, bit)

Parameters:
var may be any variable (any Ivalue)
bit is a number from 0 to the highest bit number in the type, 0 is the least significant bit

Returns:
Oor1l

Function:

Tests the specified bit in the given variable. The least significant bit is O.

This function is more efficient than, but otherwise similar to ((var & (1<<bit)) != 0)
For example, for a 16-bit variable, the bit number may be 0-15,

233

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Availability:
All Devices

Requires:

Examples:
if(bit_test(x,3) || 'bit_tes

}

if(data!=0)
for(i=31;!bit_test(data, i);i

data

Example Files:
ex_patg.c

See Also:
bit_clear(), bit_set()

brownout enable()

Syntax:
brownout_enable (value)

Parameters:
value T TRUE or FALSE

Returns:
Undefined

Function:

Built-in Functions

t(x,1) }{ /leither bit 3is 1
/lor bit 1is 0
-); /[i now has the most

[Isignificant bit in

/lthatissettoal

Enable or disable the software controlled brownout. Brownout will cause the PIC to reset
if the power voltage goes below a specific set-point.

Availability:

This function is only available on devices with a software controlled brownout. This may
also require a specific configuration bit/fuse to be set for the brownout to be software

controlled.

234

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Requires:

Examples:
brownout_enable(TRUE);

See Also:

restart_cause()

bsearch()

Syntax:
ip = bsearch (&key, base, num, width, compare)

Parameters:

key - Object to search for

base - Pointer to array of search data

num - Number of elements in search data

width - Width of elements in search data

compare - Function that compares two elements in search data

Returns:

bsearch returns a pointer to an occurrence of key in the array pointed to by base. If key
is not found, the function returns NULL. If the array is not in order or contains duplicate
records with identical keys, the result is unpredictable.

Function:
Performs a binary search of a sorted array.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int nums[5]={1,2,3,4,5};
int compar(const void *argl,const void *arg2);

void main() {
int *ip, key;
key = 3;
ip = bsearch(&key, nums, 5, sizeof(int), compar);

235

Built-in Functions

}

int compar(const void *argl,const void *arg2) {
if (*(int*)argl < (*(int*)arg2) return 1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

}

See Also:

gsort()

calloc()

Syntax:
ptr=calloc(nmem, size)

Parameters:
nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.

Returns:
A pointer to the allocated memory, if any. Returns null otherwise.

Function:

The calloc function allocates space for an array of nmem objects whose size is specified
by size.

The space is initialized to all bits zero.

Availability:
All Devices

Requires:
#INCLUDE <stdlib.h>

Examples:
int * iptr;
iptr=calloc(5,10); I/ iptr will point to a block of memory of
/1 50 bytes all initialized to 0
See Also:

realloc(), free(), malloc()

236

Built-in Functions

ceil()
Syntax:
result = ceil (value)

Parameters:
value is a float
pcp] Value is any float type

Returns:
A float
irep] A float with precision equal to value

Function:
Computes the smallest integer value greater than the argument. CEIL(12,67) is 13,00.

Availability:
All Devices

Requires:
#INCLUDE <math.h>

Examples:
/I Calculate cost based
/on weight rounded up to the
next pound
cost = ceil(weight) * DollarsPerPound

See Also:
floor

clcl setup gate() clc2 setup gate() clc3 setup gate()
clc4 setup gate()

Syntax:

clcl_setup_gate(gate, mode);
clc2_setup_gate(gate, mode);
clc3_setup_gate(gate, mode);
clc4_setup_gate(gate, mode);

Parameters:
gate 1 selects which data gate of the Configurable Logic Cell (CLC) module to setup,
value can be 1 to 4.

237

Built-in Functions

mode i the mode to setup the specified data gate of the CLC module into. The options
are:

clc_gate_and

clc_gate_nand

clc_gate_nor

clc_gate_or

clc_gate_clear

clc_gate_set

Returns:
Undefined
[reo1 Undefined with precision equal to value

Function:
Sets the logic function performed on the inputs for the specified data gate.

Availability:
Devices with a CLC module

Requires:
Undefined

Examples:
clcl_setup_gate(1, CLC_GATE_AND);
clcl_setup_gate(2, CLC_GATE_NAND);
clcl_setup_gate(3, C LC_GATE_CLEAR);
clcl_setup_gate(4, CLC_GATE_SET);

See Also:
setup_clex(), clex _setup _input()

clcl setup input() clc2 setup input() clc3 setup input()
clc4 setup input()

Syntax:

clcl_setup_input(input, selection);
clc2_setup_input(input, selection);
clc3_setup_input(input, selection);
clc4_setup_input(input, selection);

Parameters:
input 1 selects which input of the Configurable Logic Cell (CLC) module to setup, value
can be 1to 4.

238

Built-in Functions

selection i the actual input for the specified input that is actually connected to the data

gates of the CLC module. The options are:
clc_input_ O
clc_input_1
clc_input_2
clc_input_3
clc_input_4
clc_input 5
clc_input 6
clc_input_7

Returns:
Undefined

Function:

Sets the input for the specified input number that is actually connected to all four data
gates of the CLC module. Please refer to the table CLCx DATA INPUT SELECTION in
the device's datasheet to determine which of the above selections corresponds to actual

input pin or peripheral of the device.

Availability:
Devices with a CLC module

Requires:
Undefined

Examples:
clcl_setup_input(1l, CLC_INPUT_0);
clcl_setup_input(2, CLC_INPUT_1);
clcl_setup_input(3, CLC_INPUT_2);
clcl_setup_input(4, CLC_INPUT_3);

See Also:
setup clex(), clex _setup gate()

clear dmt()

Syntax:
clear_dmt();

Parameters:

239

Built-in Functions

Returns:

Function:
Used to clear the Deadman Timer (DMT) peripheral.

Availability:
Only on devices that have the DMT peripheral.

Requires:

Examples:
if((dmt_status() & DMT_CLEAR_WINDOW_OPEN) == DMT_CLEAR_WINDOW_OPEN)
clear_dmt();

See Also:
read _dmt(), disable dmt(), enable _dmt(), dmt status(), setup _dmt()

clear interrupt()

Syntax:
clear_interrupt(level)

Parameters:
level - a constant defined in the devices.h file

Returns:
Undefined

Function:

Clears the interrupt flag for the given level. This function is designed for use with a
specific interrupt, thus eliminating the GLOBAL level as a possible parameter. Some
chips that have interrupt on change for individual pins allow the pin to be specified like
INT_RAL.

Availability:
All Devices

Requires:

Examples:
clear_interrupt(int_timer1);

240

Built-in Functions

See Also:
enable interrupts() , enable_interrupts , #INT , #INT , Interrupts Overview
disable _interrupts(), interrupt actvie()

clear pwm1 interrupt() clear pwm?2 interrupt()
clear pwm3 interrupt() clear pwm4 interrupt()
clear pwm5 interrupt() clear pwmo6 interrupt()

Syntax:

clear_pwml_interrupt (interrupt)
clear_pwm2_interrupt (interrupt)
clear_pwmg3_interrupt (interrupt)
clear_pwm4_interrupt (interrupt)
clear_pwmb5_interrupt (interrupt)
clear_pwm6_interrupt (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file
as:

pwm_period_interrupt

pwm_duty_interrupt

pwm_phase_interrupt

pwm_offset_interrupt

Returns:
Undefined

Function:
Clears one of the above PWM interrupts, multiple interrupts can be cleared by or'ing
multiple options together.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:
clear_pwml_interrupt(PWM_PERIOD_INTERRUPT);
clear_pwml_interrupt(PWM_PERIOD_INTERRUPT | PWM_DUTY_INTERRUPT)

241

Built-in Functions

See Also:
setup_pwm(), set_pwm_duty(), set pwm_ phase(), set_pwm_period(), set pwm_offset(),
enable pwm interrupt(), disable pwm _interrupt(), pwm_interrupt _active()

cog restart() cog? restart() cog3 restart()
cog4 restart()

Syntax:
cog_restart();
cog2_restart();
cog3_restart();
cog4_restart();

Parameters:

Function:
To restart the Complementary Output Generator (COG) module after an auto-shutdown
event occurs, when not using auto-restart option of module.

Availability:
Devices with a COG module

Requires:

Examples:
if (cog_status()==COG_AUTO_SHUTDOWN)
cog_restart();

See Also:
setup _cog(), set cog dead band(), set cog_blanking(), set cog phase(), cog_status()

cog status() cog? status() cog3 status() cog4 status()

Syntax:
value=cog_status();
value=cog2_status();
value=cog3_status();
value=cog4_status();

242

Built-in Functions

Parameters:

Returns:
value - the status of the COG module

Function:
To determine if a shutdown event occurred on the Complementary Output Generator
(COG) module.

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:
if(cog_status()==COG_AUTO_SHUTDOWN)
cog_restart();

See Also:
setup _coq(), set cog_dead band(), set cog blanking(), set cog_phase(), cog_restart()

crc calc(mode)

Syntax:

Result = crc_calc (data,[width]);

Result = crc_calc(ptr,len,[width]);

Result = crc_calc8(data,[width]);

Result = crc_calc8(ptr,len,[width]);

Result = crc_calc16(data,[width]); /[same as crc_calc()
Result = crc_calc16(ptr,len,[width]); /[same as crc_calc()
rep] Result = crc_calc32(data,[width]);

rep] Result = crc_cale32(ptr,len,[width]);

Parameters:

data- This is one double word, word or byte that needs to be processed when using
crc_calcl6()
crc_calc8()
[pcp] crc_calc32()

ptr- is a pointer to one or more double words, words or bytes of data

243

Built-in Functions

len- number of double words, words or bytes to process for function calls
crc_calcl6()
crc_calc8()
[pcp] crc_cale32()

width- optional parameter used to specify the input data bit width to use with the
functions

crc_calcl6()

crc_calc8()

pcp] crc_calc32()

If not specified, it defaults to the width of the return value of the function
8-bit for crc_calc8()
16-bit for crc_calc16()
e 32-bit for crc_calc32()

Returns:
Returns the result of the final CRC calculation.

Function:

Calculates the CRC of the passed data using the CRC engine. The function that should
be used to do the calculation depends on the CRC polynomial used. For polynomials
less than or equal 8 bits, crc_calc8() should be used. For polynomials greater than 8 bits,
crc_calc16() should be used. Data widths less than or equal to 16 bits are supported.

rep] Calculates the CRC of the passed data using the CRC engine. The crc_calc32()
function is only available for device with a 32 bit CRC peripheral. The function that
should be used to do the calculation depends on the CRC polynomial used. For
polynomials less than or equal to 8 bits, crc_calc8() should be used. For polynomials
greater than 8 bits and less than or equal to 16 bits, crc_calc16() should be used. For
polynomials greater than 16 bits, crc_calc32() should be used. For devices with a 32 bit
CRC peripheral, data widths less than or equal to 32 bits are supported, and for device
with a 16 bit CRC peripheral data widths less than or equal to 16 bits are supported.

Availability:
Only Devices with a built-in CRC module

Requires:

Examples:
int16 data[8];
Result = crc_calc(data,8);

244

Built-in Functions

Example Files:
ex_crc_hw.c

See Also:
setup _crc(); crc_init()

crc init(mode)

Syntax:
crc_init (data);

Parameters:
data- This will setup the initial value used by write CRC shift register. Most commonly,
this register is set to 0x0000 for start of a new CRC calculation.

Returns:
Undefined

Function:
Configures the CRCWDAT register with the initial value used for CRC calculations.

Availability:
Only Devices with a built-in CRC module
Requires:
Examples:
crc_ init (); /I Starts the CRC accumulator out at 0

crc_init(OXFEEE); // Starts the CRC accumulator out at OXFEEE

See Also:
setup_crc(), crc_calc(), crc_calc8()

crc_read()

Syntax:
value = read();

Parameters:

245

Returns:
A 16-bit integer.

Function:
Returns the current CRC Accumulator value.

Availability:
On devices with a Cyclic Redundancy Check (CRC) module.

Requires:

Examples:

int16 value;
value = crc_read();

See Also:
setup crc(), crc_init(), crc_calc(), crc_write()

crc write()

Syntax:
crc_write(data, [data_width]));

Parameters:

data is the 16 bit value to write

Built-in Functions

data_width is an optional parameter used to specify the width of the input data.

Returns:
Undefined

Function:
Used to write data into the CRC data registers.

Availability:
On devices with a Cyclic Redundancy Check (CRC) module.

Requires:

246

Built-in Functions

Examples:
crc_write(data);

See Also:
setup_crc(), crc_init(), crc_calc(), crc_read()

cwg restart() cwqg?2 restart() cwag3 restart()

Syntax:
cwg_restart();
cwg?2_restart();
cwg3_restart();

Parameters:

Function:
To restart the CWG module after an auto-shutdown event occurs, when not using auto-
raster option of module.

Availability:
Devices with a CWG module

Requires:

Examples:
if(cwg_status() == CWG_AUTO_SHUTDOWN)
cwg_restart();

See Also:
setup _cwg(), cwg_status()

cwg status() cwqg?2 status() cwqg3 status()

Syntax:
value = cwg_status();
value = cwg2_status();

247

Built-in Functions

value = cwg3_status();

Parameters:

Returns:
The status of the CWG module

Function:
To determine if a shutdown event occurred causing the module to auto-shutdown.

Availability:
Devices with a CWG module

Requires:

Examples:
ifc wg_status() == CWG_AUTO_SHUTDOWN)
cwg_restart();

See Also:
setup_cwq(), cwg_restart()

dac write()

Syntax:

dac_write (value);

dac_write2 (value);
dac_write3(value);
dac_writed(value);
dac_write5(value);
dac_write6(value);
dac_write7(value);
dac_write8(value);

rep] dac_write (channel, value);
pep] dac_write (module, value);
rep) dac_write (module, value, [low_value]);

Parameters:
value - 8-bit or 16-bit integer value to be written to the DAC module

248

Built-in Functions

rep] channel - 16-bit integer value to be written to the DAC module channel: Channel to
be written to. Constants are:

DAC_RIGHT

DAC_DEFAULT

DAC_LEFT

irep; module - DAC module to write value to.

rco] low_value - Optional 16-bit integer value for devices with an Analog Comparator
with Slope Compensation DAC peripheral to set the DAC low data value. In Hysteric,
Slope Generator and Triangle modes, this specifies the low data value and/or limit for the
DAC module.

Returns:

Function:
This function will write a 8-bit or 16-bit integer to the specified DAC module.

Availability:
Devices with an analog-to-digital converter (DAC).

Requires:

Examples:
dac_write(20);
[PCD]
dac_write(DAC_RIGHT, 500);
dac_write(1, DacValue);
dac_write(1, DacValue, DacLowValue);

See Also:
setup_dac(), DAC Overview, See header file for device selected

dci data received()

Syntax:
dci_data_received()

Parameters:

249

Built-in Functions

Returns:
An intl. Returns true if the DCI module has received data.

Function:
Use this function to poll the receive buffers. It acts as a kbhit() function for DCI.

Availability:
Devices with a DCI

Requires:

Examples:
while(1)

if(dci_data_received())
{ /'l read data, | oad buffer s
}

}

See Also:
DCI Overview, setup dci(), dci_start(), dci_write(), dci_read(), dci_transmit_ready()

dci_read()

Syntax:
dci_read(left_ channel, right_ channel);

Parameters:

left_channel- A pointer to a signed intl16 that will hold the incoming audio data for the left
channel (on a stereo system). This data is received on the bus before the right channel
data (for situations where left & right channel does have meaning)

right_channel- A pointer to a signed int16 that will hold the incoming audio data for the
right channel (on a stereo system). This data is received on the bus after the data in left
channel.

Returns:
Undefined

Function:

Use this function to read two data words. Do not use this function with DMA. This function
is provided mainly for applications involving a stereo codec.

250

Built-in Functions

If your application does not use both channels but only receives on a slot (see
setup_dci), use only the left channel.

Availability:
Devices with a DCI

Requires:

Examples:
while(1)
{
dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &right _channel);

}

See Also:
DCI Overview, setup dci(), dci_start(), dci_write(), dci_transmit_ready(),
dci_data_received()

dci_start()

Syntax:
dci_start();

Parameters:

Returns:
Undefined

Function:

Starts the DCI moduleds transmission. DCI
(unlike other transmission protocols that transmit only when they have data). This

function starts the transmission. This function is primarily provided to use DCI in
conjunction with DMA

Availability:
Devices with a DCI

Requires:

251

ope:

Built-in Functions

Examples:
dci_initialize((12S_MODE | DCI _MASTER |
DCI_CLOCK_OUTPUT | SAMPLE_RISING_EDGE |
UNDERFLOW_LAST |
MULTI_DEVICE_BUS),DCI_1WORD_FRAME |
DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
RECEIVE_SLOTO | RECEIVE_SLOT1, TRANSMIT_SLOTO |
TRANSMIT_SLOT1, 6000);
e
dci_start()

See Also:
DCI Overview, setup_dci(), dci_write(), dci_read(), dci_transmit_ready(),
dci_data_received()

dci transmit ready()

Syntax:
dci_transmit_ready()

Parameters:

Returns:
An intl. Returns true if the DCI module is ready to transmit (there is space open in the
hardware buffer)

Function:
Use this function to poll the transmit buffers

Availability:
Devices with a DCI

Requires:

Examples:
while(1)

if(dci_transmit_ready())

/ltransmit data, load
buffers, et cé

}
}

252

Built-in Functions

See Also:
DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(), dci_data_received()

dci write()

Syntax:
dci_write(left_channel, right_channel);

Parameters:

left channel - A pointer to a signed int16 that holds the outgoing audio data for the left
channel (on a stereo system). This data is transmitted on the bus before the right channel
data (for situations where left & right channel does have meaning)

right channel - A pointer to a signed int16 that holds the outgoing audio data for the right
channel (on a stereo system). This data is transmitted on the bus after the data in left
channel.

Returns:
Undefined

Function:
Use this function to transmit two data words. Do not use this function with DMA. This
function is provided mainly for applications involving a stereo codec.

If the application does not use both channels but only transmits on a slot (see
setup_dci()), use only the left channel. If transmit more than two slots, call this function
multiple times.

Availability:
Devices with a DCI

Requires:

Examples:
while(1)

dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &r ight_channel)

253

Built-in Functions

See Also:
DCI Overview, setup dci(), dci_start(), dci_read(), dci_transmit_ready(),
dci_data_received()

delay cycles()

Syntax:
delay_cycles (count)

Parameters:
count - a constant 1-255

Returns:
Undefined

Function:
Creates code to perform a delay of the specified number of instruction clocks (1-255). An
instruction clock is equal to four oscillator clocks.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:

Examples:
delay_cycles(1); // Same as a NOP
delay_cycles(25); // At 20 mhz a 5us delay

Example Files:
ex_cust.c

See Also:
delay us(), delay ms()

delay ms()

Syntax:
delay_ms (time)

254

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

Parameters:
time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper byte
affects the time.

Returns:
Undefined

Function:

This function will create code to perform a delay of the specified length. Time is specified
in milliseconds. This function works by executing a precise number of instructions to
cause the requested delay. It does not use any timers. If interrupts are enabled the time
spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:
#USE_DELAY

Examples:
#use delay (clock=20000000)
delay_ms(2);

void delay_seconds(int n) {
for (;n!=0; n - =)
delay_ms(1000);

}

Example Files:
ex_sqgw.c

See Also:
delay us(), delay cycles(), #USE DELAY

255

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

delay us()

Syntax:
delay_us (time)

Parameters:
time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper byte
affects the time.

Returns:
Undefined

Function:

Creates code to perform a delay of the specified length. Time is specified in
microseconds. Shorter delays will be INLINE code and longer delays and variable delays
are calls to a function. This function works by executing a precise number of instructions
to cause the requested delay. It does not use any timers. If interrupts are enabled the
time spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability:
All Devices

Requires:
#USE_DELAY

Examples:
#use delay(clock=20000000)

do {

output_high(PIN_BO);
delay_us(duty);
output_low(PIN_BO);
delay_us(period - duty);
} while(TRUE);

Example Files:
ex_sqgw.c

See Also:
delay ms(), delay cycles(), #USE DELAY

256

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()

Built-in Functions

disable dmt()

Syntax:
disable_dmt();

Parameters:

Function:

Disable the Deadman Timer (DMT). This function only works if the DMT_SW
configuration fuses has been set. If the DMT configuration fuse is set, then the DMT is
always enabled.

Availability:
Only on devices that have the DMT peripheral.

Requires:

Examples:
disabled_dmt();

See Also:
clear_dmt(), read dmt(), enable _dmt(), dmt status(), setup _dmt()

disable interrupts()

Syntax:

disable_interrupts (level)

ipep) disable_interrupts (name)

ipep) disable_interrupts (INTR_XX)
ipcp] disable_interrupts (expression)

Parameters:
level - a constant defined in the devices .h file

pcp] name - a constant defined in the devices .h file

rep] INTR_XX'T Allows user selectable interrupt options like intr_normal, intr_alternate,
intr_level

257

Built-in Functions

[pcp] expression T A non-constant expression

Returns:
Undefined
irep] When intr_levelx is used as a parameter, this function will return the previous level.

Function:

Disables the interrupt at the given level. The GLOBAL level will not disable any of the
specific interrupts but will prevent any of the specific interrupts, previously enabled to be
active. Valid specific levels are the same as are used in #INT_xxx and are listed in the
devices .h file. GLOBAL will also disable the peripheral interrupts on devices that have it.

Note that it is not necessary to disable interrupts inside an interrupt service routine since

interrupts are automatically disabled. Some chips that have interrupt on change for
individual pins allow the pin to be specified like INT_RAL.

[PCD]

Disables the interrupt for the given name. Valid specific names are the same as are used
in #INT_xxx and are listed in the devices .h file. Note that it is not necessary to disable
interrupts inside an interrupt service routine since interrupts are automatically disabled.
intr_glogal 1 Disables all interrupts that can be disabled

intr_normal T Use normal vectors for the ISR

intr_alternate 1 Use alternate vectors for the ISR

intr_levelQ /intr_level7 7 Disables interrupts at this level and below, enables interrupts
above this level

intr_cn_pin|pin_xx 1 Disables a CN pin interrupts
expression i Disables interrupts during evaluation of the expression.

Availability:
Some Devices (PCM and PCH) with interrupts and all 24-bit (PCD) devices.

Requires:
Should have a #INT_xxxx, constants are defined in the devices .h file.

Examples:
disable_interrupts(GLOBAL); /I all interrupts OFF
disable_interrupts(INT_RDA); /IRS2320 FF

258

Built-in Functions

enable_interrupts(ADC_DONE);
enable_interrupts(RB_CHANGE); /I these enable the interrupts
[/l but since the GLOBAL is
disabled they
/l are not activated until the
following
/] statement:
enable_interrupts(GLOBAL);

Example Files:
ex_sisr.c, ex_stwi.c

See Also:
enable_interrupts(), clear_interrupt (), #INT xxxX, Interrupts Overview, interrupt_active()

disable pwml interrupt() disable pwm?2 interrupt()
disable pwm3 interrupt() disable pwm4 interrupt()
disable pwm5 interrupt() disable pwm6 interrupt()

Syntax:

disable_pwm1_interrupt (interrupt)
disable_pwm?2_interrupt (interrupt)
disable_pwm3_interrupt (interrupt)
disable_pwm4 _interrupt (interrupt)
disable_pwmb5_interrupt (interrupt)
disable_pwm6_interrupt (interrupt)

Parameters:
interrupt - 8-bit constant or variable. Constants are defined in the device's header file
as:

pwm_period_interrupt

pwm_duty_interrupt

pwm_phase_interrupt

pwm_offset_interrupt

Returns:
Undefined

Function:

Disables one of the above PWM interrupts, multiple interrupts can be disabled by or'ing
multiple options together.

259

file:///C:/HelpFile/CCSC/javascript:ShortCutLink.Click()
file:///C:/HelpFile/CCSC/javascript:ShortCutLink2.Click()

Built-in Functions

Availability:
Devices with a 16-bit PWM module

Requires:

Examples:
disable_interrupts(GLOBAL); /I all interrupts OFF
disable_interrupts(INT_RDA); /I RS232 OFF

enable_interrupts(ADC_DONE);
enable_interrupts(RB_CHANGE); /I these enable the interrupts
I/l but since the GLOBAL is
disabled they
/[are not activated until the
following
/I statement:
enable_interrupts(GLOBAL);

See Also:
setup_pwm(), set_ pwm_duty(), set pwm_phase(), set pwm_period(), set pwm _offset(),
enable pwm interrupt(), clear pwm interrupt(), pwm _interrupt active()

div() Idiv()
Syntax:

idiv=div(num, denom)
[div =Idiv(Inum, Idenom)

Parameters:

num and denom are signed integers.

num is the numerator and denom is the denominator
Inum and Idenom are signed longs

rep] Inum and Idenom are signed int32, int48 or int64
Inum is the numerator and Idenom is the denominator

Returns:

idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The div function
returns a structure of type div_t, comprising of both the quotient and the remainder. The
Idiv function returns a structure of type Idiv_t, comprising of both the quotient and the
remainder.

260

